1,840
Views
25
CrossRef citations to date
0
Altmetric
Review

Peach (Prunus Persica): Phytochemicals and Health Benefits

, , & ORCID Icon

References

  • Del, R. D.; Rodriguez-Mateo, A.; Spencer, J. P. E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary(poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects against Chronic Diseases. Antioxid. Redox Signal. 2012, 18(14), 1818–1892. DOI: 10.1089/ars.2012.4581.
  • Aubert, C.; Bony, P.; Chalot, G.; Landry, P.; Lurol, S. Effects of Storage Temperature, Storage Duration, and Subsequent Ripening on the Physicochemical Characteristics, Volatile Compounds, and Phytochemicals of Western Red Nectarine (Prunus Persica LBatsch). J. Agric. Food Chem. 2014, 62(20), 4707–4724. DOI: 10.1021/jf4057555.
  • Abidi, W.; Jiménez, S.; Moreno, M. Á.; Gogorcena, Y. Evaluation of Antioxidant Compounds and Total Sugar Content in a Nectarine [Prunus Persica (L.)batsch] Progeny . Int. J. Mol. Sci. 2011, 12(10), 6919–6935. DOI: 10.3390/ijms12106919.
  • Agudo, A.;. Measuring Intake of Fruit and Vegetables; WHO: Spain, 2005.
  • Cantín, C. M.; Moreno, M. A.; Gogorcena, Y. Evaluation of the Antioxidant Capacity, Phenolic Compounds, and Vitamin C Content of Different Peach and Nectarine [Prunus Persica (L.)batsch] Breeding Progenies . J. Agric. Food Chem. 2009, 57(11), 4586–4592. DOI: 10.1021/jf900385a.
  • Davidović, S. M.; Veljović, M. S.; Pantelić, M. M.; Baošić, R. M.; Natić, M. M.; Dabić, D. Č.; Pecić, S. P.; Vukosavljević, P. V. Physicochemical, Antioxidant and Sensory Properties of Peach Wine Made from Redhaven Cultivar. J. Agric. Food Chem. 2013, 61(6), 1357–1363. DOI: 10.1021/jf3043727.
  • Font i Forcada, C.; Gradziel, T. M.; Gogorcena, Y.; Moreno, M. Á. Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions Euphytica 2014, 197 (2), 261–277.
  • Faust, M.; Timon, B. Origin and Dissemination of Peach. Hortic. Rev. (Am. Soc. Hortic. Sci). 1995, 17, 331–379.
  • Campbell, O. E.; Padilla-Zakour, O. I. Phenolic and Carotenoid Composition of Canned Peaches (Prunus Persica) and Apricots (Prunus Armeniaca) as Affected by Variety and Peeling. Food Res. Int. 2013, 54(1), 448–455. DOI: 10.1016/j.foodres.2013.07.016.
  • Cantín, C. M.; Gogorcena, Y.; Moreno, M. A. Phenotypic Diversity and Relationships of Fruit Quality Traits in Peach and Nectarine [Prunus Persica (L.)batsch] Breeding Progenies . Euphytica. 2009, 171(2), 211–226. DOI: 10.1007/s10681-009-0023-4.
  • Liu, H.; Cao, J.; Jiang, W. Evaluation and Comparison of Vitamin C, Phenolic Compounds, Antioxidant Properties and Metal Chelating Activity of Pulp and Peel from Selected Peach Cultivars. LWT - Food Sci. Technol. 2015, 63(2), 1042–1048. DOI: 10.1016/j.lwt.2015.04.052.
  • Liu, H.; Cao, J.; Jiang, W. Evaluation of Physiochemical and Antioxidant Activity Changes during Fruit On-tree Ripening for the Potential Values of Unripe Peaches. Sci. Hortic. (Amsterdam). 2015, 193, 32–39. DOI: 10.1016/j.scienta.2015.06.045.
  • Gil, M. I.; Tomás-Barberán, F. A.; Hess-Pierce, B.; Kader, A. A. Antioxidant Capacities, Phenolic Compounds, Carotenoids, and Vitamin C Contents of Nectarine, Peach, and Plum Cultivars from California. J. Agric. Food Chem. 2002, 50(17), 4976–4982. DOI: 10.1021/jf020136b.
  • Zhao, X.; Zhang, W.; Yin, X.; Su, M.; Sun, C.; Li, X.; Chen, K. Phenolic Composition andAntioxidant Properties of Different Peach [Prunus Persica (L.)batsch] Cultivars in China . Int. J. Mol. Sci. 2015, 16(3), 5762–5778. DOI: 10.3390/ijms16035762.
