534
Views
7
CrossRef citations to date
0
Altmetric
Review

Anticarcinogenic Activity of Phenolic Compounds from Sprouted Legumes

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ye, C.; Xu, M.; Lin, M.; Zhang, Y.; Zheng, X.; Sun, Y.; Deng, Y.; Pan, J.; Xu, Z.; Lu, X.; et al. Overexpression of FZD7 Is Associated with Poor Survival in Patients with Colon Cancer. Pathol. Res. Pract. 2019, 215(8), 152478. DOI: 10.1016/j.prp.2019.152478.
  • Tayyem, R. F.; Bawadi, H. A.; Shehadah, I.; Agraib, L. M.; AbuMweis, S. S.; Al-Jaberi, T.; Al-Nusairr, M.; Bani-Hani, K. E.; Heath, D. D. Dietary Patterns and Colorectal Cancer. Clin. Nutr. 2017, 36(3), 848–852. DOI: 10.1016/j.clnu.2016.04.029.
  • Sánchez-Chino, X. M.; Jiménez-Martínez, C.; Dávila-Ortiz, G.; Álvarez-González, I.; Madrigal-Bujaidar, E. Nutrient and Nonnutrient Components of Legumes, and Its Chemopreventive Activity: A Review. Nutr. Cancer. 2015, 67(3), 401–410. DOI: 10.1080/01635581.2015.1004729.
  • Tao, J.; Li, Y.; Li, S.; Li, H.-B. Plant Foods for the Prevention and Management of Colon Cancer. J. Funct. Foods. 2018, 42, 95–110. DOI: 10.1016/j.jff.2017.12.064.
  • Pina-Pérez, M. C.; Ferrús Pérez, M. A. Antimicrobial Potential of Legume Extracts against Foodborne Pathogens: A Review. Trends Food Sci. Tech. 2018, 72, 114–124. DOI: 10.1016/j.tifs.2017.12.007.
  • Sánchez-Chino, X. M.; Jiménez-Martínez, C.; Vásquez-Garzón, V. R.; Álvarez-González, I.; Villa-Treviño, S.; Madrigal-Bujaidar, E.; Dávila-Ortiz, G.; Baltiérrez-Hoyos, R. Cooked Chickpea Consumption Inhibits Colon Carcinogenesis in Mice Induced with Azoxymethane and Dextran Sulfate Sodium. J. Am. Coll. Nutr. 2017, 36(5), 391–398. DOI: 10.1080/07315724.2017.1297744.
  • Cid-Gallegos, M. S.; Sánchez-Chino, X. M.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Vásquez-Garzón, V. R.; Baltiérrez-Hoyos, R.; Villa-Treviño, S.; Dávila-Ortíz, G.; Jiménez-Martínez, C. Modification of in Vitro and in Vivo Antioxidant Activity by Consumption of Cooked Chickpea in a Colon Cancer Model. Nutrients. 2020, 12(9), 2572. DOI: 10.3390/nu12092572.
  • Xu, M.; Jin, Z.; Simsek, S.; Hall, C.; Rao, J.; Chen, B. Effect of Germination on the Chemical Composition, Thermal, Pasting, and Moisture Sorption Properties of Flours from Chickpea, Lentil, and Yellow Pea. Food Chem. 2019, 295, 579–587. DOI: 10.1016/j.foodchem.2019.05.167.
  • Corzo-Ríos, L. J.; Sánchez-Chino, X. M.; Cardador-Martínez, A.; Martínez-Herrera, J.; Jiménez-Martínez, C. Effect of Cooking on Nutritional and Non-nutritional Compounds in Two Species of Phaseolus (P. Vulgaris and P. Coccineus) Cultivated in Mexico. Int. J. Gastron. Food Sci. 2020, 20, 100206. DOI: 10.1016/j.ijgfs.2020.100206.
