1,093
Views
11
CrossRef citations to date
0
Altmetric
Review

Quality aspects and safety of pulsed electric field (PEF) processing on dairy products: a comprehensive review

, , ORCID Icon, , ORCID Icon, & ORCID Icon show all

References

  • Pan, Y.; Sun, D.-W.; Han, Z. Applications of Electromagnetic Fields for Nonthermal Inactivation of Microorganisms in Foods: An Overview. Trends Food Sci. Technol. 2017, 64, 13–22. DOI: 10.1016/j.tifs.2017.02.014.
  • Aghamirzaei, M.; Peighambardoust, S. H.; Azadmard-Damirchi, S.; Majzoobi, M. Effects of Grape Seed Powder as a Functional Ingredient on Flour Physicochemical Characteristics and Dough Rheological Properties. J. Agr. Sci.Tech. 2015, 17(2), 365–373. http://journals.modares.ac.ir/article-23-1326-en.html
  • Golshan-Tafti, A.; Peighambardoust, S. H.; Behnam, F.; Bahrami, A.; Aghagholizadeh, R.; Ghamari, M.; Abbas Rafat, S. Effects of Spray-dried Sourdough on Flour Characteristics and Rheological Properties of Dough. Czech J. Food Sci. 2013, 31(4), 361–367. DOI: 10.17221/183/2012-CJFS.
  • Golshan-Tafti, A.; Peighambardoust, S. H.; Hesari, J.; Bahrami, A.; Shakuoie-Bonab, E. Physico-chemical and Functional Properties of Spray-dried Sourdough in Breadmaking. Food Sci. Technol. Int. 2013, 19(3), 271–278. DOI: 10.1177/1082013212452415.
  • Wang, Q.; Li, Y.; Sun, D.-W.; Zhu, Z. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications. Crit. Rev. Food Sci. Nutr. 2018, 58(13), 2285–2298. DOI: 10.1080/10408398.2018.1434609.
  • Horita, C. N.; Baptista, R. C.; Caturla, M. Y. R.; Lorenzo, J. M.; Barba, F. J.; Sant’Ana, A. S. Combining Reformulation, Active Packaging and Non-thermal Post-packaging Decontamination Technologies to Increase the Microbiological Quality and Safety of Cooked Ready-to-eat Meat Products. Trends Food Sci. Technol. 2018, 72, 45–61. DOI: 10.1016/j.tifs.2017.12.003.
  • Peighambardoust, S. H.; Beigmohammadi, F.; Peighambardoust, S. J. Application of Organoclay Nanoparticle in Low-density Polyethylene Films for Packaging of UF Cheese. Packag. Technol. Sci. 2016, 29(7), 355–363. DOI: 10.1002/pts.2212.
  • Joshi, S.; Mobeen, A.; Jan, K.; Bashir, K.; Azad, Z. R. A. A. Emerging Technologies in Dairy Processing: Present Status and Future Potential. In Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer International Publishing: Cham, 2019; pp 105–120.
  • Chauhan, O. P. Non-thermal Processing of Foods; CRC Press: Boca Raton, 2019.
  • Patel, H. A.; Carroll, T.; Kelly, A. L. Potential Applications of Nonthermal Processing Technologies in the Dairy Industry. Dairy Process. Qual. Assu. 2015, 528–551. DOI: 10.1002/9781118810279.ch22.
  • Akdemir-Evrendilek, G. Non-thermal Processing of Milk and Milk Products for Microbial Safety. In Dairy Microbiology and Biochemistry: Recent Developments Akdemir-Evrendilek, G., Özer, B., Press, C.R.C. Ed.; Taylor & Francis Group: Boca Raton, FL, 2015; pp. 322–355.
  • Sharma, P.; Bremer, P.; Oey, I.; Everett, D. W. Bacterial Inactivation in Whole Milk Using Pulsed Electric Field Processing. Int. Dairy J. 2014, 35(1), 49–56. DOI: 10.1016/j.idairyj.2013.10.005.