  • Sánchez-Moreno, C.; Pascual-Teresa, S. D.; Ancos, B. D.; Cano, M. P. Nutritional Values of Fruits. In Handbook of Fruits and Fruit Processing. Nova Jersey, United States of America: Blackwell Publishing 2006; pp 29–44.
  • Kris-Etherton, P.; Lefevre, M.; Beecher, G. R.; Gross, M. D.; Keen, C. L.; Etherton, T. D. Bioactive Compounds in Nutrition and Health-Research Methodologies for Establishing Biological Function: The Antioxidant and Anti-inflammatory Effects of Flavonoids on Atherosclerosis. Annu. Rev. Nutr. 2004, 24(1), 511–538. DOI: 10.1146/annurev.nutr.23.011702.073237.
  • Kris-Etherton, P.; Hecker, K. D.; Bonanome, A.; Coval, S. M.; Binkoski, A. E.; Hilpert, K. F.; Griel, A. E.; Etherton, T. D. Bioactive Compounds in Foods: Their Role in the Prevention of Cardiovascular Disease and Cancer. Am. J. Med. 2002, 113(Suppl (1)), 71S–88S. DOI: 10.1016/S0002-9343(01)00995-0.
  • Biesalski, H. K.; Dragsted, L. O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive Compounds: Definition and Assessment of Activity. Nutrition. 2009, 25(11–12), 1202–1205. DOI: 10.1016/j.nut.2009.04.023.
  • Liu, R. H.;. Health Benefits of Fruit and Vegetables are from Additive and Synergistic Combinaions of Phytochemicals. Am. J. Clin. Nutr. 2003, 78, 3–6. DOI: 10.1093/ajcn/78.3.517S.
  • Alina, O.; Alexa, E.; Radulov, I.; Costea, A.; Dobrei, A.; Dobrei, A. Minerals and Amino Acids in Peach (Prunus Persica L)cultivars and Hybrids Belonging to World Germoplasm Collection in the Conditions of West Romania. Agric. Agric. Sci. Procedia. 2015, 6, 145–150.
  • Manzoor, M.; Anwar, F.; Mahmood, Z.; Rashid, U.; Ashraf, M. Variation in Minerals, Phenolics and Antioxidant Activity of Peel and Pulp of Different Varieties of Peach (Prunus Persica L.)fruit from Pakistan. Molecules. 2012, 17(6), 6491–6506.
  • USDA. National Nutrient Database for Standard Reference https://ndb.nal.usda.gov/ndb/search (accessed Jun 1, 2016).
  • INSA. Portal Do Utente. Portal Da Saúde. www.insa.pt (accessed Aug 15, 2015).
  • Reig, G.; Iglesias, I.; Gatius, F.; Alegre, S. Antioxidant Capacity, Quality, and Anthocyanin and Nutrient Contents of Several Peach Cultivars [Prunus Persica (L.)batsch] Grown in Spain. J. Agric. Food Chem. 2013, 61(26), 6344–6357. DOI: 10.1021/jf401183d.
  • Wang, Y.; Yang, C.; Li, S.; Yang, L.; Wang, Y.; Zhao, J.; Jiang, Q. Volatile Characteristics of 50 Peaches and Nectarines Evaluated by HP-SPME with GC-MS. Food Chem. 2009, 116(1), 356–364. DOI: 10.1016/j.foodchem.2009.02.004.
  • Colaric, M.; Veberic, R.; Stampar, F.; Hudina, M. Evaluation of Peach and Nectarine Fruit Quality and Correlations between Sensory and Chemical Attributes. J. Sci. Food Agric. 2005, 85(April), 2611–2616. DOI: 10.1002/jsfa.2316.
  • Versari, A.; Castellari, M.; Parpinello, G. P.; Riponi, C.; Galassi, S. Characterisation of Peach Juices Obtained from Cultivars Redhaven, Suncrest and Maria Marta Grown in Italy. Food Chem. 2002, 76(2), 181–185. DOI: 10.1016/S0308-8146(01)00261-8.
  • Byrne, D.;. Nikolic, An; Burns, EVariability in Sugars, Acids, Firmness, and Color Characteristics of 12 Peach Genotypes . J. Am. Soc. Hortic. Sci. 1991, 116(6), 1004–1006.
  • Ferrer, A.; Remón, S.; Negueruela, A. I.; Oria, R. Changes during the Ripening of the Very Late Season Spanish Peach Cultivar Calanda: Feasibility of Using CIELAB Coordinates as Maturity Indices. Sci. Hortic. (Amsterdam). 2005, 105(4), 435–446. DOI: 10.1016/j.scienta.2005.02.002.
