3,335
Views
47
CrossRef citations to date
0
Altmetric
Review

Sources, stability, encapsulation and application of natural pigments in foods

, , , , ORCID Icon, & show all

References

  • Delgado-Vargas, F.; Jiménez, A. R.; Paredes-López, O.; Francis, F. J. Natural Pigments: Carotenoids, Anthocyanins, and Betalains - Characteristics, Biosynthesis, Processing, and Stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. DOI: 10.1080/10408690091189257.
  • Spence, C. On the Psychological Impact of Food Colour. Flavour. 2015, 4, 1–16. DOI: 10.1186/s13411-015-0031-3.
  • Pangestuti, R.; Kim, S. K. Biological Activities and Health Benefit Effects of Natural Pigments Derived from Marine Algae. J. Funct. Foods. 2011, 3, 255–266. DOI: 10.1016/j.jff.2011.07.001.
  • Rodriguez-Amaya, D. B. Natural Food Pigments and Colorants. Curr. Opin. Food Sci. 2016, 7, 20–26. DOI: 10.1016/j.cofs.2015.08.004.
  • Sigurdson, G. T.; Tang, P.; Giusti, M. M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. DOI: 10.1146/annurev-food-030216-025923.
  • Rodriguez-Amaya, D. B. Carotenes and Xanthophylls as Antioxidants. In Handbook of Antioxidants for Food Preservation,Shahidi, F. Ed.; Sawston,  United Kingdom: Horwood Publishing. 2015; pp 17–50. doi:10.1016/B978-1-78242-089-7.00002-6
  • Mahdavee Khazaei, K.; Jafari, S. M.; Ghorbani, M.; Hemmati Kakhki, A. Application of Maltodextrin and Gum Arabic in Microencapsulation of Saffron Petal’s Anthocyanins and Evaluating Their Storage Stability and Color. Carbohydr. Polym. 2014, 105, 57–62. DOI: 10.1016/j.carbpol.2014.01.042.
  • Mahdavi, S. A.; Jafari, S. M.; Assadpour, E.; Ghorbani, M. Storage Stability of Encapsulated Barberry’s Anthocyanin and Its Application in Jelly Formulation. J. Food Eng. 2016, 181, 59–66. DOI: 10.1016/j.jfoodeng.2016.03.003.
  • Otálora, M. C.; Carriazo, J. G.; Iturriaga, L.; Osorio, C.; Nazareno, M. A. Encapsulating Betalains from Opuntia Ficus-indica Fruits by Ionic Gelation: Pigment Chemical Stability during Storage of Beads. Food Chem. 2016, 202, 373–382. DOI: 10.1016/j.foodchem.2016.01.115.
  • Marszałek, K.; Woźniak, Ł.; Kruszewski, B.; Skapska, S. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables. Int. J. Mol. Sci. 2017, 9, 1–23.
  • Rodriguez-Amaya, D. B. Natural Food Pigments and Colorants. In Bioactive Molecules in Food. In Reference Series in Phytochemistry; Mérillon, J., Ramawat, K., Eds.; New York, USA: Springer, Cham. 2018; pp 1–35. doi:10.1007/978-3-319-54528-8_12-1.
  • Castañeda-Ovando, A.; Pacheco-Hernández, M. D. L.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. DOI: 10.1016/j.foodchem.2008.09.001.
  • Melgarejo, P.; Martínez, R.; Hernández, F.; Martínez, J. J.; Legua, P. Anthocyanin Content and Colour Development of Pomegranate Jam. Food Bioprod. Process. 2011, 89, 477–481. DOI: 10.1016/j.fbp.2010.11.004.
  • Oidtmann, J.; Schantz, M.; Mäder, K.; Baum, M.; Berg, S.; Betz, M.; Kulozik, U.; Leick, S.; Rehage, H.; Schwarz, K.; et al. Preparation and Comparative Release Characteristics of Three Anthocyanin Encapsulation Systems. J. Agric. Food Chem. 2012, 60, 844–851. DOI: 10.1021/jf2047515.
  • Wu, X.; Prior, R. L. Identification and Characterization of Anthocyanins by High-performance Liquid Chromatography-electrospray Ionization-tandem Mass Spectrometry in Common Foods in the United States: Vegetables, Nuts, and Grains. J. Agric. Food Chem. 2005, 53, 3101–3113. DOI: 10.1021/jf0478861.
  • Wu, X.; Prior, R. L. Systematic Identification and Characterization of Anthocyanins by HPLC-ESI-MS/MS in Common Foods in the United States: Fruits and Berries. J. Agric. Food Chem. 2005, 53, 2589–2599. DOI: 10.1021/jf048068b.
  • Wu, X.; Beecher, G. R.; Holden, J. M.; Haytowitz, D. B.; Gebhardt, S. E.; Prior, R. L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. DOI: 10.1021/jf060300l.
  • Mazza, G. Anthocyanins and Heart Health. Ann. Ist. Super. Sanita. 2007, 43, 369–374.
  • Kähkönen, M. P.; Hopia, A. I.; Heinonen, M. Berry Phenolics and Their Antioxidant Activity. J. Agric. Food Chem. 2001, 49, 4076–4082. DOI: 10.1021/jf010152t.
  • Kalia, K.; Sharma, K.; Singh, H. P.; Singh, B. Effects of Extraction Methods on Phenolic Contents and Antioxidant Activity in Aerial Parts of Potentilla Atrosanguinea Lodd. And Quantification of Its Phenolic Constituents by RP-HPLC. J. Agric. Food Chem. 2008, 56, 10129–10134. DOI: 10.1021/jf802188b.
  • Belhadj Slimen, I. L. C.-M. S. Analysis of Phenolic Acids, Flavonoids and Betanin from Spineless Opuntia Ficus-indica Fruits. Cell Biol. 2017, 5, 17. DOI: 10.11648/j.cb.20170502.12.
  • Stintzing, F. C.; Carle, R. Functional Properties of Anthocyanins and Betalains in Plants, Food, and in Human Nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. DOI: 10.1016/j.tifs.2003.07.004.
  • Herbach, K. M.; Stintzing, F. C.; Carle, R. Stability and Color Changes of Thermally Treated Betanin, Phyllocactin, and Hylocerenin Solutions. J. Agric. Food Chem. 2006, 54, 390–398. DOI: 10.1021/jf051854b.
  • Herbach, K. M.; Stintzing, F. C.; Carle, R. Betalain Stability and Degradation - Structural and Chromatic Aspects. J. Food Sci. 2006, 71, R41–R50. DOI: 10.1111/j.1750-3841.2006.00022.x.
  • Wasserman, B. P.; Eiberger, L. L.; Guilfoy, M. P. Effect of Hydrogen Peroxide and Phenolic Compounds on Horseradish Peroxidase‐Catalyzed Decolorization of Betalain Pigments. J. Food Sci. 1984, 49, 536–538. DOI: 10.1111/j.1365-2621.1984.tb12461.x.
  • Attoe, E. L.; von Elbe, J. H. Oxygen Involvement in Betanin Degradation - Oxygen Uptake and Influence of Metal Ions. Z Lebensm. Unters. Forsch. 1984, 179, 232–236. DOI: 10.1007/BF01041900.
  • Czapski, J. Heat Stability of Betacyanins in Red Beet Juice and in Betanin Solutions. Z. Lebensm. Unters. Forsch. 1990, 191, 275–278. DOI: 10.1007/BF01202425.
  • Sobkowska, E.; Czapski, J.; Kaczmarek, R. Red Table Beet Pigment as Food Colorant. Int. Food Ingredients. 1991, 3, 24–28.
  • Cejudo-Bastante, M. J.; Hurtado, N.; Mosquera, N.; Heredia, F. J. Potential Use of New Colombian Sources of Betalains. Color Stability of Ulluco (Ullucus Tuberosus) Extracts under Different pH and Thermal Conditions. Food Res. Int. 2014, 64, 465–471. DOI: 10.1016/j.foodres.2014.07.036.
  • Kumar, S. S.; Manoj, P.; Giridhar, P.; Shrivastava, R.; Bharadwaj, M. Fruit Extracts of Basella Rubra that are Rich in Bioactives and Betalains Exhibit Antioxidant Activity and Cytotoxicity against Human Cervical Carcinoma Cells. J. Funct. Foods. 2015, 15, 509–515. DOI: 10.1016/j.jff.2015.03.052.
  • Castellar, R.; Obón, J. M.; Alacid, M.; Fernández-López, J. A. Color Properties and Stability of Betacyanins from Opuntia Fruits. J. Agric. Food Chem. 2003, 51, 2772–2776. DOI: 10.1021/jf021045h.
  • Stintzing, F. C.; Schieber, A.; Carle, R. Evaluation of Colour Properties and Chemical Quality Parameters of Cactus Juices. Eur. Food Res. Technol. 2003, 216, 303–311. DOI: 10.1007/s00217-002-0657-0.
  • Moßhammer, M. R.; Stintzing, F. C.; Carle, R. Development of a Process for the Production of a Betalain-based Colouring Foodstuff from Cactus Pear. Innov. Food Sci. Emerg. Technol. 2005, 6, 221–231. DOI: 10.1016/j.ifset.2005.02.001.
  • Moßhammer, M. R.; Stintzing, F. C.; Carle, R. Colour Studies on Fruit Juice Blends from Opuntia and Hylocereus Cacti and Betalain-containing Model Solutions Derived Therefrom. Food Res. Int. 2005, 38, 975–981. DOI: 10.1016/j.foodres.2005.01.015.
  • Moßhammer, M. R.; Stintzing, F. C.; Carle, R. Cactus Pear Fruits (Opuntia Spp.): A Review of Processing Technologies and Current Uses. J. Prof. Assoc. Cactus Dev. 2006, 8, 1–25.
  • Stintzing, F. C.; Schieber, A.; Carle, R. Identification of Betalains from Yellow Beet (Beta Vulgaris L.) And Cactus Pear [Opuntia Ficus-indica (L.) Mill.] By High-performance Liquid Chromatography-electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2002, 50, 2302–2307. DOI: 10.1021/jf011305f.
  • Wybraniec, S.; Platzner, I.; Geresh, S.; Gottlieb, H. E.; Haimberg, M.; Mogilnitzki, M.; Mizrahi, Y. Betacyanins from Vine Cactus Hylocereus Polyrhizus. Phytochemistry. 2001, 58, 1209–1212. DOI: 10.1016/S0031-9422(01)00336-3.
  • Herbach, K. M.; Stintzing, F. C.; Carle, R. Impact of Thermal Treatment on Color and Pigment Pattern of Red Beet (Beta Vulgaris L.) Preparations. J. Food Sci. 2004, 69,  491-498.
  • Herbach, K. M.; Stintzing, F. C.; Elss, S.; Preston, C.; Schreier, P.; Carle, R. Isotope Ratio Mass Spectrometrical Analysis of Betanin and Isobetanin Isolates for Authenticity Evaluation of Purple Pitaya-based Products. Food Chem. 2006, 99, 204–209. DOI: 10.1016/j.foodchem.2005.08.031.
  • Herbach, K. M.; Maier, C.; Stintzing, F. C.; Carle, R. Effects of Processing and Storage on Juice Colour and Betacyanin Stability of Purple Pitaya (Hylocereus Polyrhizus) Juice. Eur. Food Res. Technol. 2007, 224, 649–658. DOI: 10.1007/s00217-006-0354-5.
  • Wybraniec, S.; Mizrahi, Y. Generation of Decarboxylated and Dehydrogenated Betacyanins in Thermally Treated Purified Fruit Extract from Purple Pitaya (Hylocereus Polyrhizus) Monitored by LC-MS/MS. J. Agric. Food Chem. 2005, 53, 6704–6712. DOI: 10.1021/jf050700t.
  • Cai, Y. Z.; Corke, H. Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65, 1248–1252. DOI: 10.1111/j.1365-2621.2000.tb10273.x.
  • Cai, Y. Z.; Corke, H. Effect of Postharvest Treatments on Amaranthus Betacyanin Degradation Evaluated by Visible/near-infrared Spectroscopy. J. Food Sci. 2001, 66, 1112–1118. DOI: 10.1111/j.1365-2621.2001.tb16090.x.
  • Cai, Y.; Sun, M.; Corke, H. Colorant Properties and Stability of Amaranthus Betacyanin Pigments. J. Agric. Food Chem. 1998, 46, 4491–4495. DOI: 10.1021/jf980457g.
  • Wetzel, R. G. Limnology: Lake and River Ecosystems - Robert G. Wetzel - Google Libri;  London, United Kingdom: Academic Press Inc., 2001.
  • Schwartz, S. J.; Lorenzo, T. V. Chlorophylls in Foods. Crit. Rev. Food Sci. Nutr. 1990, 29, 1–17. DOI: 10.1080/10408399009527511.
  • Glimn-Lacy, J.; Kaufman, P. B. Botany Illustrated : Introduction to Plants, Major Groups, Flowering Plant Families; New York, USA: Springer, 2006.
  • Comunian, T. A.; Monterrey-Quintero, E. S.; Thomazini, M.; Balieiro, J. C. C.; Piccone, P.; Pittia, P.; Favaro-Trindade, C. S. Assessment of Production Efficiency, Physicochemical Properties and Storage Stability of Spray-dried Chlorophyllide, a Natural Food Colourant, Using Gum Arabic, Maltodextrin and Soy Protein Isolate-based Carrier Systems. Int. J. Food Sci. Technol. 2011, 46, 1259–1265. DOI: 10.1111/j.1365-2621.2011.02617.x.
  • Porrarud, S.; Pranee, A. Microencapsulation of Zn-chlorophyll Pigment from Pandan Leaf by Spray Drying and Its Characteristic. Int. Food Res. J. 2010, 17, 1031–1042.
  • Schwartz, S. J.; Cooperstone, J. L.; Cichon, M. J.; von Elbe, J. H.; Giusti, M. M. Colorants. In Fennema’s Food Chemistry; Damodaran, S., Parkin, K.L., Kirk, L., Eds.; 2008; pp 681–752.
  • Canjura, F. L.; Schwartz, S. J.; Nunes, R. V. Degradation Kinetics of Chlorophylls and Chlorophyllides. J. Food Sci. 1991, 56, 1639–1643. DOI: 10.1111/j.1365-2621.1991.tb08660.x.
  • Koca, N.; Karadeniz, F.; Burdurlu, H. S. Effect of pH on Chlorophyll Degradation and Colour Loss in Blanched Green Peas. Food Chem. 2007, 100, 609–615. DOI: 10.1016/j.foodchem.2005.09.079.
  • Scheer, H. An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. In Chlorophylls and Bacteriochlorophylls; Springer Netherlands: 2007; pp 1–26. doi:10.1007/1-4020-4516-6_1
  • Mortensen, A. Carotenoids and Other Pigments as Natural Colorants. Pure Appl. Chem. 2006, 78, 1477–1491. DOI: 10.1351/pac200678081477.
  • Hurst, W. J.; William, J. Methods of Analysis for Functional Foods and Nutraceuticals; CRC Press, 2008.
  • Vila, M. M. D. C.; Chaud, M. V.; Balcão, V. M. Microencapsulation of Natural Anti-Oxidant Pigments. In Microencapsulation and Microspheres for Food Applications; Elsevier Science Ltd.: 2015; pp 369–389. doi:10.1016/B978-0-12-800350-3.00024-8
  • Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, Pharmacology and Treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. DOI: 10.1111/bph.13625.
  • Pintea, A.; Rugină, D.; Diaconeasa, Z. Pharmacologically Active Plant-Derived Natural Products. In Smart Nanoparticles for Biomedicine; Elsevier: 2018; pp 49–64. doi:10.1016/b978-0-12-814156-4.00004-5
  • Kalil, S. J.; Moraes, C. C.; Sala, L.; Burkert, C. A. V. Bioproduct Extraction from Microbial Cells by Conventional and Nonconventional Techniques. Food Bioconvers. 2017, 2.
  • Poojary, M. M.; Barba, F. J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D. A.; Juliano, P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar. Drugs. 2016, 14, 1–34. DOI: 10.3390/md14110214.
  • Astorg, P. Food Carotenoids and Cancer Prevention: An Overview of Current Research. Trendsin Food Sci. Technol. 1997, 8, 406–413. DOI: 10.1016/S0924-2244(97)01092-3.
  • Saini, R. K.; Nile, S. H.; Park, S. W. Carotenoids from Fruits and Vegetables: Chemistry, Analysis, Occurrence, Bioavailability and Biological Activities. Food Res. Int. 2015, 76, 735–750. DOI: 10.1016/j.foodres.2015.07.047.
  • Arvayo-Enríquez, H.; Mondaca-Fernández, I.; Gortárez-Moroyoqui, P.; López-Cervantes, J.; Rodríguez-Ramírez, R. Carotenoids Extraction and Quantification: A Review. Anal. Methods. 2013, 5, 2916–2924. DOI: 10.1039/c3ay26295b.
  • Wrolstad, R. E.; Durst, R. W.; Lee, J. Tracking Color and Pigment Changes in Anthocyanin Products. Trends Food Sci. Technol. 2005, 16, 423–428. DOI: 10.1016/j.tifs.2005.03.019.
  • Andersen, Ø.; Jordheim, M. The Anthocyanins. In Flavonoids; CRC Press: 2005; pp 471–551. doi:10.1201/9781420039443.ch10
  • Einbond, L. S.; Reynertson, K. A.; Luo, X.-D.; Basile, M. J.; Kennelly, E. J. Anthocyanin Antioxidants from Edible Fruits. Food Chem. 2004, 84, 23–28. DOI: 10.1016/S0308-8146(03)00162-6.
  • Bueno, J. M.; Sáez-Plaza, P.; Ramos-Escudero, F.; Jiménez, A. M.; Fett, R.; Asuero, A. G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part II: Chemical Structure, Color, and Intake of Anthocyanins. Crit. Rev. Anal. Chem. 2012, 42, 126–151. DOI: 10.1080/10408347.2011.632314.
  • Olsen, H.; Aaby, K.; Borge, G. I. A. Characterization, Quantification, and Yearly Variation of the Naturally Occurring Polyphenols in a Common Red Variety of Curly Kale (Brassica Oleracea L. Convar. Acephala Var. Sabellica Cv. ’Redbor’). J. Agric. Food Chem. 2010, 58, 11346–11354. DOI: 10.1021/jf102131g.
  • Pervaiz, T.; Songtao, J.; Faghihi, F.; Haider, M. S.; Fang, J. Naturally Occurring Anthocyanin, Structure, Functions and Biosynthetic Pathway in Fruit Plants. J. Plant Biochem. Physiol. 2017, 5, 1000187. DOI: 10.4172/2329-9029.1000187.
  • Dossett, M.; Lee, J.; Finn, C. E. Variation in Anthocyanins and Total Phenolics of Black Raspberry Populations. J. Funct. Foods. 2010, 2, 292–297. DOI: 10.1016/j.jff.2010.10.004.
  • Ahmadiani, N.; Robbins, R. J.; Collins, T. M.; Giusti, M. M. Anthocyanins Contents, Profiles, and Color Characteristics of Red Cabbage Extracts from Different Cultivars and Maturity Stages. J. Agric. Food Chem. 2014, 62, 7524–7531. DOI: 10.1021/jf501991q.