  • Ciabotti, S.; Silva, A.; Juhasz, A.; Mendonça, C.; Tavano, O.; Mandarino, J.; CONÇALVES, C. Chemical Composition, Protein Profile, and Isoflavones Content in Soybean Genotypes with Different Seed Coat Colors. Embrapa Soja-Artigo em periódico indexado (ALICE). 2016, 23(2), 621–629.
  • Erbersdobler, H.; Barth, C.; Jah-reis, G. Legumes in Human Nutrition. Nutrient Content and Protein Quality of Pulses. Ernahrungs Umschau. 2017, 64(9), 134–139. DOI:10.4455/eu.2017.034.
  • Jukanti, A. K.; Gaur, P. M.; Gowda, C. L. L.; Chibbar, R. N. Nutritional Quality and Health Benefits of Chickpea (Cicer Arietinum L.): A Review. Br. J. Nutr. 2012, 108(S1), S11–S26. DOI: 10.1017/S0007114512000797.
  • Ladjal-Ettoumi, Y.; Boudries, H.; Chibane, M.; Romero, A. Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophys. 2016, 11(1), 43–51. DOI: 10.1007/s11483-015-9411-6.
  • Šibul, F.; Orčić, D.; Vasić, M.; Anačkov, G.; Nađpal, J.; Savić, A.; Mimica-Dukić, N. Phenolic Profile, Antioxidant and Anti-inflammatory Potential of Herb and Root Extracts of Seven Selected Legumes. Ind. Crop Prod. 2016, 83, 641–653. DOI: 10.1016/j.indcrop.2015.12.057.
  • Singh, B.; Singh, J. P.; Kaur, A.; Singh, N. Phenolic Composition and Antioxidant Potential of Grain Legume Seeds: A Review. Food Res. Int. 2017, 101, 1–16. DOI: 10.1016/j.foodres.2017.09.026.
  • Bansal, M.; Singh, N.; Pal, S.; Dev, I.; Ansari, K. M. Chapter Three - Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier: Amsterdam, NL, 2018; Vol. 12, pp. 69–121. DOI:10.1016/B978-0-444-64199-1.00004-X.
  • Lanza, E.; Hartman, T. J.; Albert, P. S.; Shields, R.; Slattery, M.; Caan, B.; Paskett, E.; Iber, F.; Kikendall, J.; Lance, P.; et al. High Dry Bean Intake and Reduced Risk of Advanced Colorectal Adenoma Recurrence among Participants in the Polyp Prevention Trial. J. Nutr. 2006, 136(7), 1896–1903. DOI: 10.1093/jn/136.7.1896.
  • Higginbotham, S.; Zhang, Z. F.; Lee, I. M.; Cook, N. R.; Giovannucci, E.; Buring, J. E.; Liu, S. Dietary Glycemic Load and Risk of Colorectal Cancer in the Women’s Health Study. J. Natl. Cancer Inst. 2004, 96(3), 229–233. DOI: 10.1093/jnci/djh020.
  • Oh, K.; Willett, W. C.; Fuchs, C. S.; Giovannucci, E. L. Glycemic Index, Glycemic Load, and Carbohydrate Intake in Relation to Risk of Distal Colorectal Adenoma in Women. Cancer Epidemiol. Biomarkers Prev. 2004, 13(7), 1192–1198.
  • Franceschi, S.; Dal Maso, L.; Augustin, L.; Negri, E.; Parpinel, M.; Boyle, P.; Jenkins, D. J.; La Vecchia, C. Dietary Glycemic Load and Colorectal Cancer Risk. Ann. Oncol. 2001, 12(2), 173–178. DOI: 10.1023/a:1008304128577.
  • Borresen, E. C.; Brown, D. G.; Harbison, G.; Taylor, L.; Fairbanks, A.; O’Malia, J.; Bazan, M.; Rao, S.; Bailey, S. M.; Wdowik, M.; et al. A Randomized Controlled Trial to Increase Navy Bean or Rice Bran Consumption in Colorectal Cancer Survivors. Nutr. Cancer. 2016, 68(8), 1269–1280. DOI: 10.1080/01635581.2016.1224370.