  • Byrne, D. H.; Nikolic, A. N.; Burns, E. E. Variability in Sugars, Acids, Firmness, and Color Characteristics of 12 Peach Genotypes. J. Am. Soc. Hortic. Sci. 1991, 116(6), 1004–1006. DOI: 10.21273/JASHS.116.6.1004.
  • Scordino, M.; Sabatino, L.; Muratore, A.; Belligno, A.; Gagliano, G. Phenolic Characterization of Sicilian Yellow Flesh Peach (Prunus Persica L.)Cultivars at Different Ripening Stages . J. Food Qual. 2012, 35(4), 255–262.
  • Tomás-Barberán, F. A.; Gil, M. I.; Cremin, P.; Waterhouse, A. L.; Hess-Pierce, B.; Kader, A. A. HPLC-DAD-ESIMS Analysis of Phenolic Compounds in Nectarines, Peaches, and Plums. J. Agric. Food Chem. 2001, 49(10), 4748–4760.
  • Ballistreri, G.; Continella, A.; Gentile, A.; Amenta, M.; Fabroni, S.; Rapisarda, P. Fruit Quality and Bioactive Compounds Relevant to Human Health of Sweet Cherry (Prunus Avium L.)cultivars Grown in Italy. Food Chem. 2013, 140(4), 630–638. DOI: 10.1016/j.foodchem.2012.11.024.
  • Hayaloglu, A. A.; Demir, N. Physicochemical Characteristics, Antioxidant Activity, Organic Acid and Sugar Contents of 12 Sweet Cherry (Prunus Avium L.) Cultivars Grown in Turkey. J. Food Sci. 2015, 80(3), C564–C570. DOI: 10.1111/1750-3841.12781.
  • Ribeiro, R. A.; Miranda, G. V.; Puiatti, M. Study of Total Soluble Sugars, Reducing Sugars and Starch Composition in Immature Kernels of Corn Cultivars. Rvevista Bras Milho E Sorgo. 2004, 3(1), 38–44.
  • Oliveira, M. A. D.; Cereda, M. P.; Cabello, C.; Urbano, L. H. Quantificação De Açúcares Em Pêssegos Da Variedade “Biuti”, Armazenados Sob Cndições De Ambiente E Refrigeração. Rev. Bras. Frutic. Jaboticabal. 2001, 23, 424–427. DOI: 10.1590/S0100-29452001000200046.
  • Cirilli, M.; Bassi, D.; Ciacciulli, A. Sugars in Peach Fruit: A Breeding Perspective. Hortic. Res. 2016, 3(December), 2015. DOI: 10.1038/hortres.2015.67.
  • Siddiq, M. Peach and Nectarine. In Handbook of Fruits and Fruit Processing. Nova Jersey, United States of America: Blackwell Publishing, 2006.
  • Duan, Y.; Dong, X.; Liu, B.; Li, P. Relationship of Changes in the Fatty Acid Compositions and Fruit Softening in Peach (Prunus Persica LBatsch). Acta Physiol. Plant. 2013, 35(3), 707–713.
  • Kikalishvili, B.; Zurabashvili, D.; Turabelidze, D.; Zurabashvili, Z.; Giorgobiani, I. The Fatty Acid Composition of Peach Oil and Its Biological Activity. Georg. Med. News. 2013, 218, 82–85.
  • Kim, H.-R.; Kim, I.-D.; Dhungana, S. K.; Kim, M.-O.; Shin, D.-H. Comparative Assessment of Physicochemical Properties of Unripe Peach (Prunus Persica) and Japanese Apricot (Prunus Mume). Asian Pac. J. Trop. Biomed. 2014, 4(2), 97–103. DOI: 10.1016/S2221-1691(14)60216-1.
  • Buedo, A. P.; Elustondo, M. P.; Urbicain, M. J. U. Amino Acid Loss in Peach Juice Concentrate during Storage. Innov. Food Sci. Emerg. Technol. 2001, 1(2001), 281–288. DOI: 10.1016/S1466-8564(00)00030-8.
  • Jones, D.;. Organic Acids in the Rhizosphere - a Critical Review. Plant Soil. 1998, 205(1), 25–44. DOI: 10.1023/A:1004356007312.
  • Saidani, F.; Giménez, R.; Aubert, C.; Chalot, G.; Betrán, J. A.; Gogorcena, Y. Phenolic, Sugar and Acid Profiles and the Antioxidant Composition in the Peel and Pulp of Peach Fruits. J. Food Compos. Anal. November 2016, 2017(62), 126–133.