  • Jin, A. L.; Ozga, J. A.; Kennedy, J. A.; Koerner-Smith, J. L.; Botar, G.; Reinecke, D. M. Developmental Profile of Anthocyanin, Flavonol, and Proanthocyanidin Type, Content, and Localization in Saskatoon Fruits (Amelanchier Alnifolia Nutt.). J. Agric. Food Chem. 2015, 63, 1601–1614. DOI: 10.1021/jf504722x.
  • Mokarizadeh, M.; Kafil, H.; Ghanbarzadeh, S.; Alizadeh, A.; Hamishehkar, H. Improvement of Citral Antimicrobial Activity by Incorporation into Nanostructured Lipid Carriers: A Potential Application in Food Stuffs as A Natural Preservative. Res. Pharm. Sci. 2017, 12, 409–415. DOI: 10.4103/1735-5362.213986.
  • Bursać Kovačević, D.; Putnik, P.; Dragović-Uzelac, V.; Vahčić, N.; Babojelić, M. S.; Levaj, B. Influences of Organically and Conventionally Grown Strawberry Cultivars on Anthocyanins Content and Color in Purees and Low-sugar Jams. Food Chem. 2015, 181, 94–100. DOI: 10.1016/j.foodchem.2015.02.063.
  • Szalóki-Dorkó, L.; Stéger-Máté, M.; Abrankó, L. Evaluation of Colouring Ability of Main European Elderberry (Sambucus Nigra L.) Varieties as Potential Resources of Natural Food Colourants. Int. J. Food Sci. Technol. 2015, 50, 1317–1323. DOI: 10.1111/ijfs.12773.
  • Xu, J.; Su, X.; Lim, S.; Griffin, J.; Carey, E.; Katz, B.; Tomich, J.; Smith, J. S.; Wang, W. Characterisation and Stability of Anthocyanins in Purple-fleshed Sweet Potato P40. Food Chem. 2015, 186, 90–96. DOI: 10.1016/j.foodchem.2014.08.123.
  • Bursać Kovačević, D.; Putnik, P.; Dragović-Uzelac, V.; Pedisić, S.; Režek Jambrak, A.; Herceg, Z. Effects of Cold Atmospheric Gas Phase Plasma on Anthocyanins and Color in Pomegranate Juice. Food Chem. 2016, 190, 317–323. DOI: 10.1016/j.foodchem.2015.05.099.
  • Kojima-Yuasa, A. Biological and Pharmacological Effects of Polyphenolic Compounds from Ecklonia Cava. In Polyphenols: Mechanisms of Action in Human Health and Disease; Elsevier: 2018; pp 41–52. doi:10.1016/b978-0-12-813006-3.00005-2
  • Todaro, A.; Palmeri, R.; Barbagallo, R. N.; Pifferi, P. G.; Spagna, G. Increase of Trans-resveratrol in Typical Sicilian Wine Using β-Glucosidase from Various Sources. Food Chem. 2008, 107, 1570–1575. DOI: 10.1016/j.foodchem.2007.09.075.
  • Yamamoto, K. Food Processing by High Hydrostatic Pressure. Biosci. Biotechnol. Biochem. 2017, 81, 672–679. DOI: 10.1080/09168451.2017.1281723.
  • Hu, W.; Zhou, L.; Xu, Z.; Zhang, Y.; Liao, X. Enzyme Inactivation in Food Processing Using High Pressure Carbon Dioxide Technology. Crit. Rev. Food Sci. Nutr. 2013, 53, 145–161. DOI: 10.1080/10408398.2010.526258.
  • Tian, Y.; Wang, S.; Yan, W.; Tang, Y.; Yang, R.; Zhao, W. Inactivation of Apple (Malus Domestica Borkh) Polyphenol Oxidases by Radio Frequency Combined with Pulsed Electric Field Treatment. Int. J. Food Sci. Technol. 2018, 53, 2054–2063. DOI: 10.1111/ijfs.13781.
  • Makroo, H. A.; Rastogi, N. K.; Srivastava, B. Ohmic Heating Assisted Inactivation of Enzymes and Microorganisms in Foods: A Review. Trends Food Sci. Technol. 2020, 97, 451–465. DOI: 10.1016/j.tifs.2020.01.015.
  • Misra, N. N.; Pankaj, S. K.; Segat, A.; Ishikawa, K. Cold Plasma Interactions with Enzymes in Foods and Model Systems. Trends Food Sci. Technol. 2016, 55, 39–47. DOI: 10.1016/j.tifs.2016.07.001.
  • Eder, R. Pigments. In Food Analysis by HPLC, Second Edition ed.; Nollet, L.M.L., Ed.; Marcel Dekker, Inc, 2000; pp 825–880.
  • He, J.; Giusti, M. M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. DOI: 10.1146/annurev.food.080708.100754.
  • Joint FAO/WHO Expert Committee on Food Additives, W. H. O. & F. and A. O. of the U. N. Evaluation of Certain Food Additives and Contaminants: Twenty-sixth Report of the Joint FAO/WHO Expert Committee on Food Additives. https://apps.who.int/iris/handle/10665/41546 1982.
  • Lehto, S.; Buchweitz, M.; Klimm, A.; Straßburger, R.; Bechtold, C.; Ulberth, F. Comparison of Food Colour Regulations in the EU and the US: A Review of Current Provisions. Food Addit. Contam. Part A. 2017, 34, 335–355. DOI: 10.1080/19440049.2016.1274431.
  • Cai, Y.; Sun, M.; Corke, H. Antioxidant Activity of Betalains from Plants of the Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. DOI: 10.1021/jf030045u.
  • Gandía-Herrero, F.; Escribano, J.; García-Carmona, F. Biological Activities of Plant Pigments Betalains. Crit. Rev. Food Sci. Nutr. 2016, 56, 937–945. DOI: 10.1080/10408398.2012.740103.
  • Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S. A.; Ostadrahimi, A. Betalains, the Nature-inspired Pigments, in Health and Diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 2949–2978. DOI: 10.1080/10408398.2018.1479830.
  • Strack, D.; Vogt, T.; Schliemann, W. Recent Advances in Betalain Research. Phytochemistry. 2003, 62, 247–269. DOI: 10.1016/S0031-9422(02)00564-2.
  • Rebecca, O. P. S.; Boyce, A. N.; Chandran, S. Pigment Identification and Antioxidant Properties of Red Dragon Fruit (Hylocereus Polyrhizus). Afr. J. Biotechnol. 2010, 9, 1450–1454. DOI: 10.5897/AJB09.1603.
  • Stintzing, F. C.; Carle, R. Betalains - Emerging Prospects for Food Scientists. Trends Food Sci. Technol. 2007, 18, 514–525. DOI: 10.1016/j.tifs.2007.04.012.
  • Cejudo-Bastante, M. J.; Chaalal, M.; Louaileche, H.; Parrado, J.; Heredia, F. J. Betalain Profile, Phenolic Content, and Color Characterization of Different Parts and Varieties of Opuntia Ficus-indica. J. Agric. Food Chem. 2014, 62, 8491–8499. DOI: 10.1021/jf502465g.
  • Castro-Enríquez, D. D.; Montaño-Leyva, B.; Del Toro-Sánchez, C. L.; Juaréz-Onofre, J. E.; Carvajal-Millan, E.; Burruel-Ibarra, S. E.; Tapia-Hernández, J. A.; Barreras-Urbina, C. G.; Rodríguez-Félix, F. Stabilization of Betalains by Encapsulation—a Review. J. Food Sci. Technol. 2019, 1–14. DOI: 10.1007/s13197-019-04120-x.
  • Ravichandran, K.; Saw, N. M. M. T.; Mohdaly, A. A. A.; Gabr, A. M. M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of Processing of Red Beet on Betalain Content and Antioxidant Activity. Food Res. Int. 2013, 50, 670–675. DOI: 10.1016/j.foodres.2011.07.002.
  • (ANS), E. P. on F. A. and N. S. added to F. Scientific Opinion on the Re-evaluation of Beetroot Red (E 162) as a Food Additive. Efsa J. 2015, 13, 4318.
  • Yamauchi, N.; Harada, K.; Watada, A. E. In Vitro Chlorophyll Degradation in Stored Broccoli (Brassica Oleracea L. Var. Italica Plen.) Florets. Postharvest Biol. Technol. 1997, 12, 239–245. DOI: 10.1016/S0925-5214(97)00063-X.
  • Castro, D. J.; Löhr, C. V.; Fischer, K. A.; Waters, K. M.; Webb-Robertson, B. J. M.; Dashwood, R. H.; Bailey, G. S.; Williams, D. E. Identifying Efficacious Approaches to Chemoprevention with Chlorophyllin, Purified Chlorophylls and Freeze-dried Spinach in a Mouse Model of Transplacental Carcinogenesis. Carcinogenesis. 2009, 30, 315–320. DOI: 10.1093/carcin/bgn280.
  • Sonar, C. R.; Rasco, B.; Tang, J.; Sablani, S. S. Natural Color Pigments: Oxidative Stability and Degradation Kinetics during Storage in Thermally Pasteurized Vegetable Purees. J. Sci. Food Agric. 2019, 99, 5934–5945. DOI: 10.1002/jsfa.9868.
  • Viera, I.; Pérez-Gálvez, A.; Roca, M. Green Natural Colorants. Molecules. 2019, 24, 154. DOI: 10.3390/molecules24010154.
  • Bartley, G. E.; Scolnik, P. A. Plant Carotenoids: Pigments for Photoprotection, Visual Attraction, and Human Health. Plant Cell. 1995, 7, 1027–1038.
  • Boon, C. S.; McClements, D. J.; Weiss, J.; Decker, E. A. Factors Influencing the Chemical Stability of Carotenoids in Foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. DOI: 10.1080/10408390802565889.
  • Xianquan, S.; Shi, J.; Kakuda, Y.; Yueming, J. Stability of Lycopene during Food Processing and Storage. J. Med. Food. 2005, 8, 413–422. DOI: 10.1089/jmf.2005.8.413.
  • Bogacz-Radomska, L.; Harasym, J.; Piwowar, A. Commercialization Aspects of Carotenoids. In Carotenoids: Properties, Processing and Applications; Galanakis, C.M., Ed.; Elsevier: 2020; pp 327–357. doi:10.1016/b978-0-12-817067-0.00010-5.
  • (ANS), E. P. on F. A. and N. S. added to F. Scientific Opinion on the Re-evaluation of Canthaxanthin (E 161 G) as a Food Additive. Efsa J. 2010, 8, 1852. DOI: 10.2903/j.efsa.2010.1852.
  • Code of Federal Regulations. Listing of Color Additives Exempt from Certification. In Electronic Code of Federal Regulation; 2020; pp Title 21, Chapter I, Subchapter A, Part 73.
  • Newsome, A. G.; Culver, C. A.; van Breemen, R. B. Nature’s Palette: The Search for Natural Blue Colorants. J. Agric. Food Chem. 2014, 62, 6498–6511. DOI: 10.1021/jf501419q.
  • Aberoumand, A.; Review, A. Article on Edible Pigments Properties and Sources as Natural Biocolorants in Foodstuff and Food Industry. World J. Dairy Food Sci. 2011, 6, 71–78.
  • Cheesman, D. F.; Lee, W. L.; Zagalsky, P. F. Carotenoproteins in Invertebrates. Biol. Rev. 1967, 42, 131–160.
  • Quarmby, R.; Nordens, D. A.; Zagalsky, P. F.; Ceccaldi, H. J.; Daumas, R. Studies on the Quaternary Structure of the Lobster Exoskeleton Carotenoprotein, Crustacyanin. Comp. Biochem. Physiol. – Part B Biochem. 1977, 56, 55–61. DOI: 10.1016/0305-0491(77)90222-X.
  • Zagalsky, P. F.; Haxo, F.; Hertzberg, S.; Hertzberg, S.; Liaaen-Jensen, S. Studies on a Blue Carotenoprotein, Linckiacyanin, Isolated from the Starfish Linckia Laevigata (Echinodermata: Asteroidea). Comp. Biochem. Physiol. – Part B Biochem. 1989, 93, 339–353. DOI: 10.1016/0305-0491(89)90090-4.
  • Shone, C. C.; Britton, G.; Goodwin, T. W. The Violet Carotenoprotein of the Starfish, Asterias Rubens. Comp. Biochem. Physiol. – Part B Biochem. 1979, 62, 507–513. DOI: 10.1016/0305-0491(79)90125-1.
  • Joshi, V. K.; Attri, D.; Baja, A.; Bhushan, S. Microbial Pigments. Indian J. Biotechnol. 2003, 2.
  • Panesar, R.; Kaur, S.; Panesar, P. S. Production of Microbial Pigments Utilizing Agro-industrial Waste: A Review. Curr. Opin. Food Sci. 2015, 1, 70–76. DOI: 10.1016/j.cofs.2014.12.002.
  • Sen, T.; Barrow, C. J.; Deshmukh, S. K. Microbial Pigments in the Food Industry—challenges and the Way Forward. Front. Nutrit. 2019, 6. DOI: 10.3389/fnut.2019.00007.
  • Zuluaga, M.; Gregnanin, G.; Cencetti, C.; Di Meo, C.; Gueguen, V.; Letourneur, D.; Meddahi-Pellé, A.; Pavon-Djavid, G.; Matricardi, P. PVA/Dextran Hydrogel Patches as Delivery System of Antioxidant Astaxanthin: A Cardiovascular Approach. Biomed. Mater. 2018, 13.
  • Pogorzelska, E.; Godziszewska, J.; Brodowska, M.; Wierzbicka, A. Antioxidant Potential of Haematococcus Pluvialis Extract Rich in Astaxanthin on Colour and Oxidative Stability of Raw Ground Pork Meat during Refrigerated Storage. Meat Sci. 2018, 135, 54–61. DOI: 10.1016/j.meatsci.2017.09.002.
  • Kumar, A.; Shankar Vishwakarma, H.; Singh, J.; Kumar, M. Microbial Pigments: Production and Their Applications in Various Industries. Int. J. Pharm. Chem. Biol. Sci. 2015, 5, 203–212.
  • Kirti, K.; Amita, S.; Priti, S.; Mukesh Kumar, A.; Jyoti, S. Colorful World of Microbes: Carotenoids and Their Applications. Adv. Biol. 2014, 2014, 1–13. DOI: 10.1155/2014/837891.
  • Malik, K.; Tokkas, J.; Goyal, S. Microbial Pigments: A Review. Int. J. Microbial Res.Technol. 2012, 1, http://ijmrt.inpressco.com
  • Nigam, P. S.; Luke, J. S. Food Additives: Production of Microbial Pigments and Their Antioxidant Properties. Curr. Opin. Food Sci. 2016, 7, 93–100. DOI: 10.1016/j.cofs.2016.02.004.
  • Dufossè, L. Pigments from Microalgae and Microorganisms: Sources of Food Colorants. In Food Colorants: Chemical and Functional Properties; Socaciu, C., Ed.; CRC Press, 2007; pp 399–426.
  • Arad, S. (Malis); Yaron, A. Natural Pigments from Red Microalgae for Use in Foods and Cosmetics. Trends Food Sci. Technol. 1992, 3, 92–97. DOI: 10.1016/0924-2244(92)90145-M.
  • Dasgupta, C. N. Algae as a Source of Phycocyanin and Other Industrially Important Pigments. In Algal Biorefinery: An Integrated Approach; Springer International Publishing: 2016; pp 253–276. doi:10.1007/978-3-319-22813-6_12
  • Saini, D. K.; Chakdar, H.; Pabbi, S.; Shukla, P. Enhancing Production of Microalgal Biopigments through Metabolic and Genetic Engineering. Crit. Rev. Food Sci. Nutr. 2020, 60, 391–405. DOI: 10.1080/10408398.2018.1533518.
  • Dufossé, L.; Fouillaud, M.; Caro, Y.; Mapari, S. A. S.; Sutthiwong, N. Filamentous Fungi are Large-scale Producers of Pigments and Colorants for the Food Industry. Curr. Opin. Biotechnol. 2014, 26, 56–61. DOI: 10.1016/j.copbio.2013.09.007.
  • Dufossé, L. Microbial Pigments from Bacteria, Yeasts, Fungi, and Microalgae for the Food and Feed Industries. In Handbook of Food Bioengineering; Grumezescu, A.M., Holban, A.M.B.T.-N., A, A.F., D, F., Eds.; Academic Press: 2018; pp 113–132. doi:10.1016/B978-0-12-811518-3.00004-1.
  • Ayala-Zavala, J. F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J. A.; Siddiqui, M. W.; Dávila-Aviña, J. E.; González-Aguilar, G. A. Agro-industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44, 1866–1874. DOI: 10.1016/j.foodres.2011.02.021.
  • Jurić, S.; Ferrari, G.; Velikov, K. P.; Donsì, F. High-pressure Homogenization Treatment to Recover Bioactive Compounds from Tomato Peels. J. Food Eng. 2019, 262, 170–180. DOI: 10.1016/j.jfoodeng.2019.06.011.
  • Machmudah, S.; Zakaria, Winardi, Z.; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene Extraction from Tomato Peel By-product Containing Tomato Seed Using Supercritical Carbon Dioxide. J. Food Eng. 2012, 108, 290–296. DOI: 10.1016/j.jfoodeng.2011.08.012.
  • Papaioannou, E. H.; Karabelas, A. J. Lycopene Recovery from Tomato Peel under Mild Conditions Assisted by Enzymatic Pre-treatment and Non-ionic Surfactants. Acta Biochim. Pol. 2012, 59, 71–74. DOI: 10.18388/abp.2012_2174.
  • Ajila, C. M.; Aalami, M.; Leelavathi, K.; Rao, U. J. S. P. Mango Peel Powder: A Potential Source of Antioxidant and Dietary Fiber in Macaroni Preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. DOI: 10.1016/j.ifset.2009.10.004.
  • Bonilla-Hermosa, V. A.; Duarte, W. F.; Schwan, R. F. Utilization of Coffee By-products Obtained from Semi-washed Process for Production of Value-added Compounds. Bioresour. Technol. 2014, 166, 142–150. DOI: 10.1016/j.biortech.2014.05.031.
  • Murthy, P. S.; Manjunatha, M. R.; Sulochannama, G.; Madhava Naidu, M. Extraction, Characterization and Bioactivity of Coffee Anthocyanins. Eur. J. Biol. Sci. 2012, 4, 13–19.
  • Parra-Campos, A.; Ordóñez-Santos, L. E. Natural Pigment Extraction Optimization from Coffee Exocarp and Its Use as a Natural Dye in French Meringue. Food Chem. 2019, 285, 59–66. DOI: 10.1016/j.foodchem.2019.01.158.
  • Rabetafika, H. N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of Apple By-products as Source of New Ingredients: Current Situation and Perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. DOI: 10.1016/j.tifs.2014.08.004.
  • Rupasinghe, H. P. V.; Wang, L.; Huber, G. M.; Pitts, N. L. Effect of Baking on Dietary Fibre and Phenolics of Muffins Incorporated with Apple Skin Powder. Food Chem. 2008, 107, 1217–1224.