  • Baxter, B. A.; Oppel, R. C.; Ryan, E. P. Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients. 2018, 11(1), 28. DOI: 10.3390/nu11010028.
  • Alajaji, S. A.; El-Adawy, T. A. Nutritional Composition of Chickpea (Cicer Arietinum L.) As Affected by Microwave Cooking and Other Traditional Cooking Methods. J. Food Compos. Anal. 2006, 19(8), 806–812. DOI: 10.1016/j.jfca.2006.03.015.
  • Fabbri, A. D. T.; Crosby, G. A. A Review of the Impact of Preparation and Cooking on the Nutritional Quality of Vegetables and Legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. DOI: 10.1016/j.ijgfs.2015.11.001.
  • Jogihalli, P.; Singh, L.; Kumar, K.; Sharanagat, V. S. Novel Continuous Roasting of Chickpea (Cicer Arietinum): Study on Physico-functional, Antioxidant and Roasting Characteristics. LWT-Food Sci. Technol. 2017, 86, 456–464. DOI: 10.1016/j.lwt.2017.08.029.
  • Milán-Noris, A. K.; Gutiérrez-Uribe, J. A.; Santacruz, A.; Serna-Saldívar, S. O.; Martínez-Villaluenga, C. Peptides and Isoflavones in Gastrointestinal Digests Contribute to the Anti-inflammatory Potential of Cooked or Germinated Desi and Kabuli Chickpea (Cicer Arietinum L.). Food Chem. 2018, 268, 66–76. DOI: 10.1016/j.foodchem.2018.06.068.
  • Shi, L.; Arntfield, S. D.; Nickerson, M. Changes in Levels of Phytic Acid, Lectins and Oxalates during Soaking and Cooking of Canadian Pulses. Food Res. Int. 2018, 107, 660–668. DOI: 10.1016/j.foodres.2018.02.056.
  • Donkor, O. N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated Grains–sources of Bioactive Compounds. Food Chem. 2012, 135(3), 950–959. DOI: 10.1016/j.foodchem.2012.05.058.
  • Owuamanam, C.; Ogueke, C.; Iwouno, J.; Edom, T. Use of Seed Sprouting in Modification of Food Nutrients and Pasting Profile of Tropical Legume Flours. Niger. Food J. 2014, 32(1), 117–125. DOI: 10.1016/S0189-7241(15)30104-1.
  • Dueñas, M.; Sarmento, T.; Aguilera, Y.; Benitez, V.; Mollá, E.; Esteban, R. M.; Martín-Cabrejas, M. A. Impact of Cooking and Germination on Phenolic Composition and Dietary Fibre Fractions in Dark Beans (Phaseolus Vulgaris L.) And Lentils (Lens Culinaris L.). LWT-Food Sci. Technol. 2016, 66, 72–78. DOI: 10.1016/j.lwt.2015.10.025.
  • Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First off the Mark: Early Seed Germination. J. Exp. Bot. 2011, 62(10), 3289–3309. DOI: 10.1093/jxb/err030.
  • Dziki, D.; Gawlik-Dziki, U. Processing of Germinated Grains. In Sprouted Grains, Feng, H., Nemzer, B., DeVries, J.W., Eds.; Elsevier: Amsterdam, NL, 2019; pp 69–90.
  • Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathai, M. Germinated Grains: A Superior Whole Grain Functional Food? Can. J. Physiol. Pharmacol. 2013, 91(6), 429–441. DOI: 10.1139/cjpp-2012-0351.
  • Nemzer, B.; Lin, Y.; Huang, D. Antioxidants in Sprouts of Grains. In Sprouted Grains, Feng, H., Nemzer, B., DeVries, J.W., Eds.; Elsevier:  Amsterdam, NL, 2019; pp 55–68. DOI:10.1016/B978-0-12-811525-1.00003-8.
