937
Views
3
CrossRef citations to date
0
Altmetric
Review

Recent developments in key processing techniques for oriental spices/herbs and condiments: a review

, , &

References

  • Rebecca, S.; Melanie, L.; Clémence, M.; Arnaud, L.; Mario, C.; Garrett, G. S. The Growing Importance of Staple Foods and Condiments Used as Ingredients in the Food Industry and Implications for Large-scale Food Fortification Programs in Southeast Asia. Food Nutr. Bull. 2013, 34(2 Suppl), 50–61. DOI: 10.1177/15648265130342S107.
  • El-Sayed, S. M.; Youssef, A. M. Potential Application of Herbs and Spices and Their Effects in Functional Dairy Products. Heliyon. 2019, 5(6), e01989. DOI: 10.1016/j.heliyon.2019.e01989.
  • Anderson, J. J. B.; Anthony, M. S.; Cline, J. M.; Washburn, S. A.; Garner, S. C. Health Potential of Soy Isoflavones for Menopausal Women. Public. Health. Nutr. 2007, 2(4), 489–504. DOI: 10.1017/S1368980099000671.
  • Manion, B. Handbook of Spices, Seasonings and Flavorings. Trends Food Sci. Tech. 2008, 19(4), 219.
  • Cho, J.-H.; Zhao, H.-L.; Kim, J.-S.; Kim, S.-H.; Chung, C.-H. Characteristics of Fermented Seasoning Sauces Using Tenebrio Molitor Larvae. Innov. Food Sci. Emerg. 2018, 45, 186–195. DOI: 10.1016/j.ifset.2017.10.010.
  • Mejia, E. G.; Aguilera‐Gutiérrez, Y.; Martin‐Cabrejas, M. A.; Mejia, L. A. Industrial Processing of Condiments and Seasonings and Its Implications for Micronutrient Fortification. Ann. NY. Acad. Sci. 2015, 1357(1), 8–28. DOI: 10.1111/nyas.12869.
  • Zhang, M.; Tang, J.; Mujumdar, A. S.; Wang, S. Trends in Microwave-related Drying of Fruits and Vegetables. Trends Food Sci. Tech. 2006, 17(10), 354–524. DOI: 10.1016/j.tifs.2006.04.011.
  • Zhang, M.; Zhang, C.-J.; Shrestha, S. Study on the Preparation Technology of Superfine Ground Powder of Agrocybe Chaxingu Huang. J. Food Eng. 2005, 67(3), 333–337. DOI: 10.1016/j.jfoodeng.2004.04.036.
  • Saxena, S. N.; Barnwal, P.; Balasubramanian, S.; Yadav, D. N.; Lal, G.; Singh, K. K. Cryogenic Grinding for Better Aroma Retention and Improved Quality of Indian Spices and Herbs: A Review. J. Food Process Eng. 2018, 41(6), e12826. DOI: 10.1111/jfpe.12826.
  • Şanlier, N.; Gökcen, B. B.; Sezgin, A. C. Health Benefits of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2017, 59(3), 506–527. DOI: 10.1080/10408398.2017.1383355.
  • Chaves‐López, C.; Serio, A.; Grande‐Tovar, C. D.; Cuervo‐Mulet, R.; Delgado‐Ospina, J.; Paparella, A. Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Compr. Rev. Food Sci. F. 2015, 13(5), 1031–1048. DOI: 10.1111/1541-4337.12098.
  • Huang, M.; Zhang, M.; Bhandari, B. Recent Development in the Application of Alternative Sterilization Technologies to Prepared Dishes: A Review. Crit. Rev. Food Sci. Nutr. 2018, (755), 1–9. DOI:10.1080/10408398.2017.1421140.
  • Steinhaus, M. Confirmation of 1-Phenylethane-1-thiol as the Character Impact Aroma Compound in Curry Leaves and Its Behavior during Tissue Disruption, Drying, and Frying. J. Agric. Food Chem. 2017, 65(10), 2141–2146. DOI: 10.1021/acs.jafc.7b00197.