  • Maran, J. P.; Priya, B. Multivariate Statistical Analysis and Optimization of Ultrasound-assisted Extraction of Natural Pigments from Waste Red Beet Stalks. J. Food Sci. Technol. 2016, 53, 792–799. DOI: 10.1007/s13197-015-1988-8.
  • Babitha, S. Microbial Pigments. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer Netherlands: 2009; pp 147–162. doi:10.1007/978-1-4020-9942-7_8
  • Kantifedaki, A.; Kachrimanidou, V.; Mallouchos, A.; Papanikolaou, S.; Koutinas, A. A. Orange Processing Waste Valorisation for the Production of Bio-based Pigments Using the Fungal Strains Monascus Purpureus and Penicillium Purpurogenum. J. Clean. Prod. 2018, 185, 882–890. DOI: 10.1016/j.jclepro.2018.03.032.
  • Hamano, P. S.; Kilikian, B. V. Production of Red Pigments by Monascus Ruber in Culture Media Containing Corn Steep Liquor. Brazilian J. Chem. Eng. 2006, 23, 443–449. DOI: 10.1590/S0104-66322006000400002.
  • Tinoi, J.; Rakariyatham, N.; Deming, R. L. Simplex Optimization of Carotenoid Production by Rhodotorula Glutinis Using Hydrolyzed Mung Bean Waste Flour as Substrate. Process Biochem. 2005, 40, 2551–2557. DOI: 10.1016/j.procbio.2004.11.005.
  • Kaur, B.; Chakraborty, D.; Kaur, H. Production and Stability Analysis of Yellowish Pink Pigments from Rhodotorula Rubra MTCC 1446. Internet J. Microbiol. 2008, 7, 1–7.
  • Moreira, M. D.; Melo, M. M.; Coimbra, J. M.; Reis, K. C.; Dos, Schwan, R. F.; Silva, C. F. Solid Coffee Waste as Alternative to Produce Carotenoids with Antioxidant and Antimicrobial Activities. Waste Manag. 2018, 82, 93–99. DOI: 10.1016/j.wasman.2018.10.017.
  • Dursun, D.; Dalgiç, A. C. Optimization of Astaxanthin Pigment Bioprocessing by Four Different Yeast Species Using Wheat Wastes. Biocatal. Agric. Biotechnol. 2016, 7, 1–6. DOI: 10.1016/j.bcab.2016.04.006.
  • Ambati, R. R.; Gogisetty, D.; Aswathanarayana, R. G.; Ravi, S.; Bikkina, P. N.; Bo, L.; Yuepeng, S. Industrial Potential of Carotenoid Pigments from Microalgae: Current Trends and Future Prospects. Crit. Rev. Food Sci. Nutr. 2019, 59, 1880–1902. DOI: 10.1080/10408398.2018.1432561.
  • Martins, N.; Ferreira, I. C. F. R. Wastes and By-products: Upcoming Sources of Carotenoids for Biotechnological Purposes and Health-related Applications. Trends Food Sci. Technol. 2017, 62, 33–48. DOI: 10.1016/j.tifs.2017.01.014.
  • Vinceković, M.; Viskić, M.; Jurić, S.; Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Donsì, F.; Barba, F. J.; Režek Jambrak, A. Innovative Technologies for Encapsulation of Mediterranean Plants Extracts. Trends Food Sci. Technol. 2017, 69. DOI: 10.1016/j.tifs.2017.08.001.
  • Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F. J.; Cravotto, G.; Binello, A.; Lorenzo, J. M.; Shpigelman, A. Innovative ‘Green’ and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citruswastes - A Review. Molecules. 2017, 22, 680. DOI: 10.3390/molecules22050680.
  • Prado, J. M.; Vardanega, R.; Debien, I. C. N.; Meireles, M. A.; de, A.; Gerschenson, L. N.; Sowbhagya, H. B.; Chemat, S. Conventional Extraction. In Food Waste Recovery - Processing Technologies and Industrial Techniques; Galanakis, C.M.B.T.-F.W.R., Ed.; Academic Press: 2015; pp 127–148. doi:10.1016/B978-0-12-800351-0.00006-7.
  • Wang, L.; Weller, C. L. Recent Advances in Extraction of Nutraceuticals from Plants. Trends Food Sci. Technol. 2006, 17, 300–312. DOI: 10.1016/j.tifs.2005.12.004.
  • Lupacchini, M.; Mascitti, A.; Giachi, G.; Tonucci, L.; d’Alessandro, N.; Martinez, J.; Colacino, E. Sonochemistry in Non-conventional, Green Solvents or Solvent-free Reactions. Tetrahedron. 2017, 73, 609–653. DOI: 10.1016/j.tet.2016.12.014.
  • Gilbert-López, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Development of New Green Processes for the Recovery of Bioactives from Phaeodactylum Tricornutum. Food Res. Int. 2017, 99, 1056–1065.
  • Landim Neves, M. I.; Strieder, M. M.; Vardanega, R.; Silva, E. K.; Meireles, M. A. A. Biorefinery of Turmeric (: Curcuma Longa L.) Using Non-thermal and Clean Emerging Technologies: An Update on the Curcumin Recovery Step. RSC Adv. 2019, 10, 112–121. DOI: 10.1039/C9RA08265D.
  • Molino, A.; Larocca, V.; Di Sanzo, G.; Martino, M.; Casella, P.; Marino, T.; Karatza, D.; Musmarra, D. Extraction of Bioactive Compounds Using Supercritical Carbon Dioxide. Molecules. 2019, 24, 782. DOI: 10.3390/molecules24040782.
  • Loypimai, P.; Moongngarm, A.; Chottanom, P.; Moontree, T. Ohmic Heating-assisted Extraction of Anthocyanins from Black Rice Bran to Prepare a Natural Food Colourant. Innov. Food Sci. Emerg. Technol. 2015, 27, 102–110.
  • Soquetta, M. B.; Terra, L.; de, M.; Bastos, C. P. Green Technologies for the Extraction of Bioactive Compounds in Fruits and Vegetables. CyTA - J. Food. 2018, 16, 400–412.
  • Xi, J. Ultrahigh Pressure Extraction of Bioactive Compounds from plants—A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1097–1106. DOI: 10.1080/10408398.2013.874327.
  • Khan, S. A.; Aslam, R.; Makroo, H. A. High Pressure Extraction and Its Application in the Extraction of Bio-active Compounds: A Review. J. Food Process Eng. 2019, 42, e12896. DOI: 10.1111/jfpe.12896.
  • Roohinejad, S.; Koubaa, M.; Barba, F. J.; Greiner, R.; Orlien, V.; Lebovka, N. I. Negative Pressure Cavitation Extraction: A Novel Method for Extraction of Food Bioactive Compounds from Plant Materials. Trends Food Sci. Technol. 2016, 52, 98–108. DOI: 10.1016/j.tifs.2016.04.005.
  • Parniakov, O.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Extraction Assisted by Pulsed Electric Energy as a Potential Tool for Green and Sustainable Recovery of Nutritionally Valuable Compounds from Mango Peels. Food Chem. 2016, 192, 842–848. DOI: 10.1016/j.foodchem.2015.07.096.
  • Parniakov, O.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Impact of Pulsed Electric Fields and High Voltage Electrical Discharges on Extraction of High-added Value Compounds from Papaya Peels. Food Res. Int. 2014, 65, 337–343. DOI: 10.1016/j.foodres.2014.09.015.
  • Luengo, E.; Ãlvarez, I.; Raso, J. Improving Carotenoid Extraction from Tomato Waste by Pulsed Electric Fields. Front. Nutr. 2014, 1, 12. DOI: 10.3389/fnut.2014.00012.
  • Nair, G. R.; Divya, V. R.; Prasannan, L.; Habeeba, V.; Prince, M. V.; Raghavan, G. S. V. Ohmic Heating as a Pre-treatment in Solvent Extraction of Rice Bran. J. Food Sci. Technol. 2014, 51, 2692–2698. DOI: 10.1007/s13197-012-0764-2.
  • Wu, K.; Ju, T.; Deng, Y.; Xi, J. Mechanochemical Assisted Extraction: A Novel, Efficient, Eco-friendly Technology. Trends Food Sci. Technol. 2017, 66, 166–175. DOI: 10.1016/j.tifs.2017.06.011.
  • Donsì, F.; Velikov, K. P. Mechanical Cell Disruption of Mustard Bran Suspensions for Improved Dispersion Properties and Protein Release. Food Funct. 2020, 11, 6273–6284. DOI: 10.1039/D0FO00852D.
  • Gali, L.; Bedjou, F.; Velikov, K. P.; Ferrari, G.; Donsì, F. High-pressure Homogenization-assisted Extraction of Bioactive Compounds from Ruta Chalepensis. J. Food Meas. Charact. 2020, 14, 2800–2809.
  • Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. DOI: 10.1016/j.ifset.2017.04.016.
  • Leong, H. Y.; Show, P. L.; Lim, M. H.; Ooi, C. W.; Ling, T. C. Natural Red Pigments from Plants and Their Health Benefits: A Review. Food Rev. Int. 2018, 34, 463–482. DOI: 10.1080/87559129.2017.1326935.
  • Viera, I.; Chen, K.; Ríos, J. J.; Benito, I.; Pérez-Gálvez, A.; Roca, M. First-Pass Metabolism of Chlorophylls in Mice. Mol. Nutr. Food Res. 2018, 62.
  • Adzersen, K. H.; Jess, P.; Freivogel, K. W.; Gerhard, I.; Bastert, G. Raw and Cooked Vegetables, Fruits, Selected Micronutrients, and Breast Cancer Risk: A Case-Control Study in Germany. Nutr. Cancer. 2003, 46, 131–137.
  • Agboyibor, C.; Kong, W.-B.; Chen, D.; Zhang, A.-M.; Niu, S.-Q. Monascus Pigments Production, Composition, Bioactivity and Its Application: A Review. Biocatal. Agric. Biotechnol. 2018, 16, 433–447.
  • Frisvad, J. C.; Smedsgaard, J.; Larsen, T. O.; Samson, R. A. Mycotoxins, Drugs and Other Extrolites Produced by Species in Penicillium Subgenus Penicillium. Stud. Mycol. 2004, 49, 201–241.
  • Clifford, M. N. Anthocyanins - Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 2000, 80, 1063–1072.
  • Dimitrić Marković, J. M.; Pejin, B.; Milenković, D.; Amić, D.; Begović, N.; Mojović, M.; Marković, Z. S. Antiradical Activity of Delphinidin, Pelargonidin and Malvin Towards Hydroxyl and Nitric Oxide Radicals: The Energy Requirements Calculations as a Prediction of the Possible Antiradical Mechanisms. Food Chem. 2017, 218, 440–446. DOI: 10.1016/j.foodchem.2016.09.106.
  • Costa, A. G. V.; Garcia-Diaz, D. F.; Jimenez, P.; Silva, P. I. Bioactive Compounds and Health Benefits of Exotic Tropical Red-black Berries. J. Funct. Foods. 2013, 5, 539–549. DOI: 10.1016/j.jff.2013.01.029.
  • Dai, L.; Sun, C.; Li, R.; Mao, L.; Liu, F.; Gao, Y. Structural Characterization, Formation Mechanism and Stability of Curcumin in Zein-lecithin Composite Nanoparticles Fabricated by Antisolvent Co-precipitation. Food Chem. 2017, 237, 1163–1171. DOI: 10.1016/j.foodchem.2017.05.134.
  • Mizgier, P.; Kucharska, A. Z.; Sokół-Łetowska, A.; Kolniak-Ostek, J.; Kidoń, M.; Fecka, I. Characterization of Phenolic Compounds and Antioxidant and Anti-inflammatory Properties of Red Cabbage and Purple Carrot Extracts. J. Funct. Foods. 2016, 21, 133–146. DOI: 10.1016/j.jff.2015.12.004.
  • De Pascual-Teresa, S.; Sanchez-Ballesta, M. T. Anthocyanins: From Plant to Health. Phytochem. Rev. 2008, 7, 281–299.
  • Vulić, J. J.; Ćebović, T. N.; Čanadanović, V. M.; Ćetković, G. S.; Djilas, S. M.; Čanadanović-Brunet, J. M.; Velićanski, A. S.; Cvetković, D. D.; Tumbas, V. T. Antiradical, Antimicrobial and Cytotoxic Activities of Commercial Beetroot Pomace. Food Funct. 2013, 4, 713–721. DOI: 10.1039/c3fo30315b.
  • Maigoda, T. C.; Sulaeman, A.; Setiawan, B. I.; Wibawan, I. W. T. Effects of Red Dragon Fruits (Hylocereus Polyrhizus) Powder and Swimming Exercise on Inflammation, Oxidative Stress Markers, and Physical Fitness in Male Obesity Rats (Sprague Dawley). Int. J. Sci. Basic Appl. Res. 2016, 25, 123–141.
  • Gengatharan, A.; Dykes, G. A.; Choo, W. S. Betalains: Natural Plant Pigments with Potential Application in Functional Foods. LWT. 2015, 64, 645–649. DOI: 10.1016/j.lwt.2015.06.052.
  • Hogenesch, H.; Nikitin, A. Y. Challenges in Pre-clinical Testing of Anti-cancer Drugs in Cell Culture and in Animal Models. J. Control. Release. 2012, 164, 183–186. DOI: 10.1016/j.jconrel.2012.02.031.
  • Clemente, A.; Desai, P. V. Evaluation of the Hematological, Hypoglycemic, Hypolipidemic and Antioxidant Properties of Amaranthus Tricolor Leaf Extract in Rat. Trop. J. Pharm. Res. 2011, 10, 595–602.
  • Hayek, S. A.; Ibrahim, S. A. Antimicrobial Activity of Xoconostle Pears (Opuntia Matudae) against Escherichia Coli O157:H7 in Laboratory Medium. Int. J. Microbiol. 2012, 2012, 1–6. DOI: 10.1155/2012/368472.
  • Sakihama, Y.; Maeda, M.; Hashimoto, M.; Tahara, S.; Hashidoko, Y. Beetroot Betalain Inhibits Peroxynitrite-mediated Tyrosine Nitration and DNA Strand Cleavage. Free Radic. Res. 2012, 46, 93–99. DOI: 10.3109/10715762.2011.641157.
  • Kujawska, M.; Ignatowicz, E.; Murias, M.; Ewertowska, M.; Mikołajczyk, K.; Jodynis-Liebert, J. Protective Effect of Red Beetroot against Carbon Tetrachloride- and N-nitrosodiethylamine-induced Oxidative Stress in Rats. J. Agric. Food Chem. 2009, 57, 2570–2575. DOI: 10.1021/jf803315d.
  • Szaefer, H.; Krajka-Kuźniak, V.; Ignatowicz, E.; Adamska, T.; Baer-Dubowska, W. Evaluation of the Effect of Beetroot Juice on DMBA-induced Damage in Liver and Mammary Gland of Female Sprague-dawley Rats. Phyther. Res. 2014, 28, 55–61. DOI: 10.1002/ptr.4951.
  • Khan, M. I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. DOI: 10.1111/1541-4337.12185.
  • Queiroz Zepka, L.; Jacob-Lopes, E.; Roca, M. Catabolism and Bioactive Properties of Chlorophylls. Curr. Opin. Food Sci. 2019, 26, 94–100. DOI: 10.1016/j.cofs.2019.04.004.
  • Perez-Galvez, A.; Viera, I.; Roca, M. Chemistry in the Bioactivity of Chlorophylls: An Overview. Curr. Med. Chem. 2018, 24. DOI: 10.2174/0929867324666170714102619.
  • Ferruzzi, M. G.; Bohm, V.; Courtney, P. D.; Schwartz, S. J. Antioxidant and Antimutagenic Activity of Dietary Chlorophyll Derivatives Determined by Radical Scavenging and Bacterial Reverse Mutagenesis Assays. J. Food Sci. 2002, 67, 2589–2595. DOI: 10.1111/j.1365-2621.2002.tb08782.x.
  • Jonker, J. W.; Buitelaar, M.; Wagenaar, E.; Van Der Valk, M. A.; Scheffer, G. L.; Scheper, R. J.; Plosch, T.; Kuipers, F.; Elferink, R. P.; Rosing, H.; Beijnen, J. H.; et al. The Breast Cancer Resistance Protein Protects against a Major Chlorophyll-derived Dietary Phototoxin and Protoporphyria. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15649–15654.
  • de Vogel, J.; Jonker-Termont, D. S. M. L.; van Lieshout, E. M. M.; Katan, M. B.; van der Meer, R. Green Vegetables, Red Meat and Colon Cancer: Chlorophyll Prevents the Cytotoxic and Hyperproliferative Effects of Haem in Rat Colon. Carcinogenesis. 2005, 26, 387–393. DOI: 10.1093/carcin/bgh331.
  • Ferruzzi, M. G.; Blakeslee, J. Digestion, Absorption, and Cancer Preventative Activity of Dietary Chlorophyll Derivatives. Nutr. Res. 2007, 27, 1–12. DOI: 10.1016/j.nutres.2006.12.003.
  • Egner, P. A.; Wang, J.-B.; Zhu, Y.-R.; Zhang, B.-C.; Wu, Y.; Zhang, Q.-N.; Qian, G.-S.; Kuang, S.-Y.; Gange, S. J.; Jacobson, L. P.; et al. Chlorophyllin Intervention Reduces aflatoxin–DNA Adducts in Individuals at High Risk for Liver Cancer. Proc. Natl. Acad. Sci. 2001, 98, 14601 LP– 14606. DOI: 10.1073/pnas.251536898.
  • Marwaha, R. K.; Bansal, D.; Kaur, S.; Trehan, A. Wheat Grass Juice Reduces Transfusion Requirement in Patients with Thalassemia Major: A Pilot Study. Indian Pediatr. 2004, 41, 716–720.
  • Wangcharoen, W.; Phimphilai, S. Chlorophyll and Total Phenolic Contents, Antioxidant Activities and Consumer Acceptance Test of Processed Grass Drinks. J. Food Sci. Technol. 2016, 53, 4135–4140. DOI: 10.1007/s13197-016-2380-z.
  • Rao, A. V.; Rao, L. G. Carotenoids and Human Health. Pharmacol. Res. 2007, 55, 207–216. DOI: 10.1016/j.phrs.2007.01.012.
  • Khoo, H. E.; Prasad, K. N.; Kong, K. W.; Jiang, Y.; Ismail, A. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules. 2011, 16, 1710–1738. DOI: 10.3390/molecules16021710.
  • García-Márquez, E.; Román-Guerrero, A.; Cruz-Sosa, F.; Lobato-Calleros, C.; Álvarez-Ramírez, J.; Vernon-Carter, E. J.; Espinosa-Andrews, H. Effect of Layer (Calcium Phosphate-chitosan)-by-layer (Mesquite Gum) Matrix on Carotenoids-in-water-emulsion Properties. Food Hydrocoll. 2015, 43, 451–458. DOI: 10.1016/j.foodhyd.2014.07.005.
  • Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J. A.; Fernández-López, J. Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1032–1049.
  • Schunemann, H. J. Lung Function in Relation to Intake of Carotenoids and Other Antioxidant Vitamins in a Population-based Study. Am. J. Epidemiol. 2002, 155, 463–471. DOI: 10.1093/aje/155.5.463.
