540
Views
9
CrossRef citations to date
0
Altmetric
Review

Health Benefits of Prunus avium Plant Parts: An Unexplored Source Rich in Phenolic Compounds

, , & ORCID Icon

References

  • World Health Organization. Promoting Fruit and Vegetable Consumption around the World: 2003. http://www.who.int/dietphysicalactivity/fruit/en/(accessed Oct 4, 2016).
  • Ferlemi, A.-V.; Lamari, F. N. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants. 2016, 5(2), 17. DOI: 10.3390/antiox5020017.
  • O’Shea, N.; Arendt, E. K.; Gallagher, E. Dietary Fibre and Phytochemical Characteristics of Fruit and Vegetable By-products and Their Recent Applications as Novel Ingredients in Food Products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. DOI: 10.1016/j.ifset.2012.06.002.
  • Goldfrank, L.; Lewin, N.; Flomenbaum, N.; Howland, M. The Pernicious Panacea: Herbal Medicine. Hosp Physician. 1982, 18, 64–73.
  • Mentz, L. A.; Schenkel, E. P. Plantas Medicinais: A Coerência E a Confiabilidade Das Indicações Terapêuticas. Caderno De Farmácia 1989, Porto Alegre, RS. Vol. 5, n. 1/2 jan./ dez,,, 93–119. .
  • Levy, C.; Seeff, L. D.; Lindor, K. D. Use of Herbal Supplements for Chronic Liver Disease. Clin. Gastroenterol. Hepatol. 2004, 2(11), 947–956. DOI: 10.1016/S1542-3565(04)00455-0.
  • Elberry, A. A.; Harraz, F. M.; Ghareib, S. A.; Gabr, S. A.; Nagy, A. A.; Abdel-Sattar, E. Methanolic Extract of Marrubium Vulgare Ameliorates Hyperglycemia and Dyslipidemia in Streptozotocin-induced Diabetic Rats. Int. J. Diabetes Mellit. 2015, 3(1), 37–44. DOI: 10.1016/j.ijdm.2011.01.004.
  • Serra, A. T.; Duarte, R. O.; Bronze, M. R.; Duarte, C. M. Identification of Bioactive Response in Traditional Cherries from Portugal. Food Chem. 2011, 125(2), 318–325. DOI: 10.1016/j.foodchem.2010.07.088.
  • Food and Agriculture Organization of the United Nations: 2015. http://www.fao.org/faostat/en/#data/QC (accessed Oct 15, 2016).
  • Duarte, A. P.; Silva, B. M. Nutritional and Phytochemical Potential of “Prunus avium L.”. In Natural Products: Research Reviews; Gupta, V.K., Ed.; Daya Publishing House: New Delhi, India, 2014, 185-202.
  • Gonçalves, A. C.; Bento, C.; Silva, B. M.; Silva, L. R. Sweet Cherries from Fundão Possess Antidiabetic Potential and Protect Human Erythrocytes against Oxidative Damage. Food Res. Int. 2017, 95, 91–100. DOI: 10.1016/j.foodres.2017.02.023.
  • Ferretti, G.; Bacchetti, T.; Belleggia, A.; Neri, D. Cherry Antioxidants: From Farm to Table. Molecules. 2010, 15(10), 6993–7005. DOI: 10.3390/molecules15106993.
  • Jakobek, L.; Šeruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, Phenolic Acids and Antioxidant Activity of Some Red Fruits. Dtsch Lebensmitt Rundsch. 2007, 103(8), 369–378.
  • Di Cagno, R.; Surico, R. F.; Minervini, G.; Rizzello, C. G.; Lovino, R.; Servili, M.; Taticchi, A.; Urbani, S.; Gobbetti, M. Exploitation of Sweet Cherry (Prunus avium L.) Puree Added of Stem Infusion through Fermentation by Selected Autochthonous Lactic Acid Bacteria. Food Microbiol. 2011, 28(5), 900–909. DOI: 10.1016/j.fm.2010.12.008.