  • Huang, L. L.; Zhang, M.; Wang, L. P.; Mujumdar, A. S.; Sun, D. F. Influence of Combination Drying Methods on Composition, Texture, Aroma and Microstructure of Apple Slices. LWT - Food Sci. Technol. 2012, 47(1), 183–188. DOI: 10.1016/j.lwt.2011.12.009.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices—Effect on Product Quality. Food Bioprocess Technol. 2013, 6(12), 3530–3543. DOI: 10.1007/s11947-012-1017-0.
  • Shivanna, V. B.; Subban, N. Carotenoids Retention in Processed Curry Leaves (Murraya Koenigii L. Spreng). Int. J. Food Sci. Nutr. 2013, 64(1), 58–62. DOI: 10.3109/09637486.2012.694849.
  • Kubra, I. R.; Rao, L. J. M. Effect of Microwave Drying on the Phytochemical Composition of Volatiles of Ginger. Int. J. Food Sci. Tech. 2012, 47, 53–60. DOI: 10.1111/j.1365-2621.2011.02806.x.
  • Sharma, G. P.; Prasad, S. Optimization of Process Parameters for Microwave Drying of Garlic Cloves. J. Food Eng. 2006, 75(4), 441–446. DOI: 10.1016/j.jfoodeng.2005.04.029.
  • Sun, Y.; Zhang, M.; Bhandari, B.; Yang, P. Intelligent Detection of Flavor Changes in Ginger during Microwave Vacuum Drying Based on LF-NMR. Food Res. Int. 2019, 119, 417–425. DOI: 10.1016/j.foodres.2019.02.019.
  • Lv, W.; Li, S.; Han, Q.; Zhao, Y.; Wu, H. Study of the Drying Process of Ginger (Zingiber Officinale Roscoe) Slices in Microwave Fluidized Bed Dryer. Dry. Technol. 2016, 34(14), 1690–1699. DOI: 10.1080/07373937.2015.1137932.
  • An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber Officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197, 1292–1300. DOI: 10.1016/j.foodchem.2015.11.033.
  • Calín-Sánchez, Á.; Figiel, A.; Wojdyło, A.; Szarycz, M.; Carbonell-Barrachina, Á. A. Drying of Garlic Slices Using Convective Pre-drying and Vacuum-Microwave Finishing Drying: Kinetics, Energy Consumption, and Quality Studies. Food Bioprocess. Tech. 2014, 7(2), 398–408. DOI: 10.1007/s11947-013-1062-3.
  • Qiu, L.; Min, Z.; Wang, Y.; Liu, Y. Physicochemical and Nutritional Properties of Wasabi (Eutrema Yunnanense)dried by Four Different Drying Methods. Dry. Technol. 2018, 37(3), 363–372. DOI: 10.1080/07373937.2018.1458318.
  • Meetha, N. J.; Muhammadali., P.; Joy, M. I.; Mahendran., R.; Santhakumaran., A. Plused Microwave Assisted Hot Air Drying of Nutmeg Mace for Better Color Retention. J. Spices Aromatic Crops. 2016, 25(1), 84–87.
  • Bai, Y.-J.; Kong, M.; Xu, J.-D.; Zhang, X.-L.; Zhou, -S.-S.; Wang, X.-N.; Liu, L.-F.; Li, S.-L. Effect of Different Drying Methods on the Quality of Angelicae Sinensis Radix Evaluated through Simultaneously Determining Four Types of Major Bioactive Components by High Performance Liquid Chromatography Photodiode Array Detector and Ultra-high Performance Liquid Chromatography Quadrupole Time-of-flight Mass Spectrometry. J.P Harmaceut. Biomed. 2014, 94, 77–83. DOI: 10.1016/j.jpba.2014.01.036.
  • Monton, C.; Luprasong, C.; Charoenchai, L. Convection Combined Microwave Drying Affect Quality of Volatile Oil Compositions and Quantity of Curcuminoids of Turmeric Raw Material. Rev. Bras. Farmacogn. 2019, 29(4), 434–440. DOI: 10.1016/j.bjp.2019.04.006.
  • Shivanna, V. B.; Subban, N. Effect of Various Drying Methods on Flavor Characteristics and Physicochemical Properties of Dried Curry Leaves (Murraya Koenigii L. Spreng). Dry. Technol. 2014, 32(8), 882–890. DOI: 10.1080/07373937.2013.871727.