  • Giaconi, J. A.; Yu, F.; Stone, K. L.; Pedula, K. L.; Ensrud, K. E.; Cauley, J. A.; Hochberg, M. C.; Coleman, A. L. The Association of Consumption of Fruits/vegetables with Decreased Risk of Glaucoma among Older African-American Women in the Study of Osteoporotic Fractures. Am. J. Ophthalmol. 2012, 154, 635–644. DOI: 10.1016/j.ajo.2012.03.048.
  • Ito, Y.; Suzuki, K. The Effect of Serum Carotenoids on Atrophic Gastritis among the Inhabitants of a Rural Area in Hokkaido, Japan. Environ. Health Prev. Med. 2001, 6, 184–188. DOI: 10.1007/BF02897968.
  • Ziegler, R. G.; Colavito, E. A.; Hartge, P.; McAdams, M. J.; Schoenberg, J. B.; Mason, T. J.; Fraumeni, J. F. Importance of α-carotene, β-carotene, and Other Phytochemicals in the Etiology of Lung Cancer. J. Natl. Cancer Inst. 1996, 88, 612–615. DOI: 10.1093/jnci/88.9.612.
  • Murakoshi, M.; Iwasaki, R.; Satomi, Y.; Takayasu, J.; Hasegawa, T.; Tokuda, H.; Iwashima, A. Potent Preventive Action of a-Carotene against Carcinogenesis: Spontaneous Liver Carcinogenesis and Promoting Stage of Lung and Skin Carcinogenesis in Mice are Suppressed More Effectively by a-Carotene than by 0-Carotene. Cancer Res. 1992, 52, 6583–6587.
  • Murakoshi, M.; Takayasu, J.; Kimura, O.; Kohmura, E.; Nishino, H.; Iwashima, A.; Okuzumi, J.; Sakai, T.; Sugimoto, T.; Imanishi, J.; et al. Inhibitory Effects of α-carotene on Proliferation of the Human Neuroblastoma Cell Line GOTO. J. Natl. Cancer Inst. 1989, 81, 1649–1652. DOI: 10.1093/jnci/81.21.1649.
  • Beydoun, M. A.; Chen, X.; Jha, K.; Beydoun, H. A.; Zonderman, A. B.; Canas, J. A. Carotenoids, Vitamin A, and Their Association with the Metabolic Syndrome: A Systematic Review and Meta-analysis. Nutr. Rev. 2019, 77, 32–45. DOI: 10.1093/nutrit/nuy044.
  • Huang, J.; Weinstein, S. J.; Yu, K.; Männistö, S.; Albanes, D. Serum Beta Carotene and Overall and Cause-specific Mortality: A Prospective Cohort Study. Circ. Res. 2018, 123, 1339–1349. DOI: 10.1161/CIRCRESAHA.118.313409.
  • Canas, J. A.; Lochrie, A.; McGowan, A. G.; Hossain, J.; Schettino, C.; Balagopal, P. B. Effects of Mixed Carotenoids on Adipokines and Abdominal Adiposity in Children: A Pilot Study. J. Clin. Endocrinol. Metab. 2017, 102, 1983–1990. DOI: 10.1210/jc.2017-00185.
  • Liu, Y.; Chen, H.; Mu, D.; Li, D.; Zhong, Y.; Jiang, N.; Zhang, Y.; Xia, M. Association of Serum Retinoic Acid with Risk of Mortality in Patients with Coronary Artery Disease. Circ. Res. 2016, 119, 557–563. DOI: 10.1161/CIRCRESAHA.116.308781.
  • Sluijs, I.; Cadier, E.; Beulens, J. W.; Van Der, A., . D. L.; Spijkerman, A. M.; van der Schouw, Y. T. Nutrition, Metabolism & Cardiovascular Diseases Dietary Intake of Carotenoids and Risk of Type 2 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 8–13. DOI: 10.1016/j.numecd.2014.12.008.
  • Donhowe, E. G.; Flores, F. P.; Kerr, W. L.; Wicker, L.; Kong, F. Characterization and Invitro Bioavailability of β-carotene: Effects of Microencapsulation Method and Food Matrix. LWT - Food Sci. Technol. 2014, 57, 42–48. DOI: 10.1016/j.lwt.2013.12.037.
  • Kim, Y. S.; Lee, H. A.; Lim, J. Y.; Kim, Y.; Jung, C. H.; Yoo, S. H.; Kim, Y. β-Carotene Inhibits Neuroblastoma Cell Invasion and Metastasis in Vitro and in Vivo by Decreasing Level of Hypoxia-inducible factor-1α. J. Nutr. Biochem. 2014, 25, 655–664. DOI: 10.1016/j.jnutbio.2014.02.006.
  • Grune, T.; Lietz, G.; Palou, A.; Ross, A. C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.; Biesalski, H. K. β-Carotene Is an Important Vitamin A Source for Humans. J. Nutr. 2010, 140, 2268S–2285S. DOI: 10.3945/jn.109.119024.
  • Greenwald, P. Beta-carotene and Lung Cancer: A Lesson for Future Chemoprevention Investigations? J. Natl. Cancer Inst. 2003, 95(1), E1. DOI: 10.1093/jnci/95.1.E1.
  • Gandini, S.; Merzenich, H.; Robertson, C.; Boyle, P. Meta-analysis of Studies on Breast Cancer Risk and Diet. Eur. J. Cancer. 2002, 36, 636–646. DOI: 10.1016/S0959-8049(00)00022-8.
  • Seddon, J. M.; Ajani, U. A.; Sperduto, R. D.; Hiller, R.; Blair, N.; Burton, T. C.; Farber, M. D.; Gragoudas, E. S.; Haller, J.; Miller, D. T. Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-related Macular Degeneration. Eye Disease Case-Control Study Group. Jama. 1994, 272, 1413–1420. DOI: 10.1001/jama.1994.03520180037032.
  • Krinsky, N. I. Carotenoids and Cancer in Animal Models. J. Nutr. 1989, 119, 123–126. DOI: 10.1093/jn/119.1.123.
  • Thomsen, K.; Schmidt, H.; Fischer, A. Beta-carotene in Erythropoieticprotoporphyria: 5 Years’ Experience. Dermatologica. 1979, 159, 82–86. DOI: 10.1159/000250566.
  • Jiao, Y.; Reuss, L.; Wang, Y. β-Cryptoxanthin: Chemistry, Occurrence, and Potential Health Benefits. Curr. Pharmacol. Rep. 2019, 5, 20–34. DOI: 10.1007/s40495-019-00168-7.
  • Iwata, A.; Matsubara, S.; Miyazaki, K. Beneficial Effects of a Beta-cryptoxanthin-containing Beverage on Body Mass Index and Visceral Fat in Pre-obese Men: Double-blind, Placebo-controlled Parallel Trials. J. Funct. Foods. 2018, 41, 250–257. DOI: 10.1016/j.jff.2017.12.040.
  • Bock, C. H.; Ruterbusch, J. J.; Holowatyj, A. N.; Steck, S. E.; Van Dyke, A. L.; Ho, W. J.; Cote, M. L.; Hofmann, J. N.; Davis, F.; Graubard, B. I.; et al. Renal Cell Carcinoma Risk Associated with Lower Intake of Micronutrients. Cancer Med. 2018, 7, 4087–4097. DOI: 10.1002/cam4.1639.
  • Sahin, K.; Orhan, C.; Akdemir, F.; Tuzcu, M.; Sahin, N.; Yılmaz, I.; Juturu, V. β-Cryptoxanthin Ameliorates Metabolic Risk Factors by Regulating NF-κB and Nrf2 Pathways in Insulin Resistance Induced by High-fat Diet in Rodents. Food Chem. Toxicol. 2017, 107, 270–279. DOI: 10.1016/j.fct.2017.07.008.
  • Pongkan, W.; Takatori, O.; Ni, Y.; Xu, L.; Nagata, N.; Chattipakorn, S. C.; Usui, S.; Kaneko, S.; Takamura, M.; Sugiura, M.; et al. β-Cryptoxanthin Exerts Greater Cardioprotective Effects on Cardiac Ischemia-reperfusion Injury than Astaxanthin by Attenuating Mitochondrial Dysfunction in Mice. Mol. Nutr. Food Res. 2017, 61, 1601077. DOI: 10.1002/mnfr.201601077.
  • Bae, J.-M. Reinterpretation of the Results of a Pooled Analysis of Dietary Carotenoid Intake and Breast Cancer Risk by Using the Interval Collapsing Method. Epidemiol. Health. 2016, 38, e2016024. DOI: 10.4178/epih.e2016024.
  • Gammone, M. A.; Riccioni, G.; D’Orazio, N. Carotenoids: Potential Allies of Cardiovascular Health? Food Nutr. Res. 2015, 59, 26762. DOI: 10.3402/fnr.v59.26762.
  • Leoncini, E.; Nedovic, D.; Panic, N.; Pastorino, R.; Edefonti, V.; Boccia, S. Carotenoid Intake from Natural Sources and Head and Neck Cancer: A Systematic Review and Meta-analysis of Epidemiological Studies. Cancer Epidemiol. Biomarkers Prev. 2015, 24, 1003–1011. DOI: 10.1158/1055-9965.EPI-15-0053.
  • Ni, Y.; Nagashimada, M.; Zhan, L.; Nagata, N.; Kobori, M.; Sugiura, M.; Ogawa, K.; Kaneko, S.; Ota, T. Prevention and Reversal of Lipotoxicity-induced Hepatic Insulin Resistance and Steatohepatitis in Mice by an Antioxidant Carotenoid, β-cryptoxanthin. Endocrinology. 2015, 156, 987–999. DOI: 10.1210/en.2014-1776.
  • Ozaki, K.; Okamoto, M.; Fukasawa, K.; Iezaki, T.; Onishi, Y.; Yoneda, Y.; Sugiura, M.; Hinoi, E. Daily Intake of β-cryptoxanthin Prevents Bone Loss by Preferential Disturbance of Osteoclastic Activation in Ovariectomized Mice. J. Pharmacol. Sci. 2015, 129, 72–77. DOI: 10.1016/j.jphs.2015.08.003.
  • Millán, C. S.; et al. β-Cryptoxanthin Synergistically Enhances the Antitumoral Activity of Oxaliplatin through ΔNP73 Negative Regulation in Colon Cancer. Clin. Cancer Res. 2015, 21, 4398–4409. DOI: 10.1158/1078-0432.CCR-14-2027.
  • Min, K.; Bok, Min, J. Young. Serum Carotenoid Levels and Risk of Lung Cancer Death in US Adults. Cancer Sci. 2014, 105, 736–743. DOI: 10.1111/cas.12405.
  • Wu, C.; Han, L.; Riaz, H.; Wang, S.; Cai, K.; Yang, L. The Chemopreventive Effect of β-cryptoxanthin from Mandarin on Human Stomach Cells (BGC-823). Food Chem. 2013, 136, 1122–1129. DOI: 10.1016/j.foodchem.2012.09.073.
  • Iskandar, A. R.; Liu, C.; Smith, D. E.; Hu, K. Q.; Choi, S. W.; Ausman, L. M.; X, W. β-cryptoxanthin Restores Nicotine-reduced Lung SIRT1 to Normal Levels and Inhibits Nicotine-promoted Lung Tumorigenesis and Emphysema in A/J Mice. Cancer Prev. Res. 2013, 6, 309–320. DOI: 10.1158/1940-6207.CAPR-12-0368.
  • Takayanagi, K.; Morimoto, S. I.; Shirakura, Y.; Mukai, K.; Sugiyama, T.; Tokuji, Y.; Ohnishi, M. Mechanism of Visceral Fat Reduction in Tsumura Suzuki Obese, Diabetes (TSOD) Mice Orally Administered β-cryptoxanthin from Satsuma Mandarin Oranges (Citrus Unshiu Marc). J. Agric. Food Chem. 2011, 59, 12342–12351. DOI: 10.1021/jf202821u.
  • Iwamoto, M.; Imai, K.; Ohta, H.; Shirouchi, B.; Sato, M. Supplementation of Highly Concentrated β-cryptoxanthin in a Satsuma Mandarin Beverage Improves Adipocytokine Profiles in Obese Japanese Women. Lipids Health Dis. 2012, 11. DOI: 10.1186/1476-511X-11-52.
  • Tanaka, T.; Tanaka, T.; Tanaka, M.; Kuno, T. Cancer Chemoprevention by Citrus Pulp and Juices Containing High Amounts of β-Cryptoxanthin and Hesperidin. J. Biomed. Biotechnol. 2012, 2012, 1–10. DOI: 10.1155/2012/516981.
  • Liu, C.; Bronson, R. T.; Russell, R. M.; Wang, X. D. β-Cryptoxanthin Supplementation Prevents Cigarette Smoke-induced Lung Inflammation, Oxidative Damage, and Squamous Metaplasia in Ferrets. Cancer Prev. Res. 2011, 4, 1255–1266. DOI: 10.1158/1940-6207.CAPR-10-0384.
  • Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Ando, F.; Shimokata, H.; Yano, M. Dietary Patterns of Antioxidant Vitamin and Carotenoid Intake Associated with Bone Mineral Density: Findings from Post-menopausal Japanese Female Subjects. Osteoporos. Int. 2011, 22, 143–152. DOI: 10.1007/s00198-010-1239-9.
  • Ohshima, M.; Sugiura, M.; Ueda, K. Effects of .beta.-cryptoxanthin-fortified Satsuma Mandarin (Citrus Unshiu Marc.) Juice on Liver Function and the Serum Lipid Profile. Nippon Shokuhin Kagaku Kogaku Kaishi. 2010, 57, 114–120. DOI: 10.3136/nskkk.57.114.
  • Yamaguchi, M. β-Cryptoxanthin and Bone Metabolism: The Preventive Role in Osteoporosis. J. Heal. Sci. 2008, 54, 356–369. DOI: 10.1248/jhs.54.356.
  • Montonen, J.; Knekt, P.; Järvinen, R.; Reunanen, A. Dietary Antioxidant Intake and Risk of Type 2 Diabetes. Diabetes Care. 2004, 27, 362–366. DOI: 10.2337/diacare.27.2.362.
  • Yamaguchi, M.; Uchiyama, S. β-Cryptoxanthin Stimulates Bone Formation and Inhibits Bone Resorption in Tissue Culture in Vitro. Mol. Cell. Biochem. 2004, 258, 137–144. DOI: 10.1023/B:MCBI.0000012848.50541.19.
  • Haegele, A. D.; Gillette, C.; O’Neill, C.; Wolfe, P.; Heimendinger, J.; Sedlacek, S.; Thompson, H. J. Plasma Xanthophyll Carotenoids Correlate Inversely with Indices of Oxidative DNA Damage and Lipid Peroxidation. Cancer Epidemiol. Biomarkers Prev. 2000, 9, 421–425.
  • Thies, F.; Mills, L. M.; Moir, S.; Masson, L. F. Cardiovascular Benefits of Lycopene: Fantasy or Reality? Proc. Nutr. Soc. 2017, 76, 122–129.
  • Edge, R.; Boehm, F.; George Truscott, T. Oxygen Effect on Protection of Human Lymphoid Cells against Free Radicals by the Carotenoid Lycopene. Free Radic. Biol. Med. 2017, 100, S96. DOI: 10.1016/j.freeradbiomed.2016.10.240.
  • Pirayesh Islamian, J.; Farajollahi, A.; Mehrali, H.; Hatamian, M. Radioprotective Effects of Amifostine and Lycopene on Human Peripheral Blood Lymphocytes in Vitro. J. Med. Imaging Radiat. Sci. 2016, 47, 49–54. DOI: 10.1016/j.jmir.2015.10.006.
  • Wang, Z.; Fan, J.; Wang, J.; Li, Y.; Xiao, L.; Duan, D.; Wang, Q. Protective Effect of Lycopene on High-fat Diet-induced Cognitive Impairment in Rats. Neurosci. Lett. 2016, 627, 185–191. DOI: 10.1016/j.neulet.2016.05.014.
  • Boyacioglu, M.; Kum, C.; Sekkin, S.; Yalinkilinc, H. S.; Avci, H.; Epikmen, E. T.; Karademir, U. The Effects of Lycopene on DNA Damage and Oxidative Stress on Indomethacin-induced Gastric Ulcer in Rats. Clin. Nutr. 2016, 35, 428–435. DOI: 10.1016/j.clnu.2015.03.006.
  • Rotelli, M. T.; Bocale, D.; De Fazio, M.; Ancona, P.; Scalera, I.; Memeo, R.; Travaglio, E.; Zbar, A. P.; Altomare, D. F. IN-VITRO Evidence for the Protective Properties of the Main Components of the Mediterranean Diet against Colorectal Cancer: A Systematic Review. Surg. Oncol. 2015, 24, 145–152. DOI: 10.1016/j.suronc.2015.08.001.
  • Li, Y. F.; Chang, Y. Y.; Huang, H. C.; Wu, Y. C.; Yang, M. D.; Chao, P. M. Tomato Juice Supplementation in Young Women Reduces Inflammatory Adipokine Levels Independently of Body Fat Reduction. Nutrition. 2015, 31, 691–696.
  • Sahin, K.; Cross, B.; Sahin, N.; Ciccone, K.; Suleiman, S.; Osunkoys, A. O.; Master, V.; Harris, W.; Carthon, B.; Mohammad, R.; Bilir, B.; et al. Lycopene in the Prevention of Renal Cell Cancer in the TSC2 Mutant Eker Rat Model. Arch. Biochem. Biophys. 2015, 572, 36–39. DOI: 10.1016/j.abb.2015.01.006.
  • Stice, C. P.; Liu, C.; Aizawa, K.; Greenberg, A. S.; Ausman, L. M.; Wang, X. D. Dietary Tomato Powder Inhibits Alcohol-induced Hepatic Injury by Suppressing Cytochrome P450 2E1 Induction in Rodent Models. Arch. Biochem. Biophys. 2015, 572, 81–88. DOI: 10.1016/j.abb.2015.01.004.
  • Prema, A.; Janakiraman, U.; Manivasagam, T.; Arokiasamy, J. T. Neuroprotective Effect of Lycopene against MPTP Induced Experimental Parkinson’s Disease in Mice. Neurosci. Lett. 2015, 599, 12–19. DOI: 10.1016/j.neulet.2015.05.024.
  • Boeira, S. P.; Funck, V. R.; Borges Filho, C.; Del’Fabbro, L.; Gomes, M. G.; De, Donato, F.; Royes, L. F. F.; Oliveira, M. S.; Jesse, C. R.; Furian, A. F. Lycopene Protects against Acute Zearalenone-induced Oxidative, Endocrine, Inflammatory and Reproductive Damages in Male Mice. Chem. Biol. Interact. 2015, 230, 50–57. DOI: 10.1016/j.cbi.2015.02.003.
  • Lin, H. Y.; Huang, B. R.; Yeh, W. L.; Lee, C. H.; Huang, S. S.; Lai, C. H.; Lin, H.; Lu, D. Y. Antineuroinflammatory Effects of Lycopene via Activation of Adenosine Monophosphate-activated Protein kinase-α1/heme Oxygenase-1 Pathways. Neurobiol. Aging. 2014, 35, 191–202. DOI: 10.1016/j.neurobiolaging.2013.06.020.