  • Okumura, K.; Hosoya, T.; Kawarazaki, K.; Izawa, N.; Kumazawa, S. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts. J. Food Sci. 2016, 81(6), C1394–C1398. DOI: 10.1111/1750-3841.13330.
  • Mendoza-Sánchez, M.; Pérez-Ramírez, I. F.; Wall-Medrano, A.; Martinez-Gonzalez, A. I.; Gallegos-Corona, M. A.; Reynoso-Camacho, R. Chemically Induced Common Bean (Phaseolus Vulgaris L.) Sprouts Ameliorate Dyslipidemia by Lipid Intestinal Absorption Inhibition. J. Funct. Foods. 2019, 52, 54–62. DOI: 10.1016/j.jff.2018.10.032.
  • GCO, G. C. O.; Cancer Today: Fact Sheets. https://gco.iarc.fr/today/
  • Rodriguez-Salas, N.; Dominguez, G.; Barderas, R.; Mendiola, M.; García-Albéniz, X.; Maurel, J.; Batlle, J. F. Clinical Relevance of Colorectal Cancer Molecular Subtypes. Crit. Rev. Oncol. Hematol. 2017, 109, 9–19. DOI: 10.1016/j.critrevonc.2016.11.007.
  • Arvelo, F.; Sojo, F.; Cotte, C. Biology of Colorectal Cancer. Ecancermedicalscience. 2015, 9, 520. DOI: 10.3332/ecancer.2015.520.
  • Roncucci, L.; Mariani, F. Prevention of Colorectal Cancer: How Many Tools Do We Have in Our Basket? Eur. J. Intern. Med. 2015, 26(10), 752–756. DOI:10.1016/j.ejim.2015.08.019.
  • Klaunig, J. E.; Wang, Z. Oxidative Stress in Carcinogenesis. Curr. Opin. Toxicol. 2018, 7, 116–121. DOI: 10.1016/j.cotox.2017.11.014.
  • Sakita, J. Y.; Gasparotto, B.; Garcia, S. B.; Uyemura, S. A.; Kannen, V. A Critical Discussion on Diet, Genomic Mutations and Repair Mechanisms in Colon Carcinogenesis. Toxicol. Lett. 2017, 265, 106–116. DOI: 10.1016/j.toxlet.2016.11.020.
  • Lima, A. I.; Mota, J.; Monteiro, S. A.; Ferreira, R. M. Legume Seeds and Colorectal Cancer Revisited: Protease Inhibitors Reduce MMP-9 Activity and Colon Cancer Cell Migration. Food Chem. 2016, 197((Pt A), 30–38. DOI: 10.1016/j.foodchem.2015.10.063.
  • Xu, B.; Chang, S. K. C. Comparative Study on Antiproliferation Properties and Cellular Antioxidant Activities of Commonly Consumed Food Legumes against Nine Human Cancer Cell Lines. Food Chem. 2012, 134(3), 1287–1296. DOI: 10.1016/j.foodchem.2012.02.212.
  • Zhao, Y.; Du, S. K.; Wang, H.; Cai, M. In Vitro Antioxidant Activity of Extracts from Common Legumes. Food Chem. 2014, 152, 462–466. DOI: 10.1016/j.foodchem.2013.12.006.
  • Shafiee, G.; Saidijam, M.; Tavilani, H.; Ghasemkhani, N.; Khodadadi, I. Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells. Int. J. Mol. Cell Med. 2016, 5(3), 178–191. https://www.ncbi.nlm.nih.gov/pubmed/27942504
  • Luna-Vital, D. A.; González-de Mejía, E.; Loarca-Piña, G. Dietary Peptides from Phaseolus Vulgaris L. Reduced AOM/DSS-induced Colitis-associated Colon Carcinogenesis in Balb/c Mice. Plant Food Hum. Nutr. 2017, 72(4), 445–447. DOI: 10.1007/s11130-017-0633-2.