  • Abbasi Souraki, B.; Mowla, D. Experimental and Theoretical Investigation of Drying Behaviour of Garlic in an Inert Medium Fluidized Bed Assisted by Microwave. J. Food Eng. 2008, 88(4), 438–449. DOI: 10.1016/j.jfoodeng.2007.12.034.
  • Mohanta, B.; Dash, S. K.; Panda, M. K.; Sahoo, G. R. Standardization of Process Parameters for Microwave Assisted Convective Dehydration of Ginger. J. Food Sci. Tech. 2014, 51(4), 673–681. DOI: 10.1007/s13197-011-0546-2.
  • Meetha, J. N.; Muhammadali, P.; Joy, M. I.; Mahendran, R.; Santhakumaran, A. Pulsed Microwave Assisted Hot Air Drying of Nutmeg Mace for Better Colour Retention. J. Spices Aromatic Crops. 2016, 25(1), 84–87.
  • Figiel, A. Drying Kinetics and Quality of Vacuum-microwave Dehydrated Garlic Cloves and Slices. J. Food Eng. 2009, 94(1), 98–104. DOI: 10.1016/j.jfoodeng.2009.03.007.
  • Cui, Z. W.; Xu, S. Y.; Sun, D. W. Dehydration of Garlic Slices by Combined Microwave-Vacuum and Air Drying. Dry. Technol. 2003, 21(7), 1173–1184. DOI: 10.1081/DRT-120023174.
  • Pawar, S. B.; Pratape, V. M. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process Eng. 2015, 40(1), e12308. DOI: 10.1111/jfpe.12308.
  • Feng, L.; Zhang, M.; Adhikari, B. Effect of Water on the Quality of Dehydrated Products: A Review of Novel Characterization Methods and Hybrid Drying Technologies. Dry. Technol. 2014, 32(15), 1872–1884. DOI: 10.1080/07373937.2014.963205.
  • Wang, Y.; Min, Z.; Mujumdar, A. S.; Chen, H. Quality Drying and Characteristics of Shredded Squid in an Infrared-Assisted Convective Dryer. Dry. Technol. 2014, 32(15), 1828–1839. DOI: 10.1080/07373937.2014.952379.
  • Khir, R.; Pan, Z.; Salim, A.; Hartsough, B. R.; Mohamed, S. Moisture Diffusivity of Rough Rice under Infrared Radiation Drying. LWT - Food Sci. Technol. 2011, 44(4), 1126–1132. DOI: 10.1016/j.lwt.2010.10.003.
  • An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber Officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197(PtB), 1292–1300. DOI: 10.1016/j.foodchem.2015.11.033.
  • Younis, M.; Abdelkarim, D.; Zein El-Abdein, A. Kinetics and Mathematical Modeling of Infrared Thin-layer Drying of Garlic Slices. Saudi J. Biol. Sci. 2018, 25(2), 332–338. DOI: 10.1016/j.sjbs.2017.06.011.
  • Torki-Harchegani, M.; Ghanbarian, D.; Maghsoodi, V.; Moheb, A. Infrared Thin Layer Drying of Saffron (Crocus Sativus L.) Stigmas: Mass Transfer Parameters and Quality Assessment. Chin. J. Chem. Eng. 2017, 25(4), 426–432. DOI: 10.1016/j.cjche.2016.09.005.
  • Baysal, T.; Icier, F.; Ersus, S.; Yıldız, H. Effects of Microwave and Infrared Drying on the Quality of Carrot and Garlic. Eur. Food Res. Technol. 2003, 218(1), 68–73. DOI: 10.1007/s00217-003-0791-3.
  • Ps, A.; K, S.; Potluri, S.; R, S.; R, M. Physical Properties of Infrared (IR) Assisted Hot Air Dried Nutmeg (Myristica Fragrans) Seeds. J. Food Process Pres. 2018, 42(1), e13359. DOI: 10.1111/jfpp.13359.
  • Mustayen, A. G. M. B.; Mekhilef, S.; Saidur, R. Performance Study of Different Solar Dryers: A Review. Renew. Sust. Enegr. Rev. 2014, 34, 463–470. DOI: 10.1016/j.rser.2014.03.020.