  • Park, B.; Lim, J. W.; Kim, H. Lycopene Inhibits Helicobacter Pylori-Induced Hyperproliferation through Suppression of β-Catenin Signaling in Gastric Epithelial Cells. Free Radic. Biol. Med. 2014, 76, S72. DOI: 10.1016/j.freeradbiomed.2014.10.351.
  • Pereira Soares, N.; da, C.; Oliveira, F. L.; Takiya, C. M.; Junior, A. P.; Nasciutti, L. E.; Lotsch, P. F.; Granjeiro, J. M.; Ferreira, L. B.; Pereira Gimba, E. R.; et al. Lycopene Induce Apoptosis in Human Prostate Cells and Alters the Expression of Bax and Bcl-2 Genes. LWT - Food Sci. Technol. 2014, 59, 1290–1297. DOI: 10.1016/j.lwt.2014.04.028.
  • Abdul-Hamid, M.; Salah, M. Lycopene Reduces Deltamethrin Effects Induced Thyroid Toxicity and DNA Damage in Albino Rats. J. Basic Appl. Zool. 2013, 66, 155–163. DOI: 10.1016/j.jobaz.2013.08.001.
  • Özkan, E.; Akyüz, C.; Dulundu, E.; Topaloglu, Ü.; Şehirli, A. Ö.; Ercan, F.; Şener, G. Protective Effects of Lycopene on Cerulein-induced Experimental Acute Pancreatitis in Rats. J. Surg. Res. 2012, 176, 232–238. DOI: 10.1016/j.jss.2011.09.005.
  • Kong, K. W.; Khoo, H. E.; Prasad, K. N.; Ismail, A.; Tan, C. P.; Rajab, N. F. Revealing the Power of the Natural Red Pigment Lycopene. Molecules. 2010, 15, 959–987. DOI: 10.3390/molecules15020959.
  • Kumar, P.; Kumar, A. Effect of Lycopene and Epigallocatechin-3-gallate against 3-nitropropionic Acid Induced Cognitive Dysfunction and Glutathione Depletion in Rat: A Novel Nitric Oxide Mechanism. Food Chem. Toxicol. 2009, 47, 2522–2530. DOI: 10.1016/j.fct.2009.07.011.
  • Scolastici, C.; Alves de Lima, R. O.; Barbisan, L. F.; Ferreira, A. L. A.; Ribeiro, D. A.; Salvadori, D. M. F. Antigenotoxicity and Antimutagenicity of Lycopene in HepG2 Cell Line Evaluated by the Comet Assay and Micronucleus Test. Toxicol. Vitr. 2008, 22, 510–514. DOI: 10.1016/j.tiv.2007.11.002.
  • Burgess, L. C.; Rice, E.; Fischer, T.; Seekins, J. R.; Burgess, T. P.; Sticka, S. J.; Klatt, K. Lycopene Has Limited Effect on Cell Proliferation in Only Two of Seven Human Cell Lines (Both Cancerous and Noncancerous) in an in Vitro System with Doses across the Physiological Range. Toxicol. Vitr. 2008, 22, 1297–1300. DOI: 10.1016/j.tiv.2008.03.001.
  • Lee, C. M.; Chang, J. H.; Moon, D. O.; Choi, Y. H.; Choi, I. W.; Park, Y. M.; Kim, G. Y. Lycopene Suppresses Ovalbumin-induced Airway Inflammation in a Murine Model of Asthma. Biochem. Biophys. Res. Commun. 2008, 374, 248–252. DOI: 10.1016/j.bbrc.2008.07.032.
  • Han, C. H.; Yang, C. H.; Sohn, D. W.; Kim, S. W.; Kang, S. H.; Cho, Y. H. Synergistic Effect between Lycopene and Ciprofloxacin on a Chronic Bacterial Prostatitis Rat Model. Int. J. Antimicrob. Agents. 2008, 31, 102–107. DOI: 10.1016/j.ijantimicag.2007.07.016.
  • Hu, M. Y.; Li, Y. L.; Jiang, C. H.; Liu, Z. Q.; Qu, S. L.; Huang, Y. M. Comparison of Lycopene and Fluvastatin Effects on Atherosclerosis Induced by a High-fat Diet in Rabbits. Nutrition. 2008, 24, 1030–1038. DOI: 10.1016/j.nut.2008.05.006.
  • Salman, H.; Bergman, M.; Djaldetti, M.; Bessler, H. Lycopene Affects Proliferation and Apoptosis of Four Malignant Cell Lines. Biomed. Pharmacother. 2007, 61, 366–369. DOI: 10.1016/j.biopha.2007.02.015.
  • Scolastici, C.; de Lima, R. O. A.; Barbisan, L. F.; Ferreira, A. L.; Ribeiro, D. A.; Salvadori, D. M. F. Lycopene Activity against Chemically Induced DNA Damage in Chinese Hamster Ovary Cells. Toxicol. Vitr. 2007, 21, 840–845. DOI: 10.1016/j.tiv.2007.01.020.
  • Zhang, J.; Dhakal, I.; Stone, A.; Ning, B.; Greene, G.; Lang, N. P.; Kadlubar, F. F. Plasma Carotenoids and Prostate Cancer: A Population-based Case-control Study in Arkansas. Nutr. Cancer. 2007, 59, 46–53. DOI: 10.1080/01635580701385900.
  • Kanagaraj, P.; Vijayababu, M. R.; Ravisankar, B.; Anbalagan, J.; Aruldhas, M. M.; Arunakaran, J. Effect of Lycopene on Insulin-like Growth factor-I, IGF Binding Protein-3 and IGF type-I Receptor in Prostate Cancer Cells. J. Cancer Res. Clin. Oncol. 2007, 133, 351–359. DOI: 10.1007/s00432-006-0177-6.
  • Liu, F.; Zhang, -Z.-Z.; Wu, M.; Shu, Y. Study on the Protective Effect of Tomato Juice on DNA Damage in Cells. J. Sichuan Univ. Sci. Ed. 2007, 38, 18–21.
  • Matos, H. R.; Marques, S. A.; Gomes, O. F.; Silva, A. A.; Heimann, J. C.; Di Mascio, P.; Medeiros, M. H. G. Lycopene and β-carotene Protect in Vivo Iron-induced Oxidative Stress Damage in Rat Prostate. Brazilian J. Med. Biol. Res. 2006, 39, 203–210. DOI: 10.1590/S0100-879X2006000200006.
  • Engelhard, Y. N.; Gazer, B.; Paran, E. Natural Antioxidants from Tomato Extract Reduce Blood Pressure in Patients with Grade-1 Hypertension: A Double-blind, Placebo-controlled Pilot Study. Am. Heart J. 2006, 151, 100.e6-100.e1. DOI: 10.1016/j.ahj.2005.05.008.
  • Coyne, T.; Ibiebele, T.; Baade, P.; McClintock, C.; Dunn, S.; Leonard, D.; Shaw, J. Diabetes Mellitus and Serum Carotenoids: Findings of a Population-based Study in Queensland, Australia. Br. J. Nutr. 2009, 102, 1668–1677. DOI: 10.1017/S000711450999081X.
  • Astley, S. B.; Hughes, D. A.; Wright, A. J. A.; Elliott, R. M.; Southon, S. DNA Damage and Susceptibility to Oxidative Damage in Lymphocytes: Effects of Carotenoids in Vitro and in Vivo. Br. J. Nutr. 2004, 91, 53–61. DOI: 10.1079/BJN20031028.
  • Sesso, H. D.; Buring, J. E.; Norkus, E. P.; Gaziano, J. M. Plasma Lycopene and the Risk of Cardiovascular Disease in Women. J. Am. Coll. Cardiol. 2002, 39, 147. DOI: 10.1016/S0735-1097(02)80648-9.
  • Gupta, S. K.; Trivedi, D.; Srivastava, S.; Joshi, S.; Halder, N.; Verma, S. D. Lycopene Attenuates Oxidative Stress Induced Experimental Cataract Development: An in Vitro and in Vivo Study. Nutrition. 2003, 19, 794–799. DOI: 10.1016/S0899-9007(03)00140-0.
  • Young, A. J.; Lowe, G. M. Antioxidant and Prooxidant Properties of Carotenoids. Arch. Biochem. Biophys. 2001, 385, 20–27. DOI: 10.1006/abbi.2000.2149.
  • Sies, H.; Stahl, W. Lycopene: Antioxidant and Biological Effects and Its Bioavailability in the Human. Proc. Soc. Exp. Biol. Med. 1998, 218, 121–124. DOI: 10.3181/00379727-218-44285a.
  • Tinkler, J. H.; Böhm, F.; Schalch, W.; Truscott, T. G. Dietary Carotenoids Protect Human Cells from Damage. J. Photochem. Photobiol. B Biol. 1994, 26, 283–285. DOI: 10.1016/1011-1344(94)07049-0.
  • Forssberg, A.; Lingen, C.; Ernster, L.; Lindberg, O. Modification of the X-irradiation Syndrome by Lycopene. Exp. Cell Res. 1959, 16, 7–14. DOI: 10.1016/0014-4827(59)90190-9.
  • Shakeri, A.; Soheili, V.; Karimi, M.; Hosseininia, S. A.; Fazly Bazzaz, B. S. Biological Activities of Three Natural Plant Pigments and Their Health Benefits. J. Food Meas. Charact. 2018, 12, 356–361. DOI: 10.1007/s11694-017-9647-6.
  • Du, S. Y.; Zhang, Y. L.; Bai, R. X.; Ai, Z. L.; Xie, B. S.; Yang, H. Y. Lutein Prevents Alcohol-induced Liver Disease in Rats by Modulating Oxidative Stress and Inflammation. Int. J. Clin. Exp. Med. 2015, 8, 8785–8793.
  • Cheng, F.; Zhang, Q.; Yan, -F.-F.; Wan, J.-F.; Lin, C.-S. Lutein Protects against Ischemia/reperfusion Injury in Rat Skeletal Muscle by Modulating Oxidative Stress and Inflammation. Immunopharmacol. Immunotoxicol. 2015, 37, 329–334. DOI: 10.3109/08923973.2015.1049704.
  • Fatani, A. J.; Al-Rejaie, S. S.; Abuohashish, H. M.; Al-Assaf, A.; Parmar, M. Y.; Ahmed, M. M. Lutein Dietary Supplementation Attenuates Streptozotocin-induced Testicular Damage and Oxidative Stress in Diabetic Rats. BMC Complement. Altern. Med. 2015, 15. DOI: 10.1186/s12906-015-0693-5.
  • Wu, W.; Li, Y.; Wu, Y.; Zhang, Y.; Wang, Z.; Liu, X. Lutein Suppresses Inflammatory Responses through Nrf2 Activation and NF-κB Inactivation in Lipopolysaccharide-stimulated BV-2 Microglia. Mol. Nutr. Food Res. 2015, 59, 1663–1673. DOI: 10.1002/mnfr.201500109.
  • Huang, Y.-M.; Dou, H.-L.; Huang, -F.-F.; Xu, X.-R.; Zou, Z.-Y.; Lin, X.-M. Effect of Supplemental Lutein and Zeaxanthin on Serum, Macular Pigmentation, and Visual Performance in Patients with Early Age-Related Macular Degeneration. BioMed. Res. Int. 2015, 2015, 1–8.
  • Li, S.; Ding, Y.; Niu, Q.; Xu, S.; Pang, L.; Ma, R.; Jing, M.; Feng, G.; Tang, J. X.; Zhang, Q.; Ma, X.; et al. Lutein Has a Protective Effect on Hepatotoxicity Induced by Arsenic via Nrf2 Signaling. BioMed. Res. Int. 2015, 2015, 1–10.
  • Han, H.; Cui, W.; Wang, L.; Xiong, Y.; Liu, L.; Sun, X.; Hao, L. Lutein Prevents High Fat Diet-induced Atherosclerosis in ApoE-deficient Mice by Inhibiting NADPH Oxidase and Increasing PPAR Expression. Lipids. 2015, 50, 261–273. DOI: 10.1007/s11745-015-3992-1.
  • Rafi, M. M.; Kanakasabai, S.; Gokarn, S. V.; Krueger, E. G.; Bright, J. J. Dietary Lutein Modulates Growth and Survival Genes in Prostate Cancer Cells. J. Med. Food. 2014, 18, 173–181. DOI: 10.1089/jmf.2014.0003.
  • Sun, Y. X.; Liu, T.; Dai, X. L.; Zheng, Q. S.; B. Di, H.; Jiang, Z. F. Treatment with Lutein Provides Neuroprotection in Mice Subjected to Transient Cerebral Ischemia. J. Asian Nat. Prod. Res. 2014, 16, 1084–1093. DOI: 10.1080/10286020.2014.939584.
  • Promphet, P.; Bunarsa, S.; Sutheerawattananonda, M.; Kunthalert, D. Immune Enhancement Activities of Silk Lutein Extract from Bombyx Mori Cocoons. Biol. Res. 2014, 47, 15. DOI: 10.1186/0717-6287-47-15.
  • Sung, J. H.; Jo, Y. S.; Kim, S. J.; Ryu, J. S.; Kim, M. C.; Ko, H. J.; Sim, S. S. Effect of Lutein on L-NAME-induced Hypertensive Rats. Korean J. Physiol. Pharmacol. 2013, 17, 339–345. DOI: 10.4196/kjpp.2013.17.4.339.
  • Wang, M. X.; Jiao, J. H.; Li, Z. Y.; Liu, R. R.; Shi, Q.; Ma, L. Lutein Supplementation Reduces Plasma Lipid Peroxidation and C-reactive Protein in Healthy Nonsmokers. Atherosclerosis. 2013, 227, 380–385. DOI: 10.1016/j.atherosclerosis.2013.01.021.
  • Yao, Y.; Qiu, Q. H.; Wu, X. W.; Cai, Z. Y.; Xu, S.; Liang, X. Qing. Lutein Supplementation Improves Visual Performance in Chinese Drivers: 1-year Randomized, Double-blind, Placebo-controlled Study. Nutrition. 2013, 29, 958–964. DOI: 10.1016/j.nut.2012.10.017.
  • Woo, T. T. Y.; Li, S. Y.; Lai, W. W. K.; Wong, D.; Lo, A. C. Y. Neuroprotective Effects of Lutein in a Rat Model of Retinal Detachment. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 251, 41–51. DOI: 10.1007/s00417-012-2128-z.
  • Sindhu, E. R.; Kuttan, R. Carotenoid Lutein Protects Rats from Gastric Ulcer Induced by Ethanol. J. Basic Clin. Physiol. Pharmacol. 2012, 23, 33–37. DOI: 10.1515/jbcpp-2011-0032.
  • Hammond, B. R.; Wooten, B. R.; Snodderly, D. M. Density of the Human Crystalline Lens Is Related to the Macular Pigment Carotenoids, Lutein and Zeaxanthin. Optom. Vis. Sci. 1997, 74, 499–504. DOI: 10.1097/00006324-199707000-00017.
  • Feart, C.; Letenneur, L.; Helmer, C.; Samieri, C.; Schalch, W.; Etheve, S.; Delcourt, C.; Dartigues, J. F.; Barberger-Gateau, P. Plasma Carotenoids are Inversely Associated with Dementia Risk in an Elderly French Cohort. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 2016, 71, 683–688. DOI: 10.1093/gerona/glv135.
  • Nataraj, J.; Manivasagam, T.; Thenmozhi, A. J.; Essa, M. M. Lutein Protects Dopaminergic Neurons against MPTP-induced Apoptotic Death and Motor Dysfunction by Ameliorating Mitochondrial Disruption and Oxidative Stress. Nutr. Neurosci. 2016, 19, 237–246. DOI: 10.1179/1476830515Y.0000000010.
  • Andersen, C. J. Bioactive Egg Components and Inflammation. Nutrients. 2015, 7, 7889–7913. DOI: 10.3390/nu7095372.
  • Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients. 2014, 6, 466–488. DOI: 10.3390/nu6020466.
  • Okuyama, Y.; Ozasa, K.; Oki, K.; Nishino, H.; Fujimoto, S.; Watanabe, Y. Inverse Associations between Serum Concentrations of Zeaxanthin and Other Carotenoids and Colorectal Neoplasm in Japanese. Int. J. Clin. Oncol. 2014, 19, 87–97. DOI: 10.1007/s10147-013-0520-2.
  • Wang, L.; Li, B.; Pan, M.-X.; Mo, X.-F.; Chen, Y.-M.; Zhang, C.-X. Specific Carotenoid Intake Is Inversely Associated with the Risk of Breast Cancer among Chinese Women. Br. J. Nutr. 2014, 111, 1686–1695. DOI: 10.1017/S000711451300411X.
  • Demmig-Adams, B.; Adams, R. B. Eye Nutrition in Context: Mechanisms, Implementation, and Future Directions. Nutrients. 2013, 5, 2483–2501. DOI: 10.3390/nu5072483.
  • Ma, L.; Dou, H.-L.; Wu, Y.-Q.; Huang, Y.-M.; Huang, Y.-B.; Xu, X.-R.; Zou, Z.-Y.; Lin, X.-M. Lutein and Zeaxanthin Intake and the Risk of Age-related Macular Degeneration: A Systematic Review and Meta-analysis. Br. J. Nutr. 2012, 107, 350–359. DOI: 10.1017/S0007114511004260.
  • Ma, L.; Dou, H. L.; Huang, Y. M.; Lu, X. R.; Xu, X. R.; Qian, F.; Zou, Z. Y.; Pang, H. L.; Dong, P. C.; Xiao, X.; Wang, X.; et al. Improvement of Retinal Function in Early Age-related Macular Degeneration after Lutein and Zeaxanthin Supplementation: A Randomized, Double-masked, Placebo-controlled Trial. Am. J. Ophthalmol. 2012, 154, 625–634.e1. DOI: 10.1016/j.ajo.2012.04.014.
  • Speranza, L.; Pesce, M.; Patruno, A.; Franceschelli, S.; De Lutiis, M. A.; Grilli, A.; Felaco, M. Astaxanthin Treatment Reduced Oxidative Induced Pro-inflammatory Cytokines Secretion in U937: SHP-1 as a Novel Biological Target. Mar. Drugs. 2012, 10, 890–899. DOI: 10.3390/md10040890.
  • Park, J. S.; Chyun, J. H.; Kim, Y. K.; Line, L. L.; Chew, B. P. Astaxanthin Decreased Oxidative Stress and Inflammation and Enhanced Immune Response in Humans. Nutr. Metab. 2010, 7, 18. DOI: 10.1186/1743-7075-7-18.
  • Matsumoto, M.; Hosokawa, M.; Matsukawa, N.; Hagio, M.; Shinoki, A.; Nishimukai, M.; Miyashita, K.; Yajima, T.; Hara, H. Suppressive Effects of the Marine Carotenoids, Fucoxanthin and Fucoxanthinol on Triglyceride Absorption in Lymph Duct-cannulated Rats. Eur. J. Nutr. 2010, 49, 243–249. DOI: 10.1007/s00394-009-0078-y.