  • Koubaa, M.; Barba, F. J.; Bursać Kovačević, D.; Putnik, P.; Santos, M. D.; Queirós, R. P.; Moreira, S. A.; Inácio, R. S.; Fidalgo, L. G.; Saraiva, J. A. Chapter 22 - Pulsed Electric Field Processing of Fruit Juices. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, 2018; pp 437–449.
  • Pankiewicz, U.; Góral, M.; Kozłowicz, K.; Góral, D. Application of Pulsed Electric Field in Production of Ice Cream Enriched with Probiotic Bacteria (L. Rhamnosus B 442) Containing Intracellular Calcium Ions. J. Food Eng. 2020, 275, 109876. DOI: 10.1016/j.jfoodeng.2019.109876.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E.-D. A. Does Pulsed Electric Field Have a Potential to Improve the Quality of Beef from Older Animals and How? Innovative Food Sci. Emerg. Technol. 2019, 56, 102194. DOI: 10.1016/j.ifset.2019.102194.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E.-D. A. The Application of Pulsed Electric Field as a Sodium Reducing Strategy for Meat Products. Food Chem. 2020, 306, 125622. DOI: 10.1016/j.foodchem.2019.125622.
  • Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Impacts of Preliminary Vacuum Drying and Pulsed Electric Field Treatment on Characteristics of Fried Potatoes. J. Food Eng. 2020, 276, 109898. DOI: 10.1016/j.jfoodeng.2019.109898.
  • Mukhopadhyay, S.; Ukuku, D. O. The Role of Emerging Technologies to Ensure the Microbial Safety of Fresh Produce, Milk and Eggs. Curr. Opin. Food Sci. 2018, 19, 145–154. DOI: 10.1016/j.cofs.2018.01.013.
  • McAuley, C. M.; Singh, T. K.; Haro-Maza, J. F.; Williams, R.; Buckow, R. Microbiological and Physicochemical Stability of Raw, Pasteurised or Pulsed Electric Field-treated Milk. Innov. Food Sci. Emerg. Technol. 2016, 38, 365–373. DOI: 10.1016/j.ifset.2016.09.030.
  • Sharma, P.; Oey, I.; Everett, D. W. Thermal Properties of Milk Fat, Xanthine Oxidase, Caseins and Whey Proteins in Pulsed Electric Field-treated Bovine Whole Milk. Food Chem. 2016, 207, 34–42. DOI: 10.1016/j.foodchem.2016.03.076.
  • Alirezalu, K.; Munekata, P. E.; Parniakov, O.; Barba, F. J.; Witt, J.; Toepfl, S.; Wiktor, A.; Lorenzo, J. M. Pulsed Electric Field and Mild Heating for Milk Processing: A Review on Recent Advances. J. Sci. Food Agric. 2020, 100(1), 16–20. DOI: 10.1002/jsfa.9942.
  • Simonis, P.; Kersulis, S.; Stankevich, V.; Sinkevic, K.; Striguniene, K.; Ragoza, G.; Stirke, A. Pulsed Electric Field Effects on Inactivation of Microorganisms in Acid Whey. Int. J. Food Microbiol. 2019, 291, 128–134. DOI: 10.1016/j.ijfoodmicro.2018.11.024.
  • Mendes-Oliveira, G.; Jin, T. Z.; Campanella, O. H. Modeling the Inactivation of Escherichia Coli O157: H7and Salmonella Typhimurium in Juices by Pulsed Electric Fields: The Role of the Energy Density. J. Food Eng. 2020, 282, 110001. DOI: 10.1016/j.jfoodeng.2020.110001.
  • Toepfl, S.; Siemer, C.; Saldaña-Navarro, G.; Heinz, V. Overview of Pulsed Electric Fields Processing for Food. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.;  Academic Press, London, 2014; pp 93–114.
  • Pillet, F.; Formosa-Dague, C.; Baaziz, H.; Dague, E.; Rols, M.-P. Cell Wall as a Target for Bacteria Inactivation by Pulsed Electric Fields. Sci. Rep. 2016, 6, 19778. DOI: 10.1038/srep19778.