  • Parlak, N. Fluidized Bed Drying Characteristics and Modeling of Ginger (Zingiber Officinale) Slices. Heat and Mass Transfer. 2015, 51(8), 1085–1095. DOI: 10.1007/s00231-014-1480-4.
  • Phoungchandang, S.; Nongsang, S.; Sanchai, P. The Development of Ginger Drying Using Tray Drying, Heat Pump-dehumidified Drying, and Mixed-mode Solar Drying. Dry. Technol. 2009, 27(10), 1123–1131. DOI: 10.1080/07373930903221424.
  • Selvaraj, V.; Arjunan, T. V.; Kumar, A. Thin Layer Drying Characteristics of Curry Leaves (Murraya Koenigii) in an Indirect Solar Dryer. Therm. Sci. 2017, 21(Supp.2), 359–367. DOI: 10.2298/TSCI17S2359V.
  • Amanlou, Y.; Tavakoli Hashjin, T.; Ghobadian, B.; Najafi, G. Mathematical Modeling of Thin-Layer Solar Drying for Yarrow, Coriander and Hollyhock. Int. J. Food Eng. 2015, 11(5), 691–700. DOI: 10.1515/ijfe-2015-0134.
  • Seveda, M. S.; Jhajharia, D. Design and Performance Evaluation of Solar Dryer Fordrying of Large Cardamom. J. Renew. Sustain. Ener. 2012, 4(6), 1–11. DOI: 10.1063/1.4769199.
  • Zhao, X.; Yang, Z.; Gai, G.; Yang, Y. Effect of Superfine Grinding on Properties of Ginger Powder. J. Food Eng. 2009, 91(2), 217–222. DOI: 10.1016/j.jfoodeng.2008.08.024.
  • Balasubramanian, S.; Gupta, M. K.; Singh, K. K. Cryogenics and Its Application with Reference to Spice Grinding: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52(9), 781–794. DOI: 10.1080/10408398.2010.509552.
  • Goswami, T.; SINGH, K.; Manish. Role of Feed Rate and Temperature in Attrition Grinding of Cumin. J. Food Eng. 2003, 59(2), 285–290. DOI: 10.1016/s0260-8774(02)00469-7.
  • Murthy, C. T.; Bhattacharya, S. Cryogenic Grinding of Black Pepper. J. Food Eng. 2008, 85(1), 18–28. DOI: 10.1016/j.jfoodeng.2007.06.020.
  • Saxena, S. N.; Sharma, Y. K.; Rathore, S. S.; Singh, K. K.; Barnwal, P.; Saxena, R.; Upadhyaya, P.; Anwer, M. M. Effect of Cryogenic Grinding on Volatile Oil, Oleoresin Content and Anti-oxidant Properties of Coriander (Coriandrum Sativum L.) Genotypes. J. Food Sci. Tech. 2015, 52(1), 568–573. DOI: 10.1007/s13197-013-1004-0.
  • Manohar, B.; Sridhar, B. S. Size and Shape Characterization of Conventionally and Cryogenically Ground Turmeric (Curcuma Domestica) Particles. Powder Technol. 2001, 120(3), 292–297. DOI: 10.1016/S0032-5910(01)00284-4.
  • Meghwal, M.; Goswami, T. K. Comparative Study on Ambient and Cryogenic Grinding of Fenugreek and Black Pepper Seeds Using Rotor, Ball, Hammer and Pin Mill. Powder Technol. 2014, 267, 245–255. DOI: 10.1016/j.powtec.2014.07.025.
  • Ghodki, B. M.; Goswami, T. K. Effect of Grinding Temperatures on Particle and Physicochemical Characteristics of Black Pepper Powder. Powder Technol. 2016, 299, 168–177. DOI: 10.1016/j.powtec.2016.05.042.
  • Singh, K. K.; Goswami, T. K. Cryogenic Grinding of Cloves. J. Food Process. Pres. 2000, 24(1), 57–71. DOI: 10.1111/j.1745-4549.2000.tb00405.x.
  • Jayachandran, M.; Xu, B. An Insight into the Health Benefits of Fermented Soy Products. Food Chem. 2019, 271, 362–371. DOI: 10.1016/j.foodchem.2018.07.158.