  • Hooman, N.; Mojab, F.; Nickavar, B.; Pouryousefi-Kermani, P. Diuretic Effect of Powdered Cerasus avium (Cherry) Tails on Healthy Volunteers. Pak. J. Pharm. Sci. 2009, 22(4), 381–383.
  • Blazso, G.; Gabor, M. Anti-inflammatory Effects of Cherry (Prunus Avium L.) Stalk Extract. Pharmazie. 1994, 49(7), 540.
  • Hetényi, E.; Vályi-Nagy, T. Pharmacology of Cherry (Prunus Avium) Stalk Extract. II. Cardiovascular Effects. Acta Physiol Acad Sci Hung, 1969, 35; 189-197.
  • Hetenyi, E.; Valyi-Nagy, T. Pharmacology of Cherry (Prunus Avium) Stalk Extract. I. Effect on Smooth Muscle. Acta Physiol Acad Sci Hung, 1969; 35, 183-188.
  • Rigau, A.;. Cultivo Del Cerezo. Sintes, Barcelona, 1963.
  • Tarnai, E.; Pagliuca, G.; Piretti, M.; Cipollone, M. Systematic Investigation of Polyphenol Compounds from Different Parts of Cherry Tree (Prunus Avium). Fitoterapia. 1994, 65, 541–548.
  • Bastos, C.; Barros, L.; Dueñas, M.; Calhelha, R. C.; Queiroz, M. J. R.; Santos-Buelga, C.; Ferreira, I. C. Chemical Characterisation and Bioactive Properties of Prunus Avium L.: The Widely Studied Fruits and the Unexplored Stems. Food Chem. 2015, 173, 1045–1053. DOI: 10.1016/j.foodchem.2014.10.145.
  • Mikiciuk, G.; Mikiciuk, M.; Możdżer, E.; Statkiewicz, M.; Chylewska, U. The Effects of Foliar Nutrition with InCa Fertilizer on the Chemical Composition of Leaves and Fruits of Sweet Cherry. J. Ecol. Eng. 2015, 16(2), 116–119. DOI: 10.12911/22998993/1865.
  • Geibel, M.; Gross, D. C.; Mo, Y.; Bonsall, R. F.; Geiger, H. Identification of Flavonol Glycosides from Prunus avium Leaves Which Induce the Production of Syringomycin by Pseudomonas syringae pv. syringae. Acta Hortic. 1993, 381, 662–666.
  • Bauer, H.; Treutter, D.; Schmid, P.; Schmitt, E.; Feucht, W. Specific Accumulation of O-diphenols in Stressed Leaves of Prunus Avium. Phytochemistry. 1989, 28(5), 1363–1364. DOI: 10.1016/S0031-9422(00)97746-X.
  • Gonçalves, B.; Moutinho-Pereira, J.; Santos, A.; Silva, A. P.; Bacelar, E.; Correia, C.; Rosa, E. Scion–rootstock Interaction Affects the Physiology and Fruit Quality of Sweet Cherry. Tree Physio. 2006, 26(1), 93–104. DOI: 10.1093/treephys/26.1.93.
  • Alarcão, A. D.;. Características Fisico-quimicas E Utilizações Agro-alimentares Da Cereja E Da Ginja. Revista De Ciências Agrárias. 1999, 22(3), 127–152.
  • Olden, E.; Nybom, N. On the Origin of Prunus Cerasus L. Hereditas. 1968, 59(2–3), 327–345. DOI: 10.1111/j.1601-5223.1968.tb02181.x.
  • Gonçalves, B.; Silva, A. Valor Nutricional Da Cereja. Efeitos Na Saúde. In Cerejais. A Árvore E O Fruto. Santos, A.S.A Ed., 2008.
  • McCune, L. M.; Kubota, C.; Stendell-Hollis, N. R.; Thomson, C. A. Cherries and Health: A Review. Crit. Rev. Food Sci. Nutr. 2010, 51(1), 1–12. DOI: 10.1080/10408390903001719.