  • Wang, M.-S.; Wang, L.-H.; Bekhit, A. E.-D. A.; Yang, J.; Hou, Z.-P.; Wang, Y.-Z.; Dai, Q.-Z.; Zeng, X.-A. A Review of Sublethal Effects of Pulsed Electric Field on Cells in Food Processing. J. Food Eng. 2018, 223, 32–41. DOI: 10.1016/j.jfoodeng.2017.11.035.
  • Martín-Belloso, O.; Marsellés-Fontanet, Á. R.; Elez-Martínez, P. Chapter 10 - Food Safety Aspects of Pulsed Electric Fields. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.; Academic Press: San Diego, 2014; pp 169–178.
  • Vorobiev, E.; Lebovka, N. 15 - Pulsed Electric Field in Green Processing and Preservation of Food Products. In Green Food Processing Techniques; Chemat, F., Vorobiev, E., Eds.; Academic Press, London, 2019; pp 403–430.
  • Pakhomova, O. N.; Gregory, B. W.; Semenov, I.; Pakhomov, A. G. Two Modes of Cell Death Caused by Exposure to Nanosecond Pulsed Electric Field. Plos One. 2013, 8(7), e70278.
  • Amiali, M.; Ngadi, M. O. 14 - Microbial Decontamination of Food by Pulsed Electric Fields (Pefs). In Microbial Decontamination in the Food Industry; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing, Cambridge, 2012; pp 407–449.
  • Schottroff, F.; Johnson, K.; Johnson, N. B.; Bédard, M. F.; Jaeger, H. Challenges and Limitations for the Decontamination of High Solids Protein Solutions at Neutral pH Using Pulsed Electric Fields. J. Food Eng. 2020, 268, 109737. DOI: 10.1016/j.jfoodeng.2019.109737.
  • Vega-Mercado, H.; Powers, J. R.; Martín-Belloso, O.; Luedecke, L.; Barbosa-Canovas, G. V.; Swanson, B. G. Chapter 7: Change in Susceptibility of Proteins to Proteolysis and the Inactivation of an Extracellular Protease from Pseudomonas Fluorescens M3/6 When Exposed to Pulsed Electric Fields. In Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications; Barbosa-Canovas, G.V., Zhang, Q.H., Eds.; Technomic Publishing: Lancaster, Pennsylvannia, 2019; pp 105–120.
  • Wang, L.-H.; Wen, Q.-H.; Zeng, X.-A.; Han, Z.; Brennan, C. S. Influence of Naringenin Adaptation and Shock on Resistance of Staphylococcus Aureus and Escherichia Coli to Pulsed Electric Fields. LWT-Food Sci. Technol. 2019, 107, 308–317. DOI: 10.1016/j.lwt.2019.03.029.
  • Buckow, R.; Chandry, P. S.; Ng, S. Y.; McAuley, C. M.; Swanson, B. G. Opportunities and Challenges in Pulsed Electric Field Processing of Dairy Products. Int. Dairy J. 2014, 34(2), 199–212. DOI: 10.1016/j.idairyj.2013.09.002.
  • Sampedro, F.; Rodrigo, D. Pulsed Electric Fields (PEF) Processing of Milk and Dairy Products. In Emerging Dairy Processing Technologies: Opportunities for the Dairy Industry, 1st ed.; Datta, N., Tomasula, P.M., Eds.; John Wiley & Sons Inc: New York, 2015; pp 115–148.
  • Ruhlman, K. T.; Jin, Z. T.; Zhang, Q. H. Chapter 3: Physical Properties of Liquid Foods for Pulsed Electric Field Treatment. In Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications; Barbosa-Canovas, G.V., Zhang, Q.H., Eds.; Technomic Publishing: Lancaster, Pennsylvannia, 2019; pp 46–58.
  • Yu, L. J. Application of Pulsed Electric Field Treated Milk on Cheese Processing: Coagulation Properties and Flavor Development; McGill University, Montreal, Quebec, 2009.
  • Yeom, H. W.; Akdemir-Evrendilek, G.; Jin, Z. T.; Zhang, Q. H. Processing of Yogurt‐based Products with Pulsed Electric Fields: Microbial, Sensory and Physical Evaluations. J. Food Process. Preserv. 2004, 28(3), 161–178. DOI: 10.1111/j.1745-4549.2004.tb00818.x.