  • Gilbert, R. J.; Hobbs, G.; Murray, C. K.; Cruickshank, J. G.; Young, S. E. Scombrotoxic Fish Poisoning: Features of the First 50 Incidents to Be Reported in Britain (1976–9). Br. Med. J. 1980, 281(6232), 71–72.
  • Singhania, R. R.; Patel, A. K.; Soccol, C. R.; Pandey, A. Recent Advances in Solid-state Fermentation. Biochem. Eng. J. 2009, 44(1), 13–18. DOI: 10.1016/j.bej.2008.10.019.
  • Nigam, P.; Robinson, T.; Singh, D. Solid-State Fermentation: An Overview. Chem. Biochem. Eng. Q. 2004, 22(1), 49–70. DOI: 10.1111/j.1462-5822.2007.01086.x.
  • Wang, L.; Liu, Z.; Duan, Y.; Chen, H. Relations between Substrate Morphological Change and Oxygen Transfer in Solid-state Fermentation (SSF) Using Penicillium Decumbens JUA10. J. Chem. Technol. Biotechnol. 2014, 89(10), 1582–1589. DOI: 10.1002/jctb.4334.
  • Ooijkaas, L. Chinese Vinegar and Its Solid-State Fermentation Process. Food Rev. Int. 2004, 20(4), 407–424. DOI: 10.1081/fri-200033460.
  • Ye, M.; Liu, X.; Zhao, L. Production of a Novel Salt-tolerant L-glutaminase from Bacillus Amyloliquefaciens Using Agro-industrial Residues and Its Application in Chinese Soy Sauce Fermentation. Biotechnol. 2013, 12(1), 25–35. DOI: 10.3923/biotech.2013.25.35.
  • Du, H.; Song, Z.; Xu, Y. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor. J. Agric. Food Chem. 2017, 66(1), 387–392. DOI: 10.1021/acs.jafc.7b05034.
  • Wang, S.; Wu, Q.; Nie, Y.; Wu, J.; Xu, Y. Construction of Synthetic Microbiota for Reproducible Flavor Metabolism in Chinese Light Aroma Type Liquor Produced by Solid-state Fermentation. Appl. Environ. Microb. 2019, 85(10), 1–33. DOI: 10.1128/AEM.03090-18.
  • Chang, M.; Lian, J.; Liu, R.; Jin, Q.; Wang, X. Production of Yellow Wine from Camellia Oleifera Meal Pretreated by Mixed Cultured Solid-state Fermentation. Int. J. Food Sci. Tech. 2014, 49(7), 1715–1721. DOI: 10.1111/ijfs.12480.
  • Zhu, Y.; Zou, X.; Shi, J.; Zhao, J.; Linhao. Rapidly Detecting Total Acid Distribution of Vinegar Culture Based on Hyperspectral Imaging Technology. Trans. Chin. Soc. Agric. Eng. 2014, 30(16), 320–327.
  • Yu, X.; Mao, X.; He, S.; Liu, P.; Wang, Y.; Xue, C. Biochemical Properties of Fish Sauce Prepared Using Low Salt, Solid State Fermentation with Anchovy By-products. Food Sci. Biotechnol. 2014, 23(5), 1497–1506. DOI: 10.1007/s10068-014-0205-2.
  • Sun, S. Y.; Jiang, W. G.; Zhao, Y. P. Profile of Volatile Compounds in 12 Chinese Soy Sauces Produced by a High-salt-diluted State Fermentation. J. I. Brewing. 2012, 116(3), 316–328. DOI: 10.1002/j.2050-0416.2010.tb00437.x.
  • Devanthi, P. V. P.; Gkatzionis, K. Soy Sauce Fermentation: Microorganisms, Aroma Formation, and Process Modification. Food Res. Int. 2019, 120, 364–374. DOI: 10.1016/j.foodres.2019.03.010.
  • Gao, X. L.; Cui, C.; Zhao, H. F.; Zhao, M. M.; Yang, L.; Ren, J-Y . Changes in Volatile Aroma Compounds of Traditional Chinese-type Soy Sauce during Moromi Fermentation and Heat Treatment. Food Sci. Biotechnol. 2010, 19(4), 889–898. DOI: 10.1007/s10068-010-0126-7.