  • Remorini, D.; Tavarini, S.; Degl’Innocenti, E.; Loreti, F.; Massai, R.; Guidi, L. Effect of Rootstocks and Harvesting Time on the Nutritional Quality of Peel and Flesh of Peach Fruits. Food Chem. 2008, 110(2), 361–367. DOI: 10.1016/j.foodchem.2008.02.011.
  • Drogoudi, P. D.; Tsipouridis, C. G. Effects of Cultivar and Rootstock on the Antioxidant Content and Physical Characters of Clingstone Peaches. Sci. Hortic. (Amsterdam). 2007, 115(1), 34–39. DOI: 10.1016/j.scienta.2007.07.009.
  • Başar, H.;. Elemental Composition of Various Peach Cultivars. Sci. Hortic. (Amsterdam). 2006, 107(3), 259–263. DOI: 10.1016/j.scienta.2005.08.004.
  • Melo, G. W. B.; Sete, P. B.; Ambrosini, V. G.; Freitas, R. F.; Basso, A.; Brunetto, G. Nutritional Status, Yield and Composition of Peach Fruit Subjected to the Application of Organic Compost. Acta Sci. Agron. 2016, 38(1), 103. DOI: 10.4025/actasciagron.v38i1.25638.
  • Anderson, J. J. B.; Garner, S. C. Calcium and Phosphorus in Health and Disease. Florida, United States of America: CRC Press, 1995.
  • Rasool Hassan, B. A.;. Vitamins (Importance and Toxicity). Pharm. Anal. Acta. 2012, 3, 8. DOI: 10.4172/2153-2435.1000e125.
  • Ozkanlar, S.; Akcay, F. Antioxidant Vitamins in Atherosclerosis–animal Experiments and Clinical Studies. Adv. Clin. Exp. Med. 2012, 21(1), 115–123.
  • Holst, B.; Williamson, G. Nutrients and Phytochemicals: From Bioavailability to Bioefficacy beyond Antioxidants. Curr. Opin. Biotechnol. 2008, 19(2), 73–82. DOI: 10.1016/j.copbio.2008.03.003.
  • Liu, R. H.;. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134(12 Suppl), 3479S–3485S. DOI: 10.1093/jn/134.12.3479S.
  • Visai, C.; Vanoli, M. Volatile Compound Production during Growth and Ripening of Peaches and Nectarines. Sci. Hortic. (Amsterdam). 1997, 70(1), 15–24. DOI: 10.1016/S0304-4238(97)00032-0.
  • El Hadi, M.; Zhang, F. J.; Wu, F.; Zhou, C. H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules. 2013, 18(7), 8200–8229. DOI: 10.3390/molecules18078200.
  • Jiang, Y.; Song, J. Volatile compounds and their biological characteristic of major fruits. In Handbook of Fruits and Vegetable Flavors; Hui, I.H., Ed.; John Wiley and Sons, Inc. Hoboken, New Jersey 2010 p 13
  • Dragovic-Uzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The Content of Polyphenols and Carotenoids in Three Apricot Cultivars Depending on Stage of Maturity and Geographical Region. Food Chem. 2007, 102(3), 966–975.
  • Gasparotto, J.; Somensi, N.; Bortolin, R. C.; Girardi, C. S.; Kunzler, A.; Rabelo, T. K.; Schnorr, C. E.; Moresco, K. S.; Bassani, V. L.; Yatsu, F. K. J.; et al. Preventive Supplementation with Fresh and Preserved Peach Attenuates CCl4-induced Oxidative Stress, Inflammation and Tissue Damage. J. Nutr. Biochem. 2014, 25(12), 1282–1295.
  • Castañeda-Ovando, A.; Pacheco-Hernández, M. D. L.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113(4), 859–871.
  • Vizzotto, M.; Cisneros-zevallos, L.; Byrne, D. H. Large Variation Found in the Phytochemical and Antioxidant Activity of Peach and Plum Germplasm. J. Am. Soc. Hortic. Sci. 2007, 132(3), 334–340. DOI: 10.21273/JASHS.132.3.334.
  • Ignat, I.; Volf, I.; Popa, V. I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126(4), 1821–1835. DOI: 10.1016/j.foodchem.2010.12.026.
  • Bento, C.; Gonçalves, A. C.; Silva, B.; Silva, R. L. Assessing the Phenolic Profile, Antioxidant, Antidiabetic and Protective Effects against Oxidative Damage in Human Erythrocytes of Peaches from Fundão. J. Funct. Foods. 2018, 43, 224–233. DOI: 10.1016/j.jff.2018.02.018.