  • MacEdo, R. C.; Bolin, A. P.; Marin, D. P.; Otton, R. Astaxanthin Addition Improves Human Neutrophils Function: In Vitro Study. Eur. J. Nutr. 2010, 49, 447–457. DOI: 10.1007/s00394-010-0103-1.
  • Choi, S. K.; Park, Y. S.; Choi, D. K.; Chang, H. I. Effects of Astaxanthin on the Production of NO and the Expression of COX-2 and iNOS in LPS-stimulated BV2 Microglial Cells. J. Microbiol. Biotechnol. 2008, 18, 1990–1996.
  • Zhang, Z.; Zhang, P.; Hamada, M.; Takahashi, S.; Xing, G.; Liu, J.; Sugiura, N. Potential Chemoprevention Effect of Dietary Fucoxanthin on Urinary Bladder Cancer EJ-1 Cell Line. Oncol. Rep. 2008, 20, 1099–1103.
  • Hosokawa, M.; Wanezaki, S.; Miyauchi, K.; Kurihara, H.; Kohno, H.; Kawabata, J.; Odashima, S.; Takahashi, K. Apoptosis-Inducing Effect of Fucoxanthin on Human Leukemia Cell Line HL-60. Food Sci. Technol. Res. 2007, 5, 243–246. DOI: 10.3136/fstr.5.243.
  • Maeda, H.; Hosokawa, M.; Sashima, T.; Funayama, K.; Miyashita, K. Fucoxanthin from Edible Seaweed, Undaria Pinnatifida, Shows Antiobesity Effect through UCP1 Expression in White Adipose Tissues. Biochem. Biophys. Res. Commun. 2005, 332, 392–397. DOI: 10.1016/j.bbrc.2005.05.002.
  • Hosokawa, M.; Kudo, M.; Maeda, H.; Kohno, H.; Tanaka, T.; Miyashita, K. Fucoxanthin Induces Apoptosis and Enhances the Antiproliferative Effect of the PPARγ Ligand, Troglitazone, on Colon Cancer Cells. Biochim. Biophys. Acta - Gen. Subj. 2004, 1675, 113–119. DOI: 10.1016/j.bbagen.2004.08.012.
  • Ohgami, K.; Shiratori, K.; Kotake, S.; Nishida, T.; Mizuki, N.; Yazawa, K.; Ohno, S. Effects of Astaxanthin on Lipopolysaccharide-induced Inflammation in Vitro and in Vivo. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2694–2701. DOI: 10.1167/iovs.02-0822.
  • Lee, S.-J. Astaxanthin Inhibits Nitric Oxide Production and Inflammatory Gene Expression by Suppressing I(kappa)B Kinase-dependent NF-kappaB Activation. Mol. Cells. 2003, 16, 97–105.
  • Kim, J. M.; Araki, S.; Kim, D. J.; Park, C. B.; Takasuka, N.; Baba-Toriyama, H.; Ota, T.; Nir, Z.; Khachik, F.; Shimidzu, N.; Tanaka, Y.; et al. Chemopreventive Effects of Carotenoids and Curcumins on Mouse Colon Carcinogenesis after 1,2-dimethylhydrazine Initiation. Carcinogenesis. 1998, 19, 81–85. DOI: 10.1093/carcin/19.1.81.
  • Nishino, H.; Tsushima, M.; Matsuno, T.; Tanaka, Y.; Okuzumi, J.; Murakoshi, M.; Satomo, Y.; Takayasu, J.; Tokuda, H.; Nishino, A.; Iwashima, A.; et al. Anti-neoplastic Effect of Halocynthiaxanthin, a Metabolite of Fucoxanthin. Anticancer. Drugs. 1992, 3, 493–498. DOI: 10.1097/00001813-199210000-00008.
  • Chang, C. S.; Chang, C. L.; Lai, G. H. Reactive Oxygen Species Scavenging Activities in a Chemiluminescence Model and Neuroprotection in Rat Pheochromocytoma Cells by Astaxanthin, Beta-carotene, and Canthaxanthin. Kaohsiung J. Med. Sci. 2013, 29, 412–421. DOI: 10.1016/j.kjms.2012.12.002.
  • Chan, K. C.; Mong, M. C.; Yin, M. C. Antioxidative and Anti-inflammatory Neuroprotective Effects of Astaxanthin and Canthaxanthin in Nerve Growth Factor Differentiated PC12 Cells. J. Food Sci. 2009, 74, H225–H231. DOI: 10.1111/j.1750-3841.2009.01274.x.
  • Palozza, P.; Barone, E.; Mancuso, C.; Picci, N. The Protective Role of Carotenoids against 7-keto-cholesterol Formation in Solution. Mol. Cell. Biochem. 2008, 309, 61–68. DOI: 10.1007/s11010-007-9643-y.
  • Gradelet, S.; Le Bon, A. M.; Bergès, R.; Suschetet, M.; Astorg, P. Dietary Carotenoids Inhibit Aflatoxin B1-induced Liver Preneoplastic Foci and DNA Damage in the Rat: Role of the Modulation of Aflatoxin B1 Metabolism. Carcinogenesis. 1998, 19, 403–411. DOI: 10.1093/carcin/19.3.403.
  • Palozza, P.; Maggiano, N.; Calviello, G.; Lanza, P.; Piccioni, E.; Ranelletti, F. O.; Bartoli, G. M. Canthaxanthin Induces Apoptosis in Human Cancer Cell Lines. Carcinogenesis. 1998, 19, 373–376. DOI: 10.1093/carcin/19.2.373.
  • Okai, Y.; Higashi-Okai, K. Possible Immonomodulating Activities of Carotenoids in In Vitro Cell Culture Experiments. Int. J. Immunopharmacol. 1996, 18, 753–758. DOI: 10.1016/S0192-0561(97)85558-0.
  • Katsumura, N.; Okuno, M.; Onogi, N.; Moriwaki, H.; Muto, Y.; Kojima, S. Suppression of Mouse Skin Papilloma by Canthaxanthin and β-carotene in Vivo: Possibility of the Regression of Tumorigenesis by Carotenoids without Conversion to Retinoic Acid. Nutr. Cancer. 1996, 26, 203–208. DOI: 10.1080/01635589609514476.
  • Palan, P. R.; Mikhail, M. S.; Goldberg, G. L.; Basu, J.; Runowicz, C. D.; Romney, S. L. Plasma Levels of β-carotene, Lycopene, Canthaxanthin, Retinol, and α- and τ-tocopherol in Cervical Intraepithelial Neoplasia and Cancer. Clin. Cancer Res. 1996, 2, 181–185.
  • Bertram, J. S.; Bortkiewicz, H. Dietary Carotenoids Inhibit Neoplastic Transformation and Modulate Gene Expression in Mouse and Human Cells. Am. J. Clin. Nutr. 1995, 62, 1327S–1336S. DOI: 10.1093/ajcn/62.6.1327S.
  • Hanusch, M.; Stahl, W.; Schulz, W. A.; Sies, H. Induction of Gap Junctional Communication by 4-oxoretinoic Acid Generated from Its Precursor Canthaxanthin. Arch. Biochem. Biophys. 1995. DOI: 10.1006/abbi.1995.1184.
  • Tanaka, T.; Kawamori, T.; Ohnishi, M.; Makita, H.; Mori, H.; Satoh, K.; Hara, A. Suppression of Azoxymethane-induced Rat Colon Carcinogenesis by Dietary Administration of Naturally Occurring Xanthophylls Astaxanthin and Canthaxanthin during the Postinitiation Phase. Carcinogenesis. 1995, 16, 2957–2963.
  • Tanaka, T.; Makita, H.; Ohnishi, M.; Mori, H.; Satoh, K.; Hara, A. Chemoprevention of Rat Oral Carcinogenesis by Naturally Occurring Xanthophylls, Astaxanthin and Canthaxanthin. Cancer Res. 1995, 55, 4059–4064.
  • Tanaka, T.; Morishita, Y.; Suzui, M.; Kojima, T.; Okumura, A.; Mori, H. Chemoprevention of Mouse Urinary Bladder Carcinogenesis by the Naturally Occurring Carotenoid Astaxanthin. Carcinogenesis. 1994, 15, 15–19. DOI: 10.1093/carcin/15.1.15.
  • Huang, D. S.; Odeleye, O. E.; Watson, R. R. Inhibitory Effects of Canthaxanthin on in Vitro Growth of Murine Tumor Cells. Cancer Lett. 1992, 65, 209–213. DOI: 10.1016/0304-3835(92)90233-L.
  • Grubbs, C. J.; Eto, I.; Juliana, M. M.; Whitaker, L. M. Effect of Canthaxanthin on Chemically Induced Mammary Carcinogenesis. Oncol. 1991, 48, 239–245. DOI: 10.1159/000226935.
  • Bendich, A.; Shapiro, S. S. Effect of β-carotene and Canthaxanthin on the Immune Responses of the Rat. J. Nutr. 1986, 116, 2254–2262. DOI: 10.1093/jn/116.11.2254.
  • Chuyen, H.; Van, Eun, J. B. Marine Carotenoids: Bioactivities and Potential Benefits to Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2600–2610. DOI: 10.1080/10408398.2015.1063477.
  • Arunkumar, E.; Bhuvaneswari, S.; Anuradha, C. V. An Intervention Study in Obese Mice with Astaxanthin, a Marine Carotenoid - Effects on Insulin Signaling and Pro-inflammatory Cytokines. Food Funct. 2012, 3, 120–126. DOI: 10.1039/C1FO10161G.
  • Preuss, H. G.; Echard, B.; Yamashita, E.; Perricone, N. V. High Dose Astaxanthin Lowers Blood Pressure and Increases Insulin Sensi-tivity in Rats: Are These Effects Interdependent? Int. J. Med. Sci. 2011, 8, 126–138. DOI: 10.7150/ijms.8.126.
  • Yoshida, H.; Yanai, H.; Ito, K.; Tomono, Y.; Koikeda, T.; Tsukahara, H.; Tada, N. Administration of Natural Astaxanthin Increases Serum HDL-cholesterol and Adiponectin in Subjects with Mild Hyperlipidemia. Atherosclerosis. 2010, 209, 520–523. DOI: 10.1016/j.atherosclerosis.2009.10.012.
  • Miyawaki, H.; Takahashi, J.; Tsukahara, H.; Takehara, I. Effects of Astaxanthin on Human Blood Rheology. J. Clin. Biochem. Nutr. 2008, 43, 69–74. DOI: 10.3164/jcbn.2008048.
  • Hussein, G.; Nakagawa, T.; Goto, H.; Shimada, Y.; Matsumoto, K.; Sankawa, U.; Watanabe, H. Astaxanthin Ameliorates Features of Metabolic Syndrome in SHR/NDmcr-cp. Life Sci. 2007, 80, 522–529. DOI: 10.1016/j.lfs.2006.09.041.
  • Hussein, G.; Nakamura, M.; Zhao, Q.; Iguchi, T.; Goto, H.; Sankawa, U.; Watanabe, H. Antihypertensive and Neuroprotective Effects of Astaxanthin in Experimental Animals. Biol. Pharm. Bull. 2005, 28, 47–52. DOI: 10.1248/bpb.28.47.
  • Kurihara, H.; Koda, H.; Asami, S.; Kiso, Y.; Tanaka, T. Contribution of the Antioxidative Property of Astaxanthin to Its Protective Effect on the Promotion of Cancer Metastasis in Mice Treated with Restraint Stress. Life Sci. 2002, 70, 2509–2520. DOI: 10.1016/S0024-3205(02)01522-9.
  • Jyonouchi, H.; Sun, S.; Iijima, K.; Gross, M. D. Antitumor Activity of Astaxanthin and Its Mode of Action. Nutr. Cancer. 2000, 36, 59–65. DOI: 10.1207/S15327914NC3601_9.
  • Martins, N.; Roriz, C. L.; Morales, P.; Barros, L.; Ferreira, I. C. F. R. Food Colorants: Challenges, Opportunities and Current Desires of Agro-industries to Ensure Consumer Expectations and Regulatory Practices. Trends Food Sci. Technol. 2016, 52, 1–15. DOI: 10.1016/j.tifs.2016.03.009.
  • Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Molecular Structure, Stability and Cytotoxicity of Natural Green Colorants Produced from Centella Asiatica L. Leaves Treated by Steaming and Metal Complexations. Food Chem. 2017, 232, 387–394. DOI: 10.1016/j.foodchem.2017.04.034.
  • Sipahli, S.; Mohanlall, V.; Mellem, J. J. Stability and Degradation Kinetics of Crude Anthocyanin Extracts from H. Sabdariffa. Food Sci. Technol. 2017, 37, 209–215. DOI: 10.1590/1678-457x.14216.
  • Achir, N.; Sinela, A.; Mertz, C.; Fulcrand, H.; Dornier, M. Monitoring Anthocyanin Degradation in Hibiscus Sabdariffa Extracts with Multi-curve Resolution on Spectral Measurement during Storage. Food Chem. 2019, 271, 536–542. DOI: 10.1016/j.foodchem.2018.07.209.
  • Camelo-Méndez, G. A.; Vanegas-Espinoza, P. E.; Escudero-Gilete, M. L.; Heredia, F. J.; Paredes-López, O.; Del Villar-Martínez, A. A. Colorimetric Analysis of Hibiscus Beverages and Their Potential Antioxidant Properties. Plant Foods Hum. Nutr. 2018, 73, 247–252. DOI: 10.1007/s11130-018-0672-3.
  • Nguyen, -T.-T.; Phan-Thi, H.; Pham-Hoang, B.-N.; Ho, P.-T.; Tran, T. T. T.; Waché, Y. Encapsulation of Hibiscus Sabdariffa L. Anthocyanins as Natural Colours in Yeast. Food Res. Int. 2018, 107, 275–280. DOI: 10.1016/j.foodres.2018.02.044.
  • Pinela, J.; Prieto, M. A.; Pereira, E.; Jabeur, I.; Barreiro, M. F.; Barros, L.; Ferreira, I. C. F. R. Optimization of Heat- and Ultrasound-assisted Extraction of Anthocyanins from Hibiscus Sabdariffa Calyces for Natural Food Colorants. Food Chem. 2019, 275, 309–321.
  • Montibeller, M. J.; de Lima Monteiro, P.; Tupuna-Yerovi, D. S.; Rios, A. D. O.; Manfroi, V. Stability Assessment of Anthocyanins Obtained from Skin Grape Applied in Kefir and Carbonated Water as a Natural Colorant. J. Food Process. Preserv. 2018, 42, e13698. DOI: 10.1111/jfpp.13698.
  • Mourtzinos, I.; Prodromidis, P.; Grigorakis, S.; Makris, D. P.; Biliaderis, C. G.; Moschakis, T. Natural Food Colorants Derived from Onion Wastes: Application in a Yoghurt Product. Electrophoresis. 2018, 39, 1975–1983. DOI: 10.1002/elps.201800073.
  • Pires, T. C. S. P.; Dias, M. I.; Barros, L.; Barreira, J. C. M.; Santos-Buelga, C.; Ferreira, I. C. F. R. Incorporation of Natural Colorants Obtained from Edible Flowers in Yogurts. LWT. 2018, 97, 668–675. DOI: 10.1016/j.lwt.2018.08.013.
  • Espinosa-Acosta, G.; Ramos-Jacques, A. L.; Molina, G. A.; Maya-Cornejo, J.; Esparza, R.; Hernandez-Martinez, A. R.; Sánchez-González, I.; Estevez, M. Stability Analysis of Anthocyanins Using Alcoholic Extracts from Black Carrot (Daucus Carota Ssp. Sativus Var. Atrorubens Alef.). Molecules. 2018, 23, 2744. DOI: 10.3390/molecules23112744.
  • Ersus Bilek, S.; Yılmaz, F. M.; Özkan, G. The Effects of Industrial Production on Black Carrot Concentrate Quality and Encapsulation of Anthocyanins in Whey Protein Hydrogels. Food Bioprod. Process. 2017, 102, 72–80. DOI: 10.1016/j.fbp.2016.12.001.
  • Chen, Y.; Wang, Z.; Zhang, H.; Liu, Y.; Zhang, S.; Meng, Q.; Liu, W. Isolation of High Purity Anthocyanin Monomers from Red Cabbage with Recycling Preparative Liquid Chromatography and Their Photostability. Molecules. 2018, 23.
  • Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D. J. Stability Improvement of Natural Food Colors: Impact of Amino Acid and Peptide Addition on Anthocyanin Stability in Model Beverages. Food Chem. 2017, 218, 277–284. DOI: 10.1016/j.foodchem.2016.09.087.
  • Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D. J. Stabilization of Natural Colors and Nutraceuticals: Inhibition of Anthocyanin Degradation in Model Beverages Using Polyphenols. Food Chem. 2016, 212, 596–603. DOI: 10.1016/j.foodchem.2016.06.025.
  • Güneşer, O. Pigment and Color Stability of Beetroot Betalains in Cow Milk during Thermal Treatment. Food Chem. 2016, 196, 220–227. DOI: 10.1016/j.foodchem.2015.09.033.
  • Lao, F.; Giusti, M. M. Extraction of Purple Corn (Zea Mays L.) Cob Pigments and Phenolic Compounds Using Food-friendly Solvents. J. Cereal Sci. 2018, 80, 87–93. DOI: 10.1016/j.jcs.2018.01.001.
  • Luna-Vital, D.; Cortez, R.; Ongkowijoyo, P.; Gonzalez de Mejia, E. Protection of Color and Chemical Degradation of Anthocyanin from Purple Corn (Zea Mays L.) By Zinc Ions and Alginate through Chemical Interaction in a Beverage Model. Food Res. Int. 2018, 105, 169–177. DOI: 10.1016/j.foodres.2017.11.009.
  • Quan, W.; He, W.; Lu, M.; Yuan, B.; Zeng, M.; Gao, D.; Qin, F.; Chen, J.; He, Z. Anthocyanin Composition and Storage Degradation Kinetics of Anthocyanins-based Natural Food Colourant from Purple-fleshed Sweet Potato. Int. J. Food Sci. Technol. 2019, 54, 2529–2539. DOI: 10.1111/ijfs.14163.
  • He, X.-L.; Li, X.-L.; Lv, Y.-P.; He, Q. Composition and Color Stability of Anthocyanin-based Extract from Purple Sweet Potato. Food Sci. Technol. 2015, 35, 468–473. DOI: 10.1590/1678-457X.6687.
  • Gras, C. C.; Nemetz, N.; Carle, R.; Schweiggert, R. M. Anthocyanins from Purple Sweet Potato (Ipomoea Batatas (L.) Lam.) And Their Color Modulation by the Addition of Phenolic Acids and Food-grade Phenolic Plant Extracts. Food Chem. 2017, 235, 265–274. DOI: 10.1016/j.foodchem.2017.04.169.
  • Nemś, A.; Pęksa, A. Polyphenols of Coloured-flesh Potatoes as Native Antioxidants in Stored Fried Snacks. LWT. 2018, 97, 597–602. DOI: 10.1016/j.lwt.2018.07.053.