  • Feng, Y.; Su, G.; Zhao, H.; Cai, Y.; Cui, C.; Sun-Waterhouse, D.; Zhao, M. Characterisation of Aroma Profiles of Commercial Soy Sauce by Odour Activity Value and Omission Test. Food Chem. 2015, 167, 220–228. DOI: 10.1016/j.foodchem.2014.06.057.
  • Feng, Y.; Cai, Y.; Su, G.; Zhao, H.; Wang, C.; Zhao, M. Evaluation of Aroma Differences between High-salt Liquid-state Fermentation and Low-salt Solid-state Fermentation Soy Sauces from China. Food Chem. 2014, 145, 126–134. DOI: 10.1016/j.foodchem.2013.07.072.
  • Zhang, L.; Zhou, R.; Cui, R.; Huang, J.; Wu, C. Characterizing Soy Sauce Moromi Manufactured by High-Salt Dilute-State and Low-Salt Solid-State Fermentation Using Multiphase Analyzing Methods. J. Food Sci. 2016, 81(11), C2639–C2646. DOI: 10.1111/1750-3841.13516.
  • Cappato, L. P.; Ferreira, M. V. S.; Guimaraes, J. T.; Portela, J. B.; Costa, A. L. R.; Freitas, M. Q.; Cunha, R. L.; Oliveira, C. A. F.; Mercali, G. D.; Marzack, L. D. F.;; et al. Ohmic Heating in Dairy Processing: Relevant Aspects for Safety and Quality. Trends Food Sci. Tech. 2017, 62, 104–112. DOI: 10.1016/j.tifs.2017.01.010.
  • Kaur, N.; Singh, A. K. Ohmic Heating: Concept and Applications—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56(14), 2338–2351. DOI: 10.1080/10408398.2013.835303.
  • Sun, H.; Kawamura, S.; Himoto, J.; Itoh, K.; Wada, T.; Kimura, T. Effects of Ohmic Heating on Microbial Counts and Denaturation of Proteins in Milk. Food Sci. Technol. Res. 2008, 14(2), 117–173. DOI: 10.3136/fstr.14.117.
  • Salari, S.; Jafari, S. M. The Influence of Ohmic Heating on Degradation of Food Bioactive Ingredients. Food Eng. Rev. 2020, 12(2), 191–208. DOI: 10.1007/s12393-020-09217-0.
  • Tucker, G. S. Food Waste Management and Value-added Products: Using the Process to Add Value to Heat-treated Products. J. Food Sci. 2004, 69(3), 102–104. DOI: 10.1111/j.1365-2621.2004.tb13340.x.
  • Wang, C. S.; Kuo, S. Z.; Kuo‐Huang, L. L.; Wu, J. S. B. Effect of Tissue Infrastructure on Electric Conductance of Vegetable Stems. J. Food Sci. 2010, 66(2), 284–288. DOI: 10.1111/j.1365-2621.2001.tb11333.x.
  • Cho, W.-I.; Yi, J. Y.; Chung, M.-S. Pasteurization of Fermented Red Pepper Paste by Ohmic Heating. Innov. Food Sci. Emerg. 2016, 34, 180–186. DOI: 10.1016/j.ifset.2016.01.015.
  • Cho, W. I.; Kim, E. J.; Hwang, H. J.; Cha, Y. H.; Cheon, H. S.; Choi, J. B.; Chung, M. S. Continuous Ohmic Heating System for the Pasteurization of Fermented Red Pepper Paste. Innov. Food Sci. Emerg. 2017, 42, 190–196. DOI: 10.1016/j.ifset.2017.07.020.
  • Ryang, J. H.; Kim, N. H.; Lee, B. S.; Kim, C. T.; Rhee, M. S. Destruction of Bacillus Cereus Spores in a Thick Soy Bean Paste (Doenjang) by Continuous Ohmic Heating with Five Sequential Electrodes. Lette. Appl. Microbiol. 2016, 63(1), 66–73. DOI: 10.1111/lam.12588.