  • Esti, M.; Cinquanta, L.; Sinesio, F.; Moneta, E.; Di Matteo, M. Physicochemical and Sensory Fruit Characteristics of Two Sweet Cherry Cultivars after Cool Storage. Food Chem. 2002, 76(4), 399–405. DOI: 10.1016/S0308-8146(01)00231-X.
  • Spiecker, H.; Hein, S. Valuable Broadleaved Forests in Europe, Heinrich Spiecker, Sebastian Hein, Kaisu Makkoneb-Spiecker, Michael Thies, Eds., Brill, 22, 2009.
  • Linke, M.; Herppich, W. B.; Geyer, M. Green Peduncles May Indicate Postharvest Freshness of Sweet Cherries. Postharvest Biol. Technol. 2010, 58(2), 135–141. DOI: 10.1016/j.postharvbio.2010.05.014.
  • Pacholak, E.; Zydlik, Z.; Rutkowski, K. Effect of Cherry Nitrogen Fertilization on the Content of Minerals in the Leaves and Soil. Acta Sci. Pol. Hortorum Cultus. 2011, 10(1), 105–112.
  • R Vasanthi, H.; ShriShriMal, N.; K Das, D. Phytochemicals from Plants to Combat Cardiovascular Disease. Curr. Med. Chem. 2012, 19(14), 2242–2251. DOI: 10.2174/092986712800229078.
  • Boyer, J.; Liu, R. H. Apple Phytochemicals and Their Health Benefits. Nutr. J. 2004, 3(1), 5. DOI: 10.1186/1475-2891-3-5.
  • Cheynier, V.;. Phenolic Compounds: From Plants to Foods. Phytochem. Rev. 2012, 11(2–3), 153–177. DOI: 10.1007/s11101-012-9242-8.
  • Chaovanalikit, A.; Wrolstad, R. Anthocyanin and Polyphenolic Composition of Fresh and Processed Cherries. J. Food Sci. 2004, 69(1), 73–83.
  • Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health effects–A Review. J. Funct. Foods. 2015, 18B, 820–897. DOI: 10.1016/j.jff.2015.06.018.
  • Randhir, R.; Lin, Y.-T.; Shetty, K. Phenolics, Their Antioxidant and Antimicrobial Activity in Dark Germinated Fenugreek Sprouts in Response to Peptide and Phytochemical Elicitors. Asia Pac. J. Clin. Nutr. 2004, 13(3), 295–307.
  • Lien, D. T. P.; Tram, P. T. B.; Toan, H. T. T. Antioxidant Properties of Food Natural Phenolic compounds–A Review. Innov. Food Res. 2016, 2, 1–5.
  • Cowan, M. M.;. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. 1999, 12(4), 564–582.
  • Shetty, K.;. Biotechnology to Harness the Benefits of Dietary Phenolics; Focus on Lamiaceae. Asia Pac. J. Clin. Nutr. 1997, 6, 162–171.
  • Tomás‐Barberán, F. A.; Espin, J. C. Phenolic Compounds and Related Enzymes as Determinants of Quality in Fruits and Vegetables. J. Sci. Food Agric. 2001, 81(9), 853–876.
  • Ballistreri, G.; Continella, A.; Gentile, A.; Amenta, M.; Fabroni, S.; Rapisarda, P. Fruit Quality and Bioactive Compounds Relevant to Human Health of Sweet Cherry (Prunus Avium L.) Cultivars Grown in Italy. Food Chem. 2013, 140(4), 630–638. DOI: 10.1016/j.foodchem.2012.11.024.
  • Gonçalves, B.; Landbo, A. K.; Let, M.; Silva, A. P.; Rosa, E.; Meyer, A. S. Storage Affects the Phenolic Profiles and Antioxidant Activities of Cherries (Prunus Avium L) on Human Low‐density Lipoproteins. J. Sci. Food Agric. 2004, 84(9), 1013–1020. DOI: 10.1002/jsfa.1752.