  • Akhavan Mahdavi, S.; Jafari, S. M.; Assadpoor, E.; Dehnad, D. Microencapsulation Optimization of Natural Anthocyanins with Maltodextrin, Gum Arabic and Gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. DOI: 10.1016/j.ijbiomac.2016.01.011.
  • Klisurova, D.; Petrova, I.; Ognyanov, M.; Georgiev, Y.; Kratchanova, M.; Denev, P. Co-pigmentation of Black Chokeberry (Aronia Melanocarpa) Anthocyanins with Phenolic Co-pigments and Herbal Extracts. Food Chem. 2019, 279, 162–170. DOI: 10.1016/j.foodchem.2018.11.125.
  • Bolling, B. W.; Taheri, R.; Pei, R.; Kranz, S.; Yu, M.; Durocher, S. N.; Brand, M. H. Harvest Date Affects Aronia Juice Polyphenols, Sugars, and Antioxidant Activity, but Not Anthocyanin Stability. Food Chem. 2015, 187, 189–196. DOI: 10.1016/j.foodchem.2015.04.106.
  • Weber, F.; Boch, K.; Schieber, A. Influence of Copigmentation on the Stability of Spray Dried Anthocyanins from Blackberry. LWT - Food Sci. Technol. 2017, 75, 72–77. DOI: 10.1016/j.lwt.2016.08.042.
  • Yamashita, C.; Chung, M. M. S.; Dos Santos, C.; Mayer, C. R. M.; Moraes, I. C. F.; Branco, I. G. Microencapsulation of an Anthocyanin-rich Blackberry (Rubus Spp.) By-product Extract by Freeze-drying. LWT - Food Sci. Technol. 2017, 84, 256–262. DOI: 10.1016/j.lwt.2017.05.063.
  • Patras, A. Stability and Colour Evaluation of Red Cabbage Waste Hydroethanolic Extract in Presence of Different Food Additives or Ingredients. Food Chem. 2019, 275, 539–548. DOI: 10.1016/j.foodchem.2018.09.100.
  • Mojica, L.; Berhow, M.; Gonzalez de Mejia, E. Black Bean Anthocyanin-rich Extracts as Food Colorants: Physicochemical Stability and Antidiabetes Potential. Food Chem. 2017, 229, 628–639. DOI: 10.1016/j.foodchem.2017.02.124.
  • Aguilera, Y.; Mojica, L.; Rebollo-Hernanz, M.; Berhow, M.; De Mejía, E. G.; Martín-Cabrejas, M. A. Black Bean Coats: New Source of Anthocyanins Stabilized by β-cyclodextrin Copigmentation in a Sport Beverage. Food Chem. 2016, 212, 561–570. DOI: 10.1016/j.foodchem.2016.06.022.
  • Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH Degradation Kinetics of Anthocyanins in Natural Food Colorant Prepared from Black Rice Bran. J. Food Sci. Technol. 2016, 53, 461–470.
  • Loypimai, P.; Moongngarm, A.; Chottanom, P. Phytochemicals and Antioxidant Capacity of Natural Food Colorant Prepared from Black Waxy Rice Bran. Food Biosci. 2016, 15, 34–41. DOI: 10.1016/j.fbio.2016.04.003.
  • Pedro, A. C.; Granato, D.; Rosso, N. D. Extraction of Anthocyanins and Polyphenols from Black Rice (Oryza Sativa L.) By Modeling and Assessing Their Reversibility and Stability. Food Chem. 2016, 191, 12–20. DOI: 10.1016/j.foodchem.2015.02.045.
  • Mahmad, N.; Taha, R. M. Effects of pH, UV-B Radiation and NaCl on Anthocyanin Stability from Vivid Blue Petals of Clitoria Ternatea L., A Potential Natural Colourant from Legume Crop. Pigment Resin Technol. 2018, 47, 507–510. DOI: 10.1108/PRT-11-2016-0106.
  • Tang, P.; Giusti, M. M. Black Goji as a Potential Source of Natural Color in a Wide pH Range. Food Chem. 2018, 269, 419–426. DOI: 10.1016/j.foodchem.2018.07.034.
  • Amjadi, S.; Ghorbani, M.; Hamishehkar, H.; Roufegarinejad, L. Improvement in the Stability of Betanin by Liposomal Nanocarriers: Its Application in Gummy Candy as a Food Model. Food Chem. 2018, 256, 156–162. DOI: 10.1016/j.foodchem.2018.02.114.
  • Fernández-López, J. A.; Roca, M. J.; Angosto, J. M.; Obón, J. M. Betaxanthin-Rich Extract from Cactus Pear Fruits as Yellow Water-Soluble Colorant with Potential Application in Foods. Plant Foods Hum. Nutr. 2018, 73, 146–153.
  • Gengatharan, A.; Dykes, G. A.; Choo, W.-S. The Effect of pH Treatment and Refrigerated Storage on Natural Colourant Preparations (Betacyanins) from Red Pitahaya and Their Potential Application in Yoghurt. LWT - Food Sci. Technol. 2017, 80, 437–445. DOI: 10.1016/j.lwt.2017.03.014.
  • Vargas-Campos, L.; Valle-Guadarrama, S.; Martínez-Bustos, F.; Salinas-Moreno, Y.; Lobato-Calleros, C.; Calvo-López, A. D. Encapsulation and Pigmenting Potential of Betalains of Pitaya (Stenocereus Pruinosus) Fruit. J. Food Sci. Technol. 2018, 55, 2436–2445. DOI: 10.1007/s13197-018-3161-7.
  • Rodríguez-Sánchez, J. A.; Cruz Y Victoria, M. T.; Barragán-Huerta, B. E. Betaxanthins and Antioxidant Capacity in Stenocereus Pruinosus: Stability and Use in Food. Food Res. Int. 2017, 91, 63–71. DOI: 10.1016/j.foodres.2016.11.023.
  • Roriz, C. L.; Barreira, J. C. M.; Morales, P.; Barros, L.; Ferreira, I. C. F. R. Gomphrena Globosa L. As a Novel Source of Food-grade Betacyanins: Incorporation in Ice-cream and Comparison with Beet-root Extracts and Commercial Betalains. LWT. 2018, 92, 101–107. DOI: 10.1016/j.lwt.2018.02.009.
  • Caldas-Cueva, J. P.; Morales, P.; Ludeña, F.; Betalleluz-Pallardel, I.; Chirinos, R.; Noratto, G.; Campos, D. Stability of Betacyanin Pigments and Antioxidants in Ayrampo (Opuntia Soehrensii Britton and Rose) Seed Extracts and as a Yogurt Natural Colorant. J. Food Process. Preserv. 2016, 40, 541–549. DOI: 10.1111/jfpp.12633.
  • Huang, F.-L.; Chiou, R.-Y.-Y.; Chen, W.-C.; Ko, H.-J.; Lai, L.-J.; Lin, S.-M. Dehydrated Basella Alba Fruit Juice as a Novel Natural Colorant: Pigment Stability, in Vivo Food Safety Evaluation and Anti-Inflammatory Mechanism Characterization. Plant Foods Hum. Nutr. 2016, 71, 322–329. DOI: 10.1007/s11130-016-0563-4.
  • Kumar, S. S.; Giridhar, P. Stabilization of Bioactive Betalain Pigment from Fruits of Basella Rubra L. Through Maltodextrin Encapsulation. Madridge J. Food Technol. 2017, 2, 73–77.
  • Deladino, L.; Alvarez, I.; De Ancos, B.; Sánchez-Moreno, C.; Molina-García, A. D.; Schneider Teixeira, A. Betalains and Phenolic Compounds of Leaves and Stems of Alternanthera Brasiliana and Alternanthera Tenella. Food Res. Int. 2017, 97, 240–249. DOI: 10.1016/j.foodres.2017.04.017.
  • Arimboor, R.; Natarajan, R. B.; Menon, K. R.; Chandrasekhar, L. P.; Moorkoth, V. Red Pepper (Capsicum Annuum) Carotenoids as a Source of Natural Food Colors: Analysis and Stability—a Review. J. Food Sci. Technol. 2015, 52, 1258–1271. DOI: 10.1007/s13197-014-1260-7.
  • Mehanna, N. S.; Hassan, F. A. M.; El-Messery, T. M.; Mohamed, A. G. Production of Functional Processed Cheese by Using Tomato Juice. Int. J. Dairy Sci. 2017, 12, 155–160.
  • Grčević, M.; Kralik, Z.; Kralik, G.; Galović, O. Effects of Dietary Marigold Extract on Lutein Content, Yolk Color and Fatty Acid Profile of Omega-3 Eggs. J. Sci. Food Agric. 2019, 99, 2292–2299. DOI: 10.1002/jsfa.9425.
  • Steiner, B. M.; McClements, D. J.; Davidov-Pardo, G. Encapsulation Systems for Lutein: A Review. Trends Food Sci. Technol. 2018, 82, 71–81. DOI: 10.1016/j.tifs.2018.10.003.
  • Yan, Y.; Simon, S. Isolation of β-Carotenoids for Yellow Pigment as Food Colorant with Antioxidant Compound from Cucurbita Moschata Flower. Res. Rev. J. Food Dairy Technol. 2017, 5, 38–42.
  • Chaari, M.; Theochari, I.; Papadimitriou, V.; Xenakis, A.; Ammar, E. Encapsulation of Carotenoids Extracted from Halophilic Archaea in Oil-in-water (O/W) Micro- and Nano-emulsions. Colloids Surf. B Biointerfaces. 2018, 161, 219–227. DOI: 10.1016/j.colsurfb.2017.10.042.
  • Carocho, M.; Morales, P.; Ferreira, I. C. F. R. Natural Food Additives: Quo Vadis? Trends Food Sci. Technol. 2015, 45, 284–295. DOI: 10.1016/j.tifs.2015.06.007.
  • Zhu, Z.; Wu, N.; Kuang, M.; Lamikanra, O.; Liu, G.; Li, S.; He, J. Preparation and Toxicological Evaluation of Methyl Pyranoanthocyanin. Food Chem. Toxicol. 2015, 83, 125–132. DOI: 10.1016/j.fct.2015.05.004.
  • Rostamabadi, H.; Falsafi, S. R.; Jafari, S. M. Nanoencapsulation of Carotenoids within Lipid-based Nanocarriers. J. Control. Release. 2019, 298, 38–67. DOI: 10.1016/j.jconrel.2019.02.005.
  • González-Manzano, S.; Santos-Buelga, C.; Dueñas, M.; Rivas-Gonzalo, J. C.; Escribano-Bailón, T. Colour Implications of Self-association Processes of Wine Anthocyanins. Eur. Food Res. Technol. 2008, 226, 483–490. DOI: 10.1007/s00217-007-0560-9.
  • Cruz, L.; Petrov, V.; Teixeira, N.; Mateus, N.; Pina, F.; Freitas, V. D. Establishment of the Chemical Equilibria of Different Types of Pyranoanthocyanins in Aqueous Solutions: Evidence for the Formation of Aggregation in Pyranomalvidin-3- O -coumaroylglucoside-(+)-catechin. J. Phys. Chem. B. 2010, 114, 13232–13240. DOI: 10.1021/jp1045673.
  • Oliveira, J.; Mateus, N.; De Freitas, V. Previous and Recent Advances in Pyranoanthocyanins Equilibria in Aqueous Solution. Dye. Pigm. 2014, 100, 190–200. DOI: 10.1016/j.dyepig.2013.09.009.
  • Yoshida, K.; Mori, M.; Kondo, T. Blue Flower Color Development by Anthocyanins: From Chemical Structure to Cell Physiology. Nat. Prod. Rep. 2009, 26, 884–915.
  • Grajeda-Iglesias, C.; Salas, E.; Barouh, N.; Baréa, B.; Figueroa-Espinoza, M. C. Lipophilization and MS Characterization of the Main Anthocyanins Purified from Hibiscus Flowers. Food Chem. 2017, 230, 189–194. DOI: 10.1016/j.foodchem.2017.02.140.
  • Fathi, M.; Vinceković, M.; Jurić, S.; Viskić, M.; Režek Jambrak, A.; Donsì, F. Food-Grade Colloidal Systems for the Delivery of Essential Oils. Food Rev. Int. 2019, 1–45. DOI: 10.1080/87559129.2019.1687514.
  • Jurić, S.; Jurić, M.; Siddique, M. A. B.; Fathi, M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. Food Rev. Int. 2020, 1–38. DOI: 10.1080/87559129.2020.1717524.
  • Choi, K. O.; Kim, D.; Lim, J. D.; Ko, S.; Hong, G. P.; Lee, S. Functional Enhancement of Ultrafine Angelica Gigas Powder by Spray-drying Microencapsulation. LWT. 2019, 101, 161–166. DOI: 10.1016/j.lwt.2018.10.097.
  • Sun, X.; Cameron, R. G.; Bai, J. Microencapsulation and Antimicrobial Activity of Carvacrol in a Pectin-alginate Matrix. Food Hydrocoll. 2019, 92, 69–73. DOI: 10.1016/j.foodhyd.2019.01.006.
  • Donsì, F.; Sessa, M.; Ferrari, G. Encapsulation of Bioactive Compounds. In Handbook of Encapsulation and Controlled Release; Mishra, M., Ed.; CRC Press Book, 2015; pp 765–799.
  • Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. DOI: 10.1016/j.foodchem.2018.07.205.
  • Donsì, F.; Voudouris, P.; Veen, S. J.; Velikov, K. P. Zein-based Colloidal Particles for Encapsulation and Delivery of Epigallocatechin Gallate. Food Hydrocoll. 2017, 63, 508–517. DOI: 10.1016/j.foodhyd.2016.09.039.
  • Martins, J. T.; Ramos, Ó. L.; Pinheiro, A. C.; Bourbon, A. I.; Silva, H. D.; Rivera, M. C.; Cerqueira, M. A.; Pastrana, L.; Malcata, F. X.; González-Fernández, Á.; et al. Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Eng. Rev. 2015, 7, 491–513. DOI: 10.1007/s12393-015-9116-0.
  • US FDA. FDA’s Approach to Regulation of Nanotechnology Products. Nanotechnology Guidance Documents; https://www.fda.gov/science-research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products#_ftn1 2018.
  • Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D. J. Enhanced Stability of Anthocyanin-based Color in Model Beverage Systems through Whey Protein Isolate Complexation. Food Res. Int. 2015, 76, 761–768. DOI: 10.1016/j.foodres.2015.07.003.
  • He, Z.; Zhu, H.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Complexation of Bovine β-lactoglobulin with malvidin-3-O-glucoside and Its Effect on the Stability of Grape Skin Anthocyanin Extracts. Food Chem. 2016, 209, 234–240. DOI: 10.1016/j.foodchem.2016.04.048.
  • He, Z.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Interactions of Milk α- and β-casein with malvidin-3-O-glucoside and Their Effects on the Stability of Grape Skin Anthocyanin Extracts. Food Chem. 2016, 199, 314–322. DOI: 10.1016/j.foodchem.2015.12.035.
  • Lin, Z.; Fischer, J.; Wicker, L. Intermolecular Binding of Blueberry Pectin-rich Fractions and Anthocyanin. Food Chem. 2016, 194, 986–993. DOI: 10.1016/j.foodchem.2015.08.113.
  • Arroyo-Maya, I. J.; Campos-Terán, J.; Hernández-Arana, A.; McClements, D. J. Characterization of Flavonoid-protein Interactions Using Fluorescence Spectroscopy: Binding of Pelargonidin to Dairy Proteins. Food Chem. 2016, 213, 431–439. DOI: 10.1016/j.foodchem.2016.06.105.
  • Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D. J. Enhancement of Colour Stability of Anthocyanins in Model Beverages by Gum Arabic Addition. Food Chem. 2016, 201, 14–22. DOI: 10.1016/j.foodchem.2016.01.051.
  • Guan, Y.; Zhong, Q. The Improved Thermal Stability of Anthocyanins at pH 5.0 By Gum Arabic. LWT - Food Sci. Technol. 2015, 64, 706–712. DOI: 10.1016/j.lwt.2015.06.018.
  • Howard, L. R.; Brownmiller, C.; Prior, R. L.; Mauromoustakos, A. Improved Stability of Chokeberry Juice Anthocyanins by β-cyclodextrin Addition and Refrigeration. J. Agric. Food Chem. 2013, 61, 693–699. DOI: 10.1021/jf3038314.
  • Fernandes, A.; Sousa, A.; Azevedo, J.; Mateus, N.; De Freitas, V. Effect of Cyclodextrins on the Thermodynamic and Kinetic Properties of cyanidin-3-O-glucoside. Food Res. Int. 2013, 51, 748–755.
  • Tachibana, N.; Kimura, Y.; Ohno, T. Examination of Molecular Mechanism for the Enhanced Thermal Stability of Anthocyanins by Metal Cations and Polysaccharides. Food Chem. 2014, 143, 452–458. DOI: 10.1016/j.foodchem.2013.08.017.
  • Cruz, L.; Fernandes, V. C.; Araújo, P.; Mateus, N.; De Freitas, V. Synthesis, Characterisation and Antioxidant Features of Procyanidin B4 and Malvidin-3-glucoside Stearic Acid Derivatives. Food Chem. 2015, 174, 480–486. DOI: 10.1016/j.foodchem.2014.11.062.
  • Cruz, L.; Fernandes, I.; Guimarães, M.; De Freitas, V.; Mateus, N. Enzymatic Synthesis, Structural Characterization and Antioxidant Capacity Assessment of a New Lipophilic Malvidin-3-glucoside-oleic Acid Conjugate. Food Funct. 2016, 7, 2754–2762. DOI: 10.1039/C6FO00466K.
  • Cruz, L.; Guimarães, M.; Araújo, P.; Évora, A.; De Freitas, V.; Mateus, N. Malvidin 3-Glucoside-Fatty Acid Conjugates: From Hydrophilic toward Novel Lipophilic Derivatives. J. Agric. Food Chem. 2017, 65, 6513–6518. DOI: 10.1021/acs.jafc.6b05461.
  • Luo, S.-Z.; Chen, -S.-S.; Pan, L.-H.; Qin, X.-S.; Zheng, Z.; Zhao, -Y.-Y.; Pang, M.; Jiang, S.-T. Antioxidative Capacity of Crude Camellia Seed Oil: Impact of Lipophilization Products of Blueberry Anthocyanin. Int. J. Food Prop. 2017, 20, 1627–1636.
  • Cruz, L.; Benohoud, M.; Rayner, C. M.; Mateus, N.; de Freitas, V.; Blackburn, R. S. Selective Enzymatic Lipophilization of Anthocyanin Glucosides from Blackcurrant (Ribes Nigrum L.) Skin Extract and Characterization of Esterified Anthocyanins. Food Chem. 2018, 266, 415–419. DOI: 10.1016/j.foodchem.2018.06.024.
  • Yang, W.; Kortesniemi, M.; Ma, X.; Zheng, J.; Yang, B. Enzymatic Acylation of Blackcurrant (Ribes Nigrum) Anthocyanins and Evaluation of Lipophilic Properties and Antioxidant Capacity of Derivatives. Food Chem. 2019, 281, 189–196. DOI: 10.1016/j.foodchem.2018.12.111.