  • Ryang, J. H.; Kim, N. H.; Lee, B. S.; Kim, C. T.; Lee, S. H.; Hwang, I. G.; Rhee, M. S. Inactivation of Bacillus Cereus Spores in a Tsuyu Sauce Using Continuous Ohmic Heating with Five Sequential Elbow-type Electrodes. J. Appl. Microbiol. 2016, 120(1), 175–184. DOI: 10.1111/jam.12982.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Zheng, A.; Zhang, L.; Wang, S. Verification of Radio Frequency Pasteurization Treatment for Controlling Aspergillus Parasiticus on Corn Grains. Int. J. Food Microbiol. 2017, 249, 27–34. DOI: 10.1016/j.ijfoodmicro.2017.02.017.
  • Xu, J.; Zhang, M.; An, Y.; Asm, R.; Adhikari, B. Effects of Radio Frequency and High Pressure Steam Sterilization on the Color and Flavor of Prepared Nostoc Sphaeroides. J. Sci. Food Agr. 2017, 98(5), 1719–1724. DOI: 10.1002/jsfa.8644.
  • Sosa-Morales, M. E.; Valerio-Junco, L.; López-Malo, A.; García, H. S. Dielectric Properties of Foods: Reported Data in the 21st Century and Their Potential Applications. LWT - Food Sci. Technol. 2010, 43(8), 1169–1179. DOI: 10.1016/j.lwt.2010.03.017.
  • Wang, S.; Tang, J.; Cavalieri, R. P.; Davis, D. C. Differential Heating of Insects in Dried Nuts and Fruits Associated with Radio Frequency and Microwave Treatments. T Asabe. 2003, 46(4), 1175–1182. DOI: 10.13031/2013.13941.
  • Hu, S.; Zhao, Y.; Hayouka, Z.; Wang, D.; Jiao, S. Inactivation Kinetics for Salmonella Typhimurium in Red Pepper Powders Treated by Radio Frequency Heating. Food Control. 2018, 85, 437–442. DOI: 10.1016/j.foodcont.2017.10.034.
  • Marra, F.; Zhang, L.; Lyng, J. G. Radio Frequency Treatment of Foods: Review of Recent Advances. J. Food Eng. 2009, 91(4), 497–508. DOI: 10.1016/j.jfoodeng.2008.10.015.
  • Jiao, S.; Zhang, H.; Hu, S.; Zhao, Y. Radio Frequency Inactivation Kinetics of Bacillus Cereus Spores in Red Pepper Powder with Different Initial Water Activity. Food Control. 2019, 105, 174–179. DOI: 10.1016/j.foodcont.2019.05.038.
  • Ozturk, S.; Kong, F.; Singh, R. K.; Kuzy, J. D.; Li, C.; Trabelsi, S. Dielectric Properties, Heating Rate, and Heating Uniformity of Various Seasoning Spices and Their Mixtures with Radio Frequency Heating. J. Food Eng. 2018, 228, 128–141. DOI: 10.1016/j.jfoodeng.2018.02.011.
  • Ildikó, S. G.; Klára, K. A.; Marianna, T. M.; Ágnes, B.; Zsuzsanna, M. B.; Bálint, C. The Effect of Radio Frequency Heat Treatment on Nutritional and Colloid-chemical Properties of Different White Mustard (Sinapis Alba L.) Varieties. Innov. Food Sci. Emerg. 2006, 7(1), 74–79. DOI: 10.1016/j.ifset.2005.06.001.
  • Diehl, J. F. Food Irradiation—past, Present and Future. Radiat. Phys. Chem. 2002, 63(3), 211–215. DOI: 10.1016/S0969-806X(01)00622-3.
  • Karganov, M. Y.; Alchinova, I. B.; Polyakova, M. V.; Feldman, V. I.; Gorbunov, S. A.; Ivanov, O. M.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E. Stability of Dry Phage Lambda DNA Irradiated with Swift Heavy Ions. Radiat. Phys. Chem. 2019, 162, 194–198. DOI: 10.1016/j.radphyschem.2019.04.048.
  • Park, J. N.; Song, B. S.; Kim, J. H.; Choi, J. I.; Sung, N. Y.; Han, I. J.; Lee, J. W. Sterilization of Ready-to-cook Bibimbap by Combined Treatment with Gamma Irradiation for Space Food. Radiat. Phys. Chem. 2012, 81(8), 1125–1127. DOI: 10.1016/j.radphyschem.2012.02.042.