  • Naczk, M.; Shahidi, F. Extraction and Analysis of Phenolics in Food. J. Chromatogr. A. 2004, 1054(1), 95–111. DOI: 10.1016/S0021-9673(04)01409-8.
  • Mattila, P.; Hellström, J. Phenolic Acids in Potatoes, Vegetables, and Some of Their Products. J. Food Compost Anal. 2007, 20(3), 152–160. DOI: 10.1016/j.jfca.2006.05.007.
  • Robbins, R. J.;. Phenolic Acids in Foods: An Overview of Analytical Methodology. J. Agric. Food Chem. 2003, 51(10), 2866–2887. DOI: 10.1021/jf026182t.
  • Aires, A.; Dias, C.; Carvalho, R.; Saavedra, M. J. Analysis of Glycosylated Flavonoids Extracted from Sweet-cherry Stems, as Antibacterial Agents against Pathogenic Escherichia Coli Isolates. Acta Biochim. Pol. 2017, 64, 1–7. DOI: 10.18388/abp.2016_1374.
  • Bursal, E.; Köksal, E.; Gülçin, İ.; Bilsel, G.; Gören, A. C. Antioxidant Activity and Polyphenol Content of Cherry Stem (Cerasus Avium L.) Determined by LC–MS/MS. Food Res. Int. 2013, 51(1), 66–74. DOI: 10.1016/j.foodres.2012.11.022.
  • Mattila, P.; Hellström, J.; Törrönen, R. Phenolic Acids in Berries, Fruits, and Beverages. J. Agric. Food Chem. 2006, 54(19), 7193–7199. DOI: 10.1021/jf0615247.
  • Kelebek, H.; Selli, S. Evaluation of Chemical Constituents and Antioxidant Activity of Sweet Cherry (Prunus Avium L.) Cultivars. Int. J. Food Sci. Technol. 2011, 46(12), 2530–2537. DOI: 10.1111/j.1365-2621.2011.02777.x.
  • Cao, J.; Jiang, Q.; Lin, J.; Li, X.; Sun, C.; Chen, K. Physicochemical Characterisation of Four Cherry Species (Prunus Spp.) Grown in China. Food Chem. 2015, 173, 855–863. DOI: 10.1016/j.foodchem.2014.10.094.
  • El-Seedi, H. R.; El-Said, A. M.; Khalifa, S. A.; Goöransson, U.; Bohlin, L.; Borg-Karlson, A.-K.; Verpoorte, R. Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. J. Agric. Food Chem. 2012, 60(44), 10877–10895. DOI: 10.1021/jf301807g.
  • Herrmann, K.; Nagel, C. W. Occurrence and Content of Hydroxycinnamic and Hydroxybenzoic Acid Compounds in Foods. Crit. Rev. Food Sci. Nutr. 1989, 28(4), 315–347. DOI: 10.1080/10408398909527504.
  • Adom, K. K.; Liu, R. H. Antioxidant Activity of Grains. J. Agric. Food Chem. 2002, 50(21), 6182–6187. DOI: 10.1021/jf0205099.
  • Usenik, V.; Fabčič, J.; Štampar, F. Sugars, Organic Acids, Phenolic Composition and Antioxidant Activity of Sweet Cherry (Prunus Avium L.). Food Chem. 2008, 107(1), 185–192. DOI: 10.1016/j.foodchem.2007.08.004.
  • Alam, M. A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H. M.; Rahman, M. M.; Ullah, M. O. Hydroxycinnamic Acid Derivatives: A Potential Class of Natural Compounds for the Management of Lipid Metabolism and Obesity. Nutr. Metab. 2016, 13(1), 27.
  • George, V. C.; Dellaire, G.; Rupasinghe, H. V. Plant Flavonoids in Cancer Chemoprevention: Role in Genome Stability. J. Nutr. Biochem. 2017, 45, 1–14. DOI: 10.1016/j.jnutbio.