  • Lule, S. U.; Xia, W. Food Phenolics, Pros and Cons: A Review. Food Rev. Int. 2005, 21(4), 367–388. DOI: 10.1080/87559120500222862.
  • Monagas, M.; Bartolomé, B.; Gómez-Cordovés, C. Updated Knowledge about the Presence of Phenolic Compounds in Wine. Crit. Rev. Food Sci. Nutr. 2005, 45(2), 85–118. DOI: 10.1080/10408690490911710.
  • Sun, L.; Zhang, H.; Zhuang, Y. Preparation of Free, Soluble Conjugate, and Insoluble-Bound Phenolic Compounds from Peels of Rambutan (Nephelium Lappaceum) and Evaluation of Antioxidant Activities in Vitro. J. Food Sci. 2012, 77(2), 198–204. DOI: 10.1111/j.1750-3841.2011.02548.x.
  • Crozier, A.; Jaganath, I. B.; Clifford, M. N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26(8), 1001–1043.
  • Nicoletti, I.; Martini, D.; De Rossi, A.; Taddei, F.; D’Egidio, M. G.; Corradini, D. Identification and Quantification of Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolic Acids in Durum Wheat (Triticum Turgidum Lvar. Durum) and Derived Products by RP-HPLC on a Semimicro Separation Scale. J. Agric. Food Chem. 2013, 61(48), 11800–11807.
  • Acosta-Estrada, B. A.; Gutiérrez-Uribe, J. A.; Serna-Saldívar, S. O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. DOI: 10.1016/j.foodchem.2013.11.093.
  • Häkkinen, S. Flavonols and Phenolic Acids in Berries and Berry Products Flavonols and Phenolic Acids in Berries and Berry Products. Kuopio, Finland: University of Kuopio, 2000.
  • Ceccarelli, D.; Simeone, A. M.; Nota, P.; Piazza, M. G.; Fideghelli, C.; Caboni, E. Phenolic Compounds (Hydroxycinnamic Acids, Flavan-3-ols, Flavonols) Profile in Fruit of Italian Peach Varieties. Plant Biosyst. - An. Int. J. Deal. Asp. Plant Biol. 2016, 3504(February), 1–6.
  • Aherne, S. A.; O’Brien, N. M. Dietary Flavonols: Chemistry, Food Content, and Metabolism. Nutrition. 2002, 18(1), 75–81. DOI: 10.1016/S0899-9007(01)00695-5.
  • Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-industrial By-products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99(1), 191–203.
  • Sandhar, H. K.; Kumar, B.; Prasher, S.; Tiwari, P.; Salhan, M.; Sharma, P. A. Review of Phytochemistry and Pharmacology of Flavonoids. Int. Pharm. Sci. 2011, 1(1), 25–41.
  • Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A. R.; Simonič, M.; Knez, Ž. Phenols, Proanthocyanidins, Flavones and Flavonols in Some Plant Materials and Their Antioxidant Activities. Food Chem. 2005, 89(2), 191–198. DOI: 10.1016/j.foodchem.2004.02.025.
  • Hollman, P. C. H.; Katan, M. B. Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. DOI: 10.1016/S0278-6915(99)00079-4.
  • Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20(7), 933–956. DOI: 10.1016/0891-5849(95)02227-9.
  • Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K. M. Antimicrobial Properties of Phenolic Compounds from Berries . J. Appl. Microbiol. 2001, 90(4), 494–507.
  • Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14(10), 19651–19669. DOI: 10.3390/ijms141019651.
  • Kong, J.;. Analysis and Biological Activities of Anthocyanins. Phytochemistry. 2003, 64(5), 923–933. DOI: 10.1016/S0031-9422(03)00438-2.
  • Aron, P. M.; Kennedy, J. A. Flavan-3-ols: Nature, Occurrence and Biological Activity. Mol. Nutr. Food Res. 2008, 52(1), 79–104.
  • Prior, R. L.; Cao, G. Antioxidant Phytochemicals in Fruits and Vegetables: Diet and Health Implications. HortScience. 2000, 35(4), 588–592. DOI: 10.21273/HORTSCI.35.4.588.
  • Freeman, B.; Crapo, J. Biology of Disease: Free Radicals and Tissue Injury. Lab. Investig. 1982, 47(5), 412–426.
  • Alam, M. N.; Bristi, N. J.; Rafiquzzaman, M. Review on in Vivo and in Vitro Methods Evaluation of Antioxidant Activity. Saudi Pharm. J. 2013, 21(2), 143–152. DOI: 10.1016/j.jsps.2012.05.002.