  • Wust, R.; Pearce, R.; Ortega-Rivas, E.; Sherkat, F., Pulsed Electric fields Treatment of Milk Affects the Properties of the Cottage Cheese Gel. In 9th International Congress on Engineering and Food, Montpellier (France), 2004; pp. 87.
  • Floury, J.; Grosset, N.; Leconte, N.; Pasco, M.; Madec, M.-N.; Jeantet, R. Continuous Raw Skim Milk Processing by Pulsed Electric Field at Non-lethal Temperature: Effect on Microbial Inactivation and Functional Properties. Le Lait. 2006, 86(1), 43–57. DOI: 10.1051/lait:2005039.
  • Shamsi, K. Effects of Pulsed Electric Field Processing on Microbial, Enzymatic & Physical Attributes of Milk and the Rennet-induced Milk Gels. PhD Thesis, RMIT University Melbourne, Australia, 2008.
  • Yu, L.; Ngadi, M.; Raghavan, G. Effect of Temperature and Pulsed Electric Field Treatment on Rennet Coagulation Properties of Milk. J. Food Eng. 2009, 95(1), 115–118. DOI: 10.1016/j.jfoodeng.2009.04.013.
  • Garcia-Amezquita, L. E.; Primo-Mora, A. R.; Barbosa-Canovas, G. V.; Sepulveda, D. R. Effect of Nonthermal Technologies on the Native Size Distribution of Fat Globules in Bovine Cheese-making Milk. Innov. Food Sci. Emerg. Technol. 2009, 10(4), 491–494. DOI: 10.1016/j.ifset.2009.03.002.
  • Bermúdez‐Aguirre, D.; Fernández, S.; Esquivel, H.; Dunne, P. C.; Barbosa‐Canovas, G. V. Milk Processed by Pulsed Electric Fields: Evaluation of Microbial Quality, Physicochemical Characteristics, and Selected Nutrients at Different Storage Conditions. J. Food Sci. 2011, 76(5), S289–S299. DOI: 10.1111/j.1750-3841.2011.02171.x.
  • Xiang, B. Y.; Simpson, M. V.; Ngadi, M. O.; Simpson, B. K. Flow Behaviour and Viscosity of Reconstituted Skimmed Milk Treated with Pulsed Electric Field. Biosys. Eng. 2011, 109(3), 228–234. DOI:10.1016/j.biosystemseng.2011.04.004.
  • Lopez, C.; Briard-Bion, V.; Ménard, O.; Beaucher, E.; Rousseau, F.; Fauquant, J.; Leconte, N.; Robert, B. Fat Globules Selected from Whole Milk according to Their Size: Different Compositions and Structure of the Biomembrane, Revealing Sphingomyelin-rich Domains. Food Chem. 2011, 125(2), 355–368. DOI: 10.1016/j.foodchem.2010.09.005.
  • Sharma, P.; Oey, I.; Everett, D. W. Effect of Pulsed Electric Field Processing on the Functional Properties of Bovine Milk. Trends Food Sci. Technol. 2014, 35(2), 87–101. DOI: 10.1016/j.tifs.2013.11.004.
  • Sharma, P.; Oey, I.; Everett, D. W. Interfacial Properties and Transmission Electron Microscopy Revealing Damage to the Milk Fat Globule System after Pulsed Electric Field Treatment. Food Hydrocoll. 2015, 47, 99–107. DOI: 10.1016/j.foodhyd.2015.01.023.
  • Barsotti, L.; Dumay, E.; Mu, T. H.; Fernandez Diaz, M. D.; Cheftel, J. C. Effects of High Voltage Electric Pulses on Protein-based Food Constituents and Structures. Trends Food Sci. Technol. 2001, 12(3), 136–144. DOI: 10.1016/S0924-2244(01)00065-6.
  • Yu, L. J.; Ngadi, M.; Raghavan, G. S. V. Effect of Temperature and Pulsed Electric Field Treatment on Rennet Coagulation Properties of Milk. J. Food Eng. 2009, 95(1), 115–118. DOI: 10.1016/j.jfoodeng.2009.04.013.