  • Ravindran, R.; Jaiswal, A. K. Wholesomeness and Safety Aspects of Irradiated Foods. Food Chem. 2019, 285, 363–368. DOI: 10.1016/j.foodchem.2019.02.002.
  • Yang, J.; Xinhua, J.; Guoxing, G.; Guichun, Y. Studies of Soy Sauce Sterilization and Its Special Flavour Improvement by Gamma-ray Irradiation. Int. J. Radiat. Appl. Instrum. C. 1988, 31(1), 209–213. DOI: 10.1016/1359-0197(88)90128-2.
  • Luo, D.-Q.; Zhao, S.-S.; Tang, Y.-R.; Wang, Q.-J.; Liu, H.-J.; Ma, S.-C. Analysis of the Effect of 60Co-γ Irradiation Sterilization Technology on the Chemical Composition of Saffron Using UPLC and UPLC/Q-TOF-MS. J. Anal. Methods Chem. 2018, 1–7. DOI:10.1155/2018/2402676.
  • Yin, D.; Zou, Z.; Liu, Z.; Jie, F. Effects of Gamma Ray Radiation Sterilization on Chemical Components of Soy Sauce. Int. J. Radiat. Appl. Instrum. C. 1989, 34(5), 869–870. DOI: 10.1016/1359-0197(89)90298-1.
  • Jung, K.; Song, B.-S.; Kim, M. J.; Moon, B.-G.; Go, S.-M.; Kim, J.-K.; Lee, Y.-J.; Park, J.-H. Effect of X-ray, Gamma Ray, and Electron Beam Irradiation on the Hygienic and Physicochemical Qualities of Red Pepper Powder. LWT - Food Sci. Technol. 2015, 63(2), 846–851. DOI: 10.1016/j.lwt.2015.04.030.
  • Park, J.-N.; Park, J.-G.; Han, I.-J.; Song, B.-S.; Choi, J.-I.; Kim, J.-H.; Sohn, H.-S.; Lee, J.-W. Combined Effects of Heating and γ-irradiation on the Microbiological and Sensory Characteristics of Gochujang (Korean Fermented Red Pepper Paste) Sauce during Storage. Food Sci. Biotechnol. 2010, 19(5), 1219–1225. DOI: 10.1007/s10068-010-0174-z.
  • Kim, J. H.; Park, J.-G.; Lee, J.-W.; Kim, W.-G.; Chung, Y.-J.; Byun, M.-W. The Combined Effects of N2-packaging, Heating and Gamma Irradiation on the Shelf-stability of Kimchi, Korean Fermented Vegetable. Food Control. 2008, 19(1), 56–61. DOI: 10.1016/j.foodcont.2007.02.002.
  • Park, J. N.; Park, J. G.; Han, I. J.; Song, B. S.; Choi, J. I.; Kim, J. H.; Sohn, H. S.; Lee, J. W. Combined Effects of Heating and γ-Irradiation on the Microbiological and Sensory Characteristics of Gochujang (Korean Fermented Red Pepper Paste) Sauce during Storage. Food Sci. Biotechnol. 2010, 19(5), 1219–1225. DOI: 10.1007/s10068-010-0174-z.
  • Srivastava, P.; Prasad, S.; Ali, M.; Prasad, M. Analysis of Antioxidant Activity of Herbal Yoghurt Prepared from Different Milk. Pharm. Innovation J. 2015, 4(3), 18–20.
  • Mahgoub, S. A.; Ramadan, M. F.; El-Zahar, K. M. Cold Pressed Nigella Sativa Oil Inhibits the Growth of Foodborne Pathogens and Improves the Quality of Domiati Cheese. J. Food Safety. 2013, 33(4), 470–480. DOI: 10.1111/jfs.12078.
  • Najgebauer, L. D.; Grega, T.; Sady, M. The Quality and Storage Stability of Butter Made from Sour Cream with Addition of Dried Sage and Rosemary. Biotechnol. Anim. Husb. 2009, 25, 753‒761.
  • Gabbi, D.; Bajwa, U.; Goraya, R. Physicochemical, Melting and Sensory Properties of Ice Cream Incorporating Processed Ginger (Zingiber Officinale). Int. J. Dairy Technol. 2017, 70(1), 190–197. DOI: 10.1111/1471-0307.12430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.