  • Wallace, T. C.;. Anthocyanins in Cardiovascular Disease. Adv. Nutr. 2011, 2(7), 1–7. DOI: 10.3945/an.110.000042.
  • Kim, H. P.; Son, K. H.; Chang, H. W.; Kang, S. S. Critical Review Anti-inflammatory Plant Flavonoids and Cellular Action Mechanisms. J. Pharmacol. Sci. 2004, 96, 229–245. DOI: 10.1254/jphs.CRJ04003X.
  • García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M. A.; Martínez, J. A. Flavonoids as Anti-inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflamm. Res. 2009, 58(9), 537–552.
  • Dröge, W.;. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82(1), 47–95. DOI: 10.1152/physrev.00018.2001.
  • Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2(4), 152–159. DOI: 10.1016/S1360-1385(97)01018-2.
  • Rossato, S. B.; Haas, C.; Raseira, M. D. C. B.; Moreira, J. C. F.; Zuanazzi, J. A. S. Antioxidant Potential of Peels and Fleshes of Peaches from Different Cultivars. J. Med. Food. 2009, 12(5), 1119–1126. DOI: 10.1089/jmf.2008.0267.
  • Gasparotto, J.; Somensi, N.; Bortolin, R. C.; Moresco, K. S.; Girardi, C. S.; Klafke, K.; Rabelo, T. K.; Morrone, M. D. S.; Vizzotto, M.; Raseira, M. D. C.;; et al. Effects of Different Products of Peach (Prunus Persica L. Batsch) from a Variety Developed in Southern Brazil on Oxidative Stress and Inflammatory Parameters in Vitro and Ex Vivo. J. Clin. Biochem. Nutr. 2013, 52(May), 202–207.
  • Mokrani, A.; Krisa, S.; Cluzet, S.; Da Costa, G.; Temsamani, H.; Renouf, E.; Mérillon, J.-M.; Madani, K.; Mesnil, M.; Monvoisin, A.;; et al. Phenolic Contents and Bioactive Potential of Peach Fruit Extracts. Food Chem. 2016, 202, 212–220. DOI: 10.1016/j.foodchem.2015.12.026.
  • Raturi, R.; Singh, H.; Bahuguna, P.; Sati, S. C.; Badoni, P. P. Antibacterial and Antioxidant Activity of Methanolic Extract of Bark of Prunus Persica. J. Appl. Nat. Sci. 2011, 3(1), 312–314. DOI: 10.31018/jans.v3i2.205.
  • Yao, X. C.; Cao, Y.; Wu, S. J. Antioxidant Activity and Antibacterial Activity of Peach Gum Derived Oligosaccharides. Int. J. Biol. Macromol. 2013, 62, 1–3. DOI: 10.1016/j.ijbiomac.2013.08.022.
  • Heim, K. E.; Tagliaferro, A. R.; Bobilya, D. J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-activity Relationships. J. Nutr. Biochem. 2002, 13(10), 572–584. DOI: 10.1016/S0955-2863(02)00208-5.
  • Williams, R. J.; Spencer, J. P.; Rice-Evans, C. Flavonoids: Antioxidants or Signalling Molecules? Free Radic. Biol. Med. 2004, 36(7), 838–849. DOI: 10.1016/j.freeradbiomed.2004.01.001.
  • Saleem, M.; Nazir, M.; Ali, M. S.; Hussain, H.; Lee, Y. S.; Riaz, N.; Jabbar, A. Antimicrobial Natural Products: An Update on Future Antibiotic Drug Candidates. Nat. Prod. Rep. 2010, 27(2), 238–254. DOI: 10.1039/B916096E.
  • Hayek, S. A.; Gyawali, R.; Ibrahim, S. A. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education - Volume 2; Antimicrobial Natural Products. Formatex Research Center: Badajoz, 2013; pp 910–921.
  • Valentina, N.;. Antimicrobial Activity of Peach and Grapevine Defensins. Bologna, Italy: Università di Bologna, 2012.
  • Kumar, D. R.; Kumar, M. A.; Naidu, P. B. Evaluation of Anthelmintic Activity of Prunus Persica (L.). Asian J. Pharm. Clin. Res. 2015, 4(5), 716–721.
  • Alberti, K. G.; Zimmet, P. Z. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus Provisional Report of a WHO Consultation. Diabet. Med. 1998, 15(7), 539–553.
  • American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2004, 27(Supplement 1), S5–S10. doi:10.2337/diacare.27.2007.S5.