  • Kohno, Y.; Kinoshita, R.; Ikoma, S.; Yoda, K.; Shibata, M.; Matsushima, R.; Tomita, Y.; Maeda, Y.; Kobayashi, K. Stabilization of Natural Anthocyanin by Intercalation into Montmorillonite. Appl. Clay Sci. 2009, 42, 519–523. DOI: 10.1016/j.clay.2008.06.012.
  • de Moura, S. C. S. R.; Berling, C. L.; Germer, S. P. M.; Alvim, I. D.; Hubinger, M. D. Encapsulating Anthocyanins from Hibiscus Sabdariffa L. Calyces by Ionic Gelation: Pigment Stability during Storage of Microparticles. Food Chem. 2018, 241, 317–327. DOI: 10.1016/j.foodchem.2017.08.095.
  • da Silva Carvalho, A. G.; da Costa Machado, M. T.; de Freitas Queiroz Barros, H. D.; Cazarin, C. B. B.; Maróstica Junior, M. R.; Hubinger, M. D. Anthocyanins from Jussara (Euterpe Edulis Martius) Extract Carried by Calcium Alginate Beads Pre-prepared Using Ionic Gelation. Powder Technol. 2019, 345, 283–291. DOI: 10.1016/j.powtec.2019.01.016.
  • Santos, D. T.; Albarelli, J. Q.; Beppu, M. M.; Meireles, M. A. A. Stabilization of Anthocyanin Extract from Jabuticaba Skins by Encapsulation Using Supercritical CO2 as Solvent. Food Res. Int. 2013, 50, 617–624. DOI: 10.1016/j.foodres.2011.04.019.
  • Belščak-Cvitanovic, A.; Bušić, A.; Barišić, L.; Vrsaljko, D.; Karlović, S.; Špoljarić, I.; Vojvodić, A.; Mršić, G.; Komes, D. Emulsion Templated Microencapsulation of Dandelion (Taraxacum Officinale L.) Polyphenols and β-carotene by Ionotropic Gelation of Alginate and Pectin. Food Hydrocoll. 2016, 57, 139–152. DOI: 10.1016/j.foodhyd.2016.01.020.
  • Ravanfar, R.; Comunian, T. A.; Abbaspourrad, A. Thermoresponsive, Water-dispersible Microcapsules with a Lipid-polysaccharide Shell to Protect Heat-sensitive Colorants. Food Hydrocoll. 2018, 81, 419–428. DOI: 10.1016/j.foodhyd.2018.03.030.
  • Zhao, L.; Temelli, F.; Chen, L. Encapsulation of Anthocyanin in Liposomes Using Supercritical Carbon Dioxide: Effects of Anthocyanin and Sterol Concentrations. J. Funct. Foods. 2017, 34, 159–167. DOI: 10.1016/j.jff.2017.04.021.
  • Karangutkar, A. V.; Ananthanarayan, L. Co-crystallization of Basella Rubra Extract with Sucrose: Characterization of Co-crystals and Evaluating the Storage Stability of Betacyanin Pigments. J. Food Eng. 2020, 271, 109776. DOI: 10.1016/j.jfoodeng.2019.109776.
  • Kaimainen, M.; Marze, S.; Järvenpää, E.; Anton, M.; Huopalahti, R. Encapsulation of Betalain into W/o/w Double Emulsion and Release during Invitro Intestinal Lipid Digestion. LWT - Food Sci. Technol. 2015, 60, 899–904. DOI: 10.1016/j.lwt.2014.10.016.
  • Chuyen, H. V.; Roach, P. D.; Golding, J. B.; Parks, S. E.; Nguyen, M. H. Encapsulation of Carotenoid-rich Oil from Gac Peel: Optimisation of the Encapsulating Process Using a Spray Drier and the Storage Stability of Encapsulated Powder. Powder Technol. 2019, 344, 373–379. DOI: 10.1016/j.powtec.2018.12.012.
  • Fu, D.; Deng, S.; McClements, D. J.; Zhou, L.; Zou, L.; Yi, J.; Liu, C.; Liu, W. Encapsulation of β-carotene in Wheat Gluten Nanoparticle-xanthan Gum-stabilized Pickering Emulsions: Enhancement of Carotenoid Stability and Bioaccessibility. Food Hydrocoll. 2019, 89, 80–89. DOI: 10.1016/j.foodhyd.2018.10.032.
  • Bonilla-Ahumada, F. D. J.; Khandual, S.; Lugo-Cervantes, E. D. C. Microencapsulation of Algal Biomass (Tetraselmis Chuii) by Spray-drying Using Different Encapsulation Materials for Better Preservation of Beta-carotene and Antioxidant Compounds. Algal Res. 2018, 36, 229–238. DOI: 10.1016/j.algal.2018.10.006.
  • Spada, J. C.; Noreña, C. P. Z.; Marczak, L. D. F.; Tessaro, I. C. Study on the Stability of β-carotene Microencapsulated with Pinhão (Araucaria Angustifolia Seeds) Starch. Carbohydr. Polym. 2012, 89, 1166–1173. DOI: 10.1016/j.carbpol.2012.03.090.
  • Shu, B.; Yu, W.; Zhao, Y.; Liu, X. Study on Microencapsulation of Lycopene by Spray-drying. J. Food Eng. 2006, 76, 664–669.
  • Cheng, Y. S.; Lu, P. M.; Huang, C. Y.; Wu, J. J. Encapsulation of Lycopene with Lecithin and α-tocopherol by Supercritical Antisolvent Process for Stability Enhancement. J. Supercrit. Fluids. 2017, 130, 246–252. DOI: 10.1016/j.supflu.2016.12.021.
  • Qv, X.-Y.; Zeng, Z.-P.; Jiang, J.-G. Preparation of Lutein Microencapsulation by Complex Coacervation Method and Its Physicochemical Properties and Stability. Food Hydrocoll. 2011, 25, 1596–1603. DOI: 10.1016/j.foodhyd.2011.01.006.
  • Hsiao, C.-J.; Lin, J.-F.; Wen, H.-Y.; Lin, Y.-M.; Yang, C.-H.; Huang, K.-S.; Shaw, J.-F. Enhancement of the Stability of Chlorophyll Using Chlorophyll-encapsulated Polycaprolactone Microparticles Based on Droplet Microfluidics. Food Chem. 2020, 306, 125300. DOI: 10.1016/j.foodchem.2019.125300.
  • Kang, Y. R.; Lee, Y. K.; Kim, Y. J.; Chang, Y. H. Characterization and Storage Stability of Chlorophylls Microencapsulated in Different Combination of Gum Arabic and Maltodextrin. Food Chem. 2019, 272, 337–346. DOI: 10.1016/j.foodchem.2018.08.063.
  • Zhang, Z.-H.; Peng, H.; Woo, M. W.; Zeng, X.-A.; Brennan, M.; Brennan, C. S. Preparation and Characterization of Whey Protein Isolate-chlorophyll Microcapsules by Spray Drying: Effect of WPI Ratios on the Physicochemical and Antioxidant Properties. J. Food Eng. 2020, 267, 109729. DOI: 10.1016/j.jfoodeng.2019.109729.
  • Reynertson, K. A.; Wallace, A. M.; Adachi, S.; Gil, R. R.; Yang, H.; Basile, M. J.; D’Armiento, J.; Weinstein, I. B.; Kennelly, E. J. Bioactive Depsides and Anthocyanins from Jaboticaba (Myrciaria Cauliflora). J. Nat. Prod. 2006, 69, 1228–1230. DOI: 10.1021/np0600999.
  • Wesche-Ebeling, P.; Argaiz-Jamet, A. Stabilization Mechanisms for Anthocyanin: The Case for Copolymerization Reactions. Engineering and Food for the 21st Century; 2002.
  • Cortez, R.; Luna-Vital, D. A.; Margulis, D.; Gonzalez de Mejia, E. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 180–198. DOI: 10.1111/1541-4337.12244.
  • Pan, Y.-Z.; Guan, Y.; Wei, Z.-F.; Peng, X.; Li, -T.-T.; Qi, X.-L.; Zu, Y.-G.; Fu, Y.-J. Flavonoid C-glycosides from Pigeon Pea Leaves as Color and Anthocyanin Stabilizing Agent in Blueberry Juice. Ind. Crop Prod. 2014, 58, 142–147.
  • Hernández-Herrero, J. A.; Frutos, M. J. Influence of Rutin and Ascorbic Acid in Colour, Plum Anthocyanins and Antioxidant Capacity Stability in Model Juices. Food Chem. 2015, 173, 495–500. DOI: 10.1016/j.foodchem.2014.10.059.
  • Jensen, M. B.; López-de-dicastillo Bergamo, C. A.; Payet, R. M.; Liu, X.; Konczak, I. Influence of Copigment Derived from Tasmannia Pepper Leaf on Davidson’s Plum Anthocyanins. J. Food Sci. 2011, 76, C447–C453. DOI: 10.1111/j.1750-3841.2011.02077.x.
  • Liu, Y.; Zhang, B.; He, F.; Duan, C.-Q.; Shi, Y. The Influence of Prefermentative Addition of Gallic Acid on the Phenolic Composition and Chromatic Characteristics of Cabernet Sauvignon Wines. J. Food Sci. 2016, 81, C1669–C1678. DOI: 10.1111/1750-3841.13340.
  • Xu, H.; Liu, X.; Yan, Q.; Yuan, F.; Gao, Y. A Novel Copigment of Quercetagetin for Stabilization of Grape Skin Anthocyanins. Food Chem. 2015, 166, 50–55. DOI: 10.1016/j.foodchem.2014.05.125.
  • Gras, C. C.; Bogner, H.; Carle, R.; Schweiggert, R. M. Effect of Genuine Non-anthocyanin Phenolics and Chlorogenic Acid on Color and Stability of Black Carrot (Daucus Carota Ssp. Sativus Var. Atrorubens Alef.) Anthocyanins. Food Res. Int. 2016, 85, 291–300. DOI: 10.1016/j.foodres.2016.05.006.
  • Cavalcanti, R. N.; Santos, D. T.; Meireles, M. A. A. Non-thermal Stabilization Mechanisms of Anthocyanins in Model and Food systems-An Overview. Food Res. Int. 2011, 44, 499–509. DOI: 10.1016/j.foodres.2010.12.007.
  • Villeneuve, P. Lipases in Lipophilization Reactions. Biotechnol. Adv. 2007, 25, 515–536.
  • Stevenson, D. E.; Wibisono, R.; Jensen, D. J.; Stanley, R. A.; Cooney, J. M. Direct Acylation of Flavonoid Glycosides with Phenolic Acids Catalysed by Candida Antarctica Lipase B (Novozym 435®). Enzyme Microb. Technol. 2006, 39, 1236–1241. DOI: 10.1016/j.enzmictec.2006.03.006.
  • Figueroa-Espinoza, M.-C.; Villeneuve, P. Phenolic Enzymatic Lipophilization. J. Agric. Food Chem. 2005, 53, 2779–2787. DOI: 10.1021/jf0484273.
  • Guimarães, M.; Mateus, N.; De Freitas, V.; Cruz, L. Improvement of the Color Stability of Cyanidin-3-glucoside by Fatty Acid Enzymatic Acylation. J. Agric. Food Chem. 2018, 66, 10003–10010. DOI: 10.1021/acs.jafc.8b03536.
  • Teepakakorn, A. P.; Bureekaew, S.; Ogawa, M. Adsorption-Induced Dye Stability of Cationic Dyes on Clay Nanosheets. Langmuir. 2018, 34, 14069–14075. DOI: 10.1021/acs.langmuir.8b02978.
  • Dejoie, C.; Martinetto, P.; Dooryhée, E.; Van Elslande, E.; Blanc, S.; Bordat, P.; Brown, R.; Porcher, F.; Anne, M. Association of Indigo with Zeolites for Improved Color Stabilization. Appl. Spectrosc. 2010, 64, 1131–1138. DOI: 10.1366/000370210792973622.
  • Arriola, N. D. A.; Chater, P. I.; Wilcox, M.; Lucini, L.; Rocchetti, G.; Dalmina, M.; Pearson, J. P.; de Mello Castanho Amboni, R. D. Encapsulation of Stevia Rebaudiana Bertoni Aqueous Crude Extracts by Ionic Gelation – Effects of Alginate Blends and Gelling Solutions on the Polyphenolic Profile. Food Chem. 2019, 275, 123–134. DOI: 10.1016/j.foodchem.2018.09.086.
  • Özkan, G.; Ersus Bilek, S.; Özkan, G.; Bilek, S. E. Microencapsulation of Natural Food Colourants. Int. J. Nutr. Food Sci. 2014, 3, 145–156. DOI: 10.11648/j.ijnfs.20140303.13.
  • Nejatian, M.; Saberian, H.; Jafari, S. M. Encapsulation of Food Ingredients by Double Nanoemulsions. In Lipid-Based Nanostructures for Food Encapsulation Purposes; Elsevier: 2019; pp 89–128. doi:10.1016/b978-0-12-815673-5.00003-9
  • Čakarević, J.; Šeregelj, V.; Tumbas Šaponjac, V.; Ćetković, G.; Čanadanović Brunet, J.; Popović, S.; Kostić, M. H.; Popović, L. Encapsulation of Beetroot Juice: A Study on the Application of Pumpkin Oil Cake Protein as New Carrier Agent. J. Microencapsul. 2020, 37, 121–133. DOI: 10.1080/02652048.2019.1705408.
  • LaBorde, L. F.; von Elbe, J. H. Chlorophyll Degradation and Zinc Complex Formation with Chlorophyll Derivatives in Heated Green Vegetables. J. Agric. Food Chem. 1994, 42, 1100–1103. DOI: 10.1021/jf00041a010.
  • Jones, I. D.; White, R. C.; Gibbs, E.; Butler, L. S.; Nelson, L. A. Experimental Formation of Zinc and Copper Complexes of Chlorophyll Derivatives in Vegetable Tissue by Thermal Processing. J. Agric. Food Chem. 1977, 25, 149–153. DOI: 10.1021/jf60209a030.
  • Fan, L.; Wu, Q.; Chu, M. Near Infrared Fluorescent Chlorophyll Nanoscale Liposomes for Sentinel Lymph Node Mapping. Int. J. Nanomed. 2012, 7, 3071–3080.
  • Rascón, M. P.; Beristain, C. I.; García, H. S.; Salgado, M. A. Carotenoid Retention and Storage Stability of Spray-dried Encapsulated Paprika Oleoresin Using Gum Arabic and Soy Protein Isolate as Wall Materials. LWT - Food Sci. Technol. 2011, 44, 549–557. DOI: 10.1016/j.lwt.2010.08.021.
  • Wang, Y.; Ye, H.; Zhou, C.; Lv, F.; Bie, X.; Lu, Z. Study on the Spray-drying Encapsulation of Lutein in the Porous Starch and Gelatin Mixture. Eur. Food Res. Technol. 2012, 234, 157–163. DOI: 10.1007/s00217-011-1630-6.
  • Souza, A. L. R.; Hidalgo-Chávez, D. W.; Pontes, S. M.; Gomes, F. S.; Cabral, L. M. C.; Tonon, R. V. Microencapsulation by Spray Drying of a Lycopene-rich Tomato Concentrate: Characterization and Stability. LWT - Food Sci. Technol. 2018, 91, 286–292. DOI: 10.1016/j.lwt.2018.01.053.
  • Álvarez-Henao, M. V.; Saavedra, N.; Medina, S.; Jiménez Cartagena, C.; Alzate, L. M.; Londoño-Londoño, J. Microencapsulation of Lutein by Spray-drying: Characterization and Stability Analyses to Promote Its Use as a Functional Ingredient. Food Chem. 2018, 256, 181–187. DOI: 10.1016/j.foodchem.2018.02.059.
  • Timilsena, Y. P.; Akanbi, T. O.; Khalid, N.; Adhikari, B.; Barrow, C. J. Complex Coacervation: Principles, Mechanisms and Applications in Microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. DOI: 10.1016/j.ijbiomac.2018.10.144.
  • Lavelli, V.; Sri Harsha, P. S. C.; Spigno, G. Modelling the Stability of Maltodextrin-encapsulated Grape Skin Phenolics Used as a New Ingredient in Apple Puree. Food Chem. 2016, 209, 323–331. DOI: 10.1016/j.foodchem.2016.04.055.
  • Tumbas Šaponjac, V.; Ćetković, G.; Čanadanović-Brunet, J.; Pajin, B.; Djilas, S.; Petrović, J.; Lončarević, I.; Stajčić, S.; Vulić, J. Sour Cherry Pomace Extract Encapsulated in Whey and Soy Proteins: Incorporation in Cookies. Food Chem. 2016, 207, 27–33. DOI: 10.1016/j.foodchem.2016.03.082.
  • Otálora, M. C.; de Jesús Barbosa, H.; Perilla, J. E.; Osorio, C.; Nazareno, M. A. Encapsulated Betalains (Opuntia Ficus-indica) as Natural Colorants. Case Study: Gummy Candies. LWT. 2019, 103, 222–227. DOI: 10.1016/j.lwt.2018.12.074.
  • Ruiz-Gutiérrez, M. G.; Amaya-Guerra, C. A.; Quintero-Ramos, A.; Pérez-Carrillo, E.; Meléndez-Pizarro, C. O. Use of Red Cactus Pear (Opuntia Ficus-indica) Encapsulated Powder to Pigment Extruded Cereal. J. Food Qual. 2017, 2017, 1–12. DOI: 10.1155/2017/7262464.
  • Chranioti, C.; Nikoloudaki, A.; Tzia, C. Saffron and Beetroot Extracts Encapsulated in Maltodextrin, Gum Arabic, Modified Starch and Chitosan: Incorporation in a Chewing Gum System. Carbohydr. Polym. 2015, 127, 252–263. DOI: 10.1016/j.carbpol.2015.03.049.
  • Lobo, F. A. T. F.; Silva, V.; Domingues, J.; Rodrigues, S.; Costa, V.; Falcão, D.; de Lima Araújo, K. G. Inclusion Complexes of Yellow Bell Pepper Pigments with β-cyclodextrin: Preparation, Characterisation and Application as Food Natural Colorant. J. Sci. Food Agric. 2018, 98, 2665–2671. DOI: 10.1002/jsfa.8760.
  • Raei, A.; Yasini Ardakani, S. A.; Daneshi, M. Microencapsulation of the Green Pigment of Alfalfa and Its Applications on Heated Food. J. Food Process. Eng. 2017, 40, e12529. DOI: 10.1111/jfpe.12529.
  • McWatters, K. H.; Ouedraogo, J. B.; Resurreccion, A. V. A.; Hung, Y.-C.; Dixon Phillips, R. Physical and Sensory Characteristics of Sugar Cookies Containing Mixtures of Wheat, Fonio (Digitaria Exilis) and Cowpea (Vigna Unguiculata) Flours. Int. J. Food Sci. Technol. 2003, 38, 403–410. DOI: 10.1046/j.1365-2621.2003.00716.x.
  • Maache-Rezzoug, Z.; Bouvier, J.-M.; Allaf, K.; Patras, C. Effect of Principal Ingredients on Rheological Behaviour of Biscuit Dough and on Quality of Biscuits. J. Food Eng. 1998, 35, 23–42. DOI: 10.1016/S0260-8774(98)00017-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.