  • Ko, Y. J.; Jeong, J. W.; Choi, Y. H.; Ryu, C. H. Soy Soluble Polysaccharide Induces Apoptosis in HCT-116 Human Colon Cancer Cells via Reactive Oxygen Species Generation. Mol. Med. Rep. 2013, 8(6), 1767–1772. DOI: 10.3892/mmr.2013.1725.
  • Sánchez-Chino, X. M.; Jiménez Martínez, C.; León-Espinosa, E. B.; Garduño-Siciliano, L.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Vásquez-Garzón, V. R.; Baltiérrez-Hoyos, R.; Dávila-Ortiz, G. Protective Effect of Chickpea Protein Hydrolysates on Colon Carcinogenesis Associated with a Hypercaloric Diet. J. Am. Coll. Nutr. 2018, 38(2), 162–170. DOI: 10.1080/07315724.2018.1487809.
  • Montemurro, M.; Pontonio, E.; Gobbetti, M.; Rizzello, C. G. Investigation of the Nutritional, Functional and Technological Effects of the Sourdough Fermentation of Sprouted Flours. Int. J. Food Microbiol. 2019, 302, 47–58. DOI: 10.1016/j.ijfoodmicro.2018.08.005.
  • Xue, Z.; Wang, C.; Zhai, L.; Yu, W.; Chang, H.; Kou, X.; Zhou, F. Bioactive Compounds and Antioxidant Activity of Mung Bean (Vigna Radiata L.), Soybean (Glycine Max L.) And Black Bean (Phaseolus Vulgaris L.) During the Germination Process. Czech J. Food Sci. 2016, 34(1), 68–78. DOI: 10.17221/434/2015-CJFS.
  • Kim, M. Y.; Jang, G. Y.; Oh, N. S.; Baek, S. Y.; Lee, S. H.; Kim, K. M.; Kim, T. M.; Lee, J.; Jeong, H. S. Characteristics and in Vitro Anti-inflammatory Activities of Protein Extracts from Pre-germinated Black Soybean [Glycine Max (L.)] Treated with High Hydrostatic Pressure. Innov. Food Sci. Emerg. 2017, 43, 84–91. DOI: 10.1016/j.ifset.2017.07.027.
  • Nonogaki, H.;. Seed Biology Updates–highlights and New Discoveries in Seed Dormancy and Germination Research. Front. Plant Sci. 2017, 8, 524. DOI: 10.3389/fpls.2017.00524.
  • Tuan, P. A.; Kumar, R.; Rehal, P. K.; Toora, P. K.; Ayele, B. T. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals. Front. Plant Sci. 2018, 9, 668. DOI: 10.3389/fpls.2018.00668.
  • Gan, R.-Y.; Lui, W.-Y.; Wu, K.; Chan, C.-L.; Dai, S.-H.; Sui, Z.-Q.; Corke, H. Bioactive Compounds and Bioactivities of Germinated Edible Seeds and Sprouts: An Updated Review. Trends Food Sci. Technol. 2017, 59, 1–14. DOI: 10.1016/j.tifs.2016.11.010.
  • Schendel, R. R.;. Phenol Content in Sprouted Grains. In Sprouted Grains, Feng, H., Nemzer, B., DeVries, J.W., Eds.; Elsevier: Amsterdam, NL, 2019; pp 247–315.
  • Gao, Y.; Yao, Y.; Zhu, Y.; Ren, G. Isoflavone Content and Composition in Chickpea (Cicer Arietinum L.) Sprouts Germinated under Different Conditions. J. Agric. Food Chem. 2015, 63(10), 2701–2707. DOI: 10.1021/jf5057524.