  • Nunes, A. R.; Alves, M. G.; Moreira, P. I.; Oliveira, P. F.; Silva, B. M. Can Tea Consumption Be a Safe and Effective Therapy against Diabetes Mellitus-Induced Neurodegeneration? Curr. Neuropharmacol. 2014, 12(6), 475–489. DOI: 10.2174/1570159X13666141204220539.
  • Nunes, A. R.; Alves, M. G.; Tomás, G. D.; Conde, V. R.; Cristóvão, A. C.; Moreira, P. I.; Oliveira, P. F.; Silva, B. M. Daily Consumption of White Tea (Camellia Sinensis (L.)improves the Cerebral Cortex Metabolic and Oxidative Profile in Prediabetic Wistar Rats . Br. J. Nutr. 2015, 113(5), 832–842.
  • Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary Polyphenols as Potential Nutraceuticals in Management of Diabetes: A Review. J. Diabetes Metab. Disord. 2013, 12(1), 43. DOI: 10.1186/2251-6581-12-43.
  • Nasu, R.; Miura, M.; Gomyo, T. Effects of Fruit, Spices and Herbs on Alpha Glucosidase Activity and Glycemic Index. Food Sci. Technol. Res. 2005, 11(1), 77–81. DOI: 10.3136/fstr.11.77.
  • Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45(4), 287–306. DOI: 10.1080/1040869059096.
  • Sergent, T.; Piront, N.; Meurice, J.; Toussaint, O.; Schneider, Y.-J. Anti-inflammatory Effects of Dietary Phenolic Compounds in an in Vitro Model of Inflamed Human Intestinal Epithelium. Chem. Biol. Interact. 2010, 188(3), 659–667. DOI: 10.1016/j.cbi.2010.08.007.
  • Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-kB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit Only NF-kB Ctivation along with Their Inhibitory Effect on iN. Mediators Inflamm. 2007, 2007, 1–10. DOI: 10.1155/2007/45673.
  • Amin, K.;. The Role of Mast Cells in Allergic Inflammation. Respir. Med. 2012, 106(1), 9–14. DOI: 10.1016/j.rmed.2011.09.007.
  • Bischoff, S. C.;. Role of Mast Cells in Allergic and Non-allergic Immune Responses: Comparison of Human and Murine Data. Nat. Rev. Immunol. 2007, 7(2), 93–104. DOI: 10.1038/nri2018.
  • Shin, T. Y.; Bin, P. S.; Yoo, J. S.; Kim, I. K.; Lee, H. S.; Kwon, T. K.; Kim, M. K.; Kim, J. C.; Kim, S. H. Anti-allergic Inflammatory Activity of the Fruit of Prunus Persica: Role of Calcium and NF-kB. Food Chem. Toxicol. 2010, 48(10), 2797–2802. DOI: 10.1016/j.fct.2010.07.009.
  • Galli, S.;. And Mast Cells in Allergic Disease Tsai, M. IgE. Nat. Med. 2013, 18(5), 693–704. DOI: 10.1038/nm.2755.
  • Hayden, M. S.; Ghosh, S. Shared Principles in NF-kB Signaling. Cell. 2008, 132(3), 344–362. DOI: 10.1016/j.cell.2008.01.020.
  • Hoek, M. V.;. Cardiovascular Disease Prevention: Mind the Gap …. Neth. J. Med. 2015, 73(7), 308–309.
  • Lee, C. H.; Kim, J. H. A Review on the Medicinal Potentials of Ginseng and Ginsenosides on Cardiovascular Diseases. J. Ginseng. Res. 2014, 38(3), 161–166. DOI: 10.1016/j.jgr.2014.03.001.
  • Lavie, C. J.; De Schutter, A.; Parto, P.; Jahangir, E.; Kokkinos, P.; Ortega, F. B.; Arena, R.; Milani, R. V. Obesity and Prevalence of Cardiovascular Diseases and Prognosis – The Obesity Paradox Updated. Prog. Cardiovasc. Dis. 2016, 58(5), 537–547. DOI: 10.1016/j.pcad.2016.01.008.
  • Kozłowska, A.; Szostak-Wegierek, D. Flavonoids–food Sources and Health Benefits. Rocz Panstwowego Zakladu Hig. 2014, 65(2), 79–85.
  • Kono, R.; Okuno, Y.; Nakamura, M.; Inada, K.; Tokuda, A. Peach(Prunus Persica) Extract Inhibits Angiotensin II-induced Signal Transduction in Vascular Smooth Muscle Cells. Food Chem. 2013, 139(1–4), 371–376. DOI: 10.1016/j.foodchem.2013.02.019.