  • Yu, L. J.; Ngadi, M.; Raghavan, G. S. V. Proteolysis of Cheese Slurry Made from Pulsed Electric Field-treated Milk. Food Bioproc. Tech. 2012, 5(1), 47–54. DOI: 10.1007/s11947-010-0341-5.
  • Hemar, Y.; Augustin, M.; Cheng, L. J.; Sanguansri, P.; Swiergon, P.; Wan, J. The Effect of Pulsed Electric Field Processing on Particle Size and Viscosity of Milk and Milk Concentrates. Milchwissenschaft-Milk Sci. Int. 2011, 66(2), 126.
  • Fox, P.; Uniacke-Lowe, T.; McSweeney, P.; O’Mahony, J. Milk Proteins. In Dairy Chemistry and Biochemistry, 2nd ed.; Springer, Cham: Switzerland. 2015; pp. 145–239.
  • Odriozola-Serrano, I.; Bendicho-Porta, S.; Martin-Belloso, O. Comparative Study on Shelf Life of Whole Milk Processed by High-intensity Pulsed Electric Field or Heat Treatment. J. Dairy Sci. 2006, 89(3), 905–911. DOI: 10.3168/jds.S0022-0302(06)72155-5.
  • Zhao, W.; Yang, R. Pulsed Electric Field Induced Aggregation of Food Proteins: Ovalbumin and Bovine Serum Albumin. Food Bioproc. Tech. 2012, 5(5), 1706–1714. DOI: 10.1007/s11947-010-0464-8.
  • De Luis, R.; Arias, O.; Puértolas, E.; Benedé, S.; Sanchez, L.; Calvo, M.; Pérez, M. D. Effect of High-intensity Pulse Electric Fields on Denaturation of Bovine Whey Proteins. Milchwissenschaft-Milk Sci. Int. 2009, 64(4), 422–426.
  • Sui, Q.; Roginski, H.; Williams, R. P. W.; Versteeg, C.; Wan, J. Effect of Pulsed Electric Field and Thermal Treatment on the Physicochemical Properties of Lactoferrin with Different Iron Saturation Levels. Int. Dairy J. 2010, 20(10), 707–714. DOI: 10.1016/j.idairyj.2010.03.013.
  • Mathys, A.; Toepfl, S.; Siemer, C.; Favre, L.; Benyacoub, J.; Hansen, C. E., Pulsed Electric Field Treatment Process and Dairy Product Comprising Bioactive Molecules Obtainable by the Process. Patent WO 2013007620 A1 2013.
  • Ahmad, T.; Butt, M. Z.; Aadil, R. M.; Inam-ur-Raheem, M.; Bekhit, A. E.; Guimarães, J. T.; Balthazar, C. F.; Rocha, R. S.; Esmerino, E. A.; Freitas, M. Q.; et al. Impact of Nonthermal Processing on Different Milk Enzymes. Int. J. Dairy Technol. 2019, 72(4), 481–495. DOI: 10.1111/1471-0307.12379.
  • Castro, A. J.; Swanson, B. G.; Barbosa-Canovas, G. V.; Zhang, Q. H. Chapter 5: Pulsed Electric Field Modification of Milk Alkaline Phosphatase Activity. In Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications; Barbosa-Canovas, G.V., Zhang, Q.H., Eds.; Technomic Publishing: Lancaster, Pennsylvannia, 2019; pp 65–82.
  • Shamsi, K.; Versteeg, C.; Sherkat, F.; Wan, J. Alkaline Phosphatase and Microbial Inactivation by Pulsed Electric Field in Bovine Milk. Innov. Food Sci. Emerg. Technol. 2008, 9(2), 217–223. DOI: 10.1016/j.ifset.2007.06.012.
  • Jaeger, H.; Meneses, N.; Moritz, J.; Knorr, D. Model for the Differentiation of Temperature and Electric Field Effects during Thermal Assisted PEF Processing. J. Food Eng. 2010, 100(1), 109–118. DOI: 10.1016/j.jfoodeng.2010.03.034.
  • Van Loey, A.; Verachtert, B.; Hendrickx, M. Effects of High Electric Field Pulses on Enzymes. Trends Food Sci. Technol. 2001, 12(3), 94–102. DOI: 10.1016/S0924-2244(01)00066-8.