  • Gan, R.-Y.; Chan, C.-L.; Yang, -Q.-Q.; Li, H.-B.; Zhang, D.; Ge, -Y.-Y.; Gunaratne, A.; Ge, J.; Corke, H. Bioactive Compounds and Beneficial Functions of Sprouted Grains. In Sprouted Grains, Feng, H., Nemzer, B., DeVries, J.W., Eds.; Elsevier: Amsterdam, NL , 2019; pp 191–246.
  • Pająk, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic Profile and Antioxidant Activity in Selected Seeds and Sprouts. Food Chem. 2014, 143, 300–306. DOI: 10.1016/j.foodchem.2013.07.064.
  • Huang, X.; Cai, W.; Xu, B. Kinetic Changes of Nutrients and Antioxidant Capacities of Germinated Soybean (Glycine Max L.) And Mung Bean (Vigna Radiata L.) With Germination Time. Food Chem. 2014, 143, 268–276. DOI: 10.1016/j.foodchem.2013.07.080.
  • Koornneef, M.; Bentsink, L.; Hilhorst, H. Seed Dormancy and Germination. Curr. Opin. Plant Biol. 2002, 5(1), 33–36. DOI: 10.1016/S1369-5266(01)00219-9.
  • Han, C.; Yang, P. Studies on the Molecular Mechanisms of Seed Germination. Proteomics. 2015, 15(10), 1671–1679. DOI: 10.1002/pmic.201400375.
  • Steinbrecher, T.; Leubner-Metzger, G. The Biomechanics of Seed Germination. J. Exp. Bot. 2017, 68(4), 765–783. DOI: 10.1093/jxb/erw428.
  • Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients. 2019, 11(2). DOI: 10.3390/nu11020421.
  • Mendoza-Sánchez, M.; Guevara-González, R. G.; Castaño-Tostado, E.; Mercado-Silva, E. M.; Acosta-Gallegos, J. A.; Rocha-Guzmán, N. E.; Reynoso-Camacho, R. Effect of Chemical Stress on Germination of Cv Dalia Bean (Phaseolus Vularis L.) As an Alternative to Increase Antioxidant and Nutraceutical Compounds in Sprouts. Food Chem. 2016, 212, 128–137. DOI: 10.1016/j.foodchem.2016.05.110.
  • Limón, R. I.; Peñas, E.; Martínez-Villaluenga, C.; Frias, J. Role of Elicitation on the Health-promoting Properties of Kidney Bean Sprouts. LWT. 2014, 56(2), 328–334. DOI: 10.1016/j.lwt.2013.12.014.
  • Li, J. W.; Tan, M. T. K.; Ang, T. L.; Teo, E. K. Chemoprevention Trials of GI Cancers in Asia. Best Pract. Res. Clin. Gastroenterol. 2015, 29(6), 967–978. DOI: 10.1016/j.bpg.2015.09.014.
  • Raja, S. B.; Rajendiran, V.; Kasinathan, N. K.; Amrithalakshmi, P.; Venkatabalasubramanian, S.; Murali, M. R.; Devaraj, H.; Devaraj, S. N. Differential Cytotoxic Activity of Quercetin on Colonic Cancer Cells Depends on ROS Generation through COX-2 Expression. Food Chem. Toxicol. 2017, 106(Pt A), 92–106. DOI: 10.1016/j.fct.2017.05.006.
  • Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernández, T. Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Zhang, J.; Manna, P. P.; Daglia, M.; Atanasov, A. G.; et al. Dietary Phytochemicals in Colorectal Cancer Prevention and Treatment: A Focus on the Molecular Mechanisms Involved. Biotechnol. Adv. 2020, 38, 107322. DOI: 10.1016/j.biotechadv.2018.11.011.
  • Erba, D.; Angelino, D.; Marti, A.; Manini, F.; Faoro, F.; Morreale, F.; Pellegrini, N.; Casiraghi, M. C. Effect of Sprouting on Nutritional Quality of Pulses. Int. J. Food Sci. Nutr. 2019, 70(1), 30–40. DOI: 10.1080/09637486.2018.1478393.