  • Vukelic, S.; Griendling, K. K. Angiotensin Ii, from Vasoconstrictor to Growth Factor: A Paradigm Shift. Circ. Res. 2014, 114(5), 754–757. DOI: 10.1161/CIRCRESAHA.114.303045.
  • Loh, W. M.; Ling, W. C.; Murugan, D. D.; Lau, Y. S.; Achike, F. I.; Vanhoutte, P. M.; Mustafa, M. R. Des-aspartate Angiotensin I (DAA-I) Reduces Endothelial Dysfunction in the Aorta of the Spontaneously Hypertensive Rat through Inhibition of Angiotensin II-induced Oxidative Stress. Vascul Pharmacol. 2015, 71, 151–158. DOI: 10.1016/j.vph.2015.03.011.
  • Alves, M. G.; Martins, A. D.; Teixeira, N. F.; Rato, L.; Oliveira, P. F.; Silva, B. M. White Tea Consumption Improves Cardiac Glycolytic and Oxidative Profile of Prediabetic Rats. J. Funct. Foods. 2015, 14, 102–110. DOI: 10.1016/j.jff.2015.01.019.
  • Youdim, K. A.; Joseph, J. A. A Possible Emerging Role of Phytochemicals in Improving Age-related Neurological Dysfunctions: A Multiplicity of Effects. Free Radic. Biol. Med. 2001, 30(6), 583–594. DOI: 10.1016/S0891-5849(00)00510-4.
  • Lau, F. C.; Shukitt-Hale, B.; Joseph, J. A. The Beneficial Effects of Fruit Polyphenols on Brain Aging. Neurobiol. Aging. 2005, 26(1), 128–132. DOI: 10.1016/j.neurobiolaging.2005.08.007.
  • Macready, A. L.; Kennedy, O. B.; Ellis, J. A.; Williams, C. M.; Spencer, J. P. E.; Butler, L. T. Flavonoids and Cognitive Function: A Review of Human Randomized Controlled Trial Studies and Recommendations for Future Studies. Genes Nutr. 2009, 4(4), 227–242. DOI: 10.1007/s12263-009-0135-4.
  • Ramassamy, C.;. Emerging Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases: A Review of Their Intracellular Targets. Eur. J. Pharmacol. 2006, 545(1), 51–64. DOI: 10.1016/j.ejphar.2006.06.025.
  • Mandel, S.; Youdim, M. B. H. Catechin Polyphenols: Neurodegeneration and Neuroprotection in Neurodegenerative Diseases. Free Radic. Biol. Med. 2004, 37(3), 304–317. DOI: 10.1016/j.freeradbiomed.2004.04.012.
  • Mesías, M.; Navarro, M.; Gökmen, V.; Morales, F. J. Antiglycative Effect of Fruit and Vegetable Seed Extracts: Inhibition of AGE Formation and Carbonyl-trapping Abilities. J. Sci. Food Agric. 2013, 93(8), 2037–2044. DOI: 10.1002/jsfa.6012.
  • Szwajgier, D.; Borowiec, K. Screening for Cholinesterase Inhibitors in Selected Fruits and Vegetables. Electron. J. Polish. Agric. Univ. 2012, 15, 2.
  • Andres-Lacueva, C.; Shukitt-Hale, B.; Galli, R. L.; Jauregui, O.; Lamuela-Raventos, R. M.; Joseph, J. A. Anthocyanins in Aged Blueberry-fed Rats are Found Centrally and May Enhance Memory . Nutr. Neurosci. 2005, 8(2), 111–120.
  • Noratto, G.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Polyphenolics from Peach (Prunus Persica varRich Lady) Inhibit Tumor Growth and Metastasis of MDA-MB-435 Breast Cancer Cells in Vivo. J. Nutr. Biochem. 2014, 25(7), 796–800.
  • Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Chiang, C.-L.; Yang, S.-F.; Hsieh, Y.-S. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis in Vitro and Suppress Tumor Growth in Vivo. Nutr. Cancer. 2005, 53(2), 232–243. DOI: 10.1207/s15327914nc5302_12.
  • Stamenkovic, I.;. Matrix Metalloproteinases in Tumir Invasion and Metastasis. Semin. Cancer Biol. 2000, 10(2), 415–433. DOI: 10.1006/scbi.2000.0379.
  • Vizzotto, M.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Polyphenols of Selected Peach and Plum Genotypes Reduce Cell Viability and Inhibit Proliferation of Breast Cancer Cells while Not Affecting Normal Cells. Food Chem. 2014, 164, 363–370. DOI: 10.1016/j.foodchem.2014.05.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.