  • Buckow, R.; Semrau, J.; Sui, Q.; Wan, J.; Knoerzer, K. Numerical Evaluation of Lactoperoxidase Inactivation during Continuous Pulsed Electric Field Processing. Biotechnol. Progr. 2012, 28(5), 1363–1375. DOI: 10.1002/btpr.1582.
  • Sharma, P.; Oey, I.; Bremer, P.; Everett, D. W. Microbiological and Enzymatic Activity of Bovine Whole Milk Treated by Pulsed Electric Fields. Int. J. Dairy Technol. 2018, 71(1), 10–19. DOI: 10.1111/1471-0307.12379.
  • Terefe, N. S.; Buckow, R.; Versteeg, C. Quality-related Enzymes in Plant-based Products: Effects of Novel Food Processing Technologies Part 2: Pulsed Electric Field Processing. Crit. Rev. Food Sci. Nutr. 2015, 55(1), 1–15. DOI: 10.1080/10408398.2012.701253.
  • Kussendrager, K. D.; Van Hooijdonk, A. Lactoperoxidase: Physico-chemical Properties, Occurrence, Mechanism of Action and Applications. Br. J. Nutr. 2000, 84(S1), 19–25. DOI: 10.1017/S0007114500002208.
  • Fox, P.; Uniacke-Lowe, T.; McSweeney, P.; O’Mahony, J. Enzymology of Milk and Milk Products. In Dairy Chemistry and Biochemistry, 2nd ed.; Springer, Cham: Switzerland. 2015; pp. 377–414.
  • Sharma, P.; Oey, I.; Bremer, P.; Everett, D. W. Reduction of Bacterial Counts and Inactivation of Enzymes in Bovine Whole Milk Using Pulsed Electric Fields. Int. Dairy J. 2014, 39(1), 146–156. DOI: 10.1016/j.idairyj.2014.06.003.
  • Harrison, R. Milk Xanthine Oxidase: Properties and Physiological Roles. Int. Dairy J. 2006, 16(6), 546–554. DOI: 10.1016/j.idairyj.2005.08.016.
  • Zhang, S.; Yang, R.; Zhao, W.; Hua, X.; Zhang, W.; Zhang, Z. Influence of Pulsed Electric Field Treatments on the Volatile Compounds of Milk in Comparison with Pasteurized Processing. J. Food Sci. 2011, 76(1), C127–C132. DOI: 10.1111/j.1750-3841.2010.01916.x.
  • Zulueta, A.; Esteve, M. J.; Frígola, A. Ascorbic Acid in Orange Juice–milk Beverage Treated by High Intensity Pulsed Electric Fields and Its Stability during Storage. Innov. Food Sci. Emerg. Technol. 2010, 11(1), 84–90. DOI: 10.1016/j.ifset.2009.07.007.
  • Schottroff, F.; Gratz, M.; Krottenthaler, A.; Johnson, N. B.; Bédard, M. F.; Jaeger, H. Pulsed Electric Field Preservation of Liquid Whey Protein formulations–Influence of Process Parameters, pH, and Protein Content on the Inactivation of Listeria Innocua and the Retention of Bioactive Ingredients. J. Food Eng. 2019, 243, 142–152. DOI: 10.1016/j.jfoodeng.2018.09.003.
  • Lelieveld, H. L. M.; Wouters, P. C.; Leon, A. E. Chapter 17: Pulsed Electric Field Treatment of Food and Product Safety Assurance. In Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications; Barbosa-Canovas, G.V., Zhang, Q.H., Eds.; Technomic Publishing: Lancaster, Pennsylvannia, 2019; pp 252–257.
  • Syed, Q.; Ishaq, A.; Rahman, U.; Aslam, S.; Shukat, R. Pulsed Electric Field Technology in Food Preservation: A Review. J. Nutr. Health Food Eng. 2017, 6(6), 1–5.
  • Sobrino-López, A.; Martín-Belloso, O. Review: Potential of High-intensity Pulsed Electric Field Technology for Milk Processing. Food Eng. Rev. 2010, 2(1), 17–27. DOI: 10.1007/s12393-009-9011-7.