  • Butkutė, B.; Taujenis, L.; Norkevičienė, E. Small-Seeded Legumes as a Novel Food Source. Variation of Nutritional, Mineral and Phytochemical Profiles in the Chain: Raw Seeds-Sprouted Seeds-Microgreens. Molecules. 2018, 24(1). DOI: 10.3390/molecules24010133.
  • Lopes, L. A. R.; Martins, M.; Farias, L. M.; Brito, A.; Lima, G. M.; Carvalho, V. B. L.; Pereira, C. F. C.; Conde Júnior, A. M.; Saldanha, T.; Arêas, J. A. G.; et al. Cholesterol-Lowering and Liver-Protective Effects of Cooked and Germinated Mung Beans (Vigna Radiata L.). Nutrients. 2018, 10(7). DOI: 10.3390/nu10070821.
  • Kim, H. J.; Choi, E. J.; Kim, H. S.; Choi, C. W.; Choi, S. W.; Kim, S. L.; Seo, W. D.; Do, S. H. Germinated Soy Germ Extract Ameliorates Obesity through Beige Fat Activation. Food Funct. 2019, 10(2), 836–848. DOI: 10.1039/c8fo02252f.
  • Subramanian, A. P.; Jaganathan, S. K.; Mandal, M.; Supriyanto, E.; Muhamad, I. Gallic Acid Induced Apoptotic Events in HCT-15 Colon Cancer Cells. World J. Gastroenterol. 2016, 22(15), 3952–3961. DOI: 10.3748/wjg.v22.i15.3952.
  • Lee, J.; Kim, Y. S.; Lee, J.; Heo, S. C.; Lee, K. L.; Choi, S. W.; Kim, Y. Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness. Nutrients. 2016, 8, 7. DOI: 10.3390/nu8070439.
  • Bawadi, H. A.; Bansode, R. R.; Trappey, A., 2nd; Truax, R. E.; Losso, J. N. Inhibition of Caco-2 Colon, MCF-7 and Hs578T Breast, and DU 145 Prostatic Cancer Cell Proliferation by Water-soluble Black Bean Condensed Tannins. Cancer Lett. 2005, 218(2), 153–162. DOI: 10.1016/j.canlet.2004.06.021.
  • Yabluchanskiy, A.; Ma, Y.; Iyer, R. P.; Hall, M. E.; Lindsey, M. L. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology. 2013, 28(6), 391–403. DOI: 10.1152/physiol.00029.2013.
  • Lee, H. S.; Cho, H. J.; Kwon, G. T.; Park, J. H. Kaempferol Downregulates Insulin-like Growth Factor-I Receptor and ErbB3 Signaling in HT-29 Human Colon Cancer Cells. J. Cancer Prev. 2014, 19(3), 161–169. DOI: 10.15430/JCP.2014.19.3.161.
  • Zhang, Y.-S.; Wang, F.; Cui, S.-X.; Qu, X.-J. Natural Dietary Compound Naringin Prevents Azoxymethane/dextran Sodium Sulfate-induced Chronic Colorectal Inflammation and Carcinogenesis in Mice. Cancer Biol. Ther. 2018, 19(8), 735–744. DOI: 10.1016/j.biopha.2017.11.018.
  • Yang, L.; Liu, Y.; Wang, M.; Qian, Y.; Dong, X.; Gu, H.; Wang, H.; Guo, S.; Hisamitsu, T. Quercetin-induced Apoptosis of HT-29 Colon Cancer Cells via Inhibition of the Akt-CSN6-Myc Signaling Axis. Mol. Med. Rep. 2016, 14(5), 4559–4566. DOI: 10.3892/mmr.2016.5818.
  • Kee, J. Y.; Han, Y. H.; Kim, D. S.; Mun, J. G.; Park, J.; Jeong, M. Y.; Um, J. Y.; Hong, S. H. Inhibitory Effect of Quercetin on Colorectal Lung Metastasis through Inducing Apoptosis, and Suppression of Metastatic Ability. Phytomedicine. 2016, 23(13), 1680–1690. DOI: 10.1016/j.phymed.2016.09.011.
  • Sekar, V.; Anandasadagopan, S. K.; Ganapasam, S. Genistein Regulates Tumor Microenvironment and Exhibits Anticancer Effect in Dimethyl Hydrazine-induced Experimental Colon Carcinogenesis. Biofactors. 2016, 42(6), 623–637. DOI: 10.1002/biof.1298.
  • Guajardo-Flores, D.; Serna-Saldívar, S. O.; Gutiérrez-Uribe, J. A. Evaluation of the Antioxidant and Antiproliferative Activities of Extracted Saponins and Flavonols from Germinated Black Beans (Phaseolus Vulgaris L.). Food Chem. 2013, 141(2), 1497–1503. DOI: 10.1016/j.foodchem.2013.04.010.
  • Velderrain-Rodríguez, G. R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J. F.; Chen, C. Y.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G. A. Phenolic Compounds: Their Journey after Intake. Food Funct. 2014, 5(2), 189–197. DOI: 10.1039/c3fo60361j.
  • Moon, Y. J.; Wang, L.; DiCenzo, R.; Morris, M. E. Quercetin Pharmacokinetics in Humans. Biopharm. Drug Dispos. 2008, 29(4), 205–217. DOI: 10.1002/bdd.605.
  • Singh, S. P.; Deb, C. R.; Ahmed, S. U.; Saratchandra, Y.; Konwar, B. K. Molecular Docking Simulation Analysis of the Interaction of Dietary Flavonols with Heat Shock Protein 90. J. Biomed. Res. 2016, 30(1), 67–74. DOI: 10.7555/JBR.30.20130158.
  • Ben-Arye, E.; Goldin, E.; Wengrower, D.; Stamper, A.; Kohn, R.; Berry, E. Wheat Grass Juice in the Treatment of Active Distal Ulcerative Colitis: A Randomized Double-blind Placebo-controlled Trial. Scand J. Gastroenterol. 2002, 37(4), 444–449. DOI: 10.1080/003655202317316088.
  • Kanauchi, O.; Mitsuyama, K.; Homma, T.; Takahama, K.; Fujiyama, Y.; Andoh, A.; Araki, Y.; Suga, T.; Hibi, T.; Naganuma, M.; et al. Treatment of Ulcerative Colitis Patients by Long-term Administration of Germinated Barley Foodstuff: Multi-center Open Trial. Int. J. Mol. Med. 2003, 12(5), 701–704. DOI: 10.3892/ijmm.12.5.701.
  • Hanai, H.; Kanauchi, O.; Mitsuyama, K.; Andoh, A.; Takeuchi, K.; Takayuki, I.; Araki, Y.; Fujiyama, Y.; Toyonaga, A.; Sata, M.; et al. Germinated Barley Foodstuff Prolongs Remission in Patients with Ulcerative Colitis. Int. J. Mol. Med. 2004, 13(5), 643–647. DOI: 10.3892/ijmm.13.5.643.
  • Wu, F.; Yang, N.; Touré, A.; Jin, Z.; Xu, X. Germinated Brown Rice and Its Role in Human Health. Crit. Rev. Food Sci. Nutr. 2013, 53(5), 451–463. DOI: 10.1080/10408398.2010.542259.
  • Radišauskas, R.; Kuzmickienė, I.; Milinavičienė, E.; Everatt, R. Hypertension, Serum Lipids and Cancer Risk: A Review of Epidemiological Evidence. Medicina. 2016, 52(2), 89–98. DOI: 10.1016/j.medici.2016.03.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.