  • Smith, K.; Mittal, G.; Griffiths, M. Pasteurization of Milk Using Pulsed Electrical Field and Antimicrobials. J. Food Sci. 2002, 67(6), 2304–2308. DOI: 10.1111/j.1365-2621.2002.tb09545.x.
  • Bermúdez-Aguirre, D.; Dunne, C. P.; Barbosa-Canovas, G. V. Effect of Processing Parameters on Inactivation of Bacillus Cereus Spores in Milk Using Pulsed Electric Fields. Int. Dairy J. 2012, 24(1), 13–21. DOI: 10.1016/j.idairyj.2011.11.003.
  • Fernandez-Molina, J. J.; Barbosa-Canovas, G. V.; Swanson, B. G. Skim Milk Processing by Combining Pulsed Electric Fields and Thermal Treatments. J. Food Process. Preserv. 2005, 29(5‐6), 291–306. DOI: 10.1111/j.1745-4549.2005.00029.x.
  • Sepulveda, D. R.; Góngora-Nieto, M. M.; Guerrero, J. A.; Barbosa-Canovas, G. V. Production of Extended-shelf Life Milk by Processing Pasteurized Milk with Pulsed Electric Fields. J. Food Eng. 2005, 67(1–2), 81–86. DOI: 10.1016/j.jfoodeng.2004.05.056.
  • Sepulveda, D. R.; Góngora-Nieto, M. M.; Guerrero, J. A.; Barbosa-Canovas, G. V. Shelf Life of Whole Milk Processed by Pulsed Electric Fields in Combination with PEF-generated Heat. LWT-Food Sci. Technol. 2009, 42(3), 735–739. DOI: 10.1016/j.lwt.2008.10.005.
  • Guerrero-Beltrán, J. Á.; Sepulveda, D. R.; Góngora-Nieto, M. M.; Swanson, B.; Barbosa-Canovas, G. V. Milk Thermization by Pulsed Electric Fields (PEF) and Electrically Induced Heat. J. Food Eng. 2010, 100(1), 56–60. DOI: 10.1016/j.jfoodeng.2010.03.027.
  • Fernandez-Molina, J. J.; Fernandez-Gutierrez, S. A.; Altunakar, B.; Bermudez‐Aguirre, D.; Swanson, B. G.; Barbosa-Canovas, G. V. The Combined Effect of Pulsed Electric Fields and Conventional Heating on the Microbial Quality and Shelf Life of Skim Milk. J. Food Process. Preserv. 2005, 29(5‐6), 390–406. DOI: 10.1111/j.1745-4549.2005.00036.x.
  • Walkling‐Ribeiro, M.; Noci, F.; Cronin, D.; Lyng, J.; Morgan, D. Antimicrobial Effect and Shelf‐life Extension by Combined Thermal and Pulsed Electric Field Treatment of Milk. J. Appl. Microbiol. 2009, 106(1), 241–248. DOI: 10.1111/j.1365-2672.2008.03997.x.
  • Rodríguez-González, O.; Walkling-Ribeiro, M.; Jayaram, S.; Griffiths, M. W. Factors Affecting the Inactivation of the Natural Microbiota of Milk Processed by Pulsed Electric Fields and Cross-flow Microfiltration. J. Dairy Res. 2011, 78(3), 270–278. DOI: 10.1017/S0022029911000367.
  • Walkling-Ribeiro, M.; Rodríguez-González, O.; Jayaram, S.; Griffiths, M. Microbial Inactivation and Shelf Life Comparison of ‘Cold’ Hurdle Processing with Pulsed Electric Fields and Microfiltration, and Conventional Thermal Pasteurisation in Skim Milk. Int. J. Food Microbiol. 2011, 144(3), 379–386. DOI: 10.1016/j.ijfoodmicro.2010.10.023.
  • Buckow, R.; Schroeder, S.; Berres, P.; Baumann, P.; Knoerzer, K. Simulation and Evaluation of Pilot-scale Pulsed Electric Field (PEF) Processing. J. Food Eng. 2010, 101(1), 67–77. DOI: 10.1016/j.jfoodeng.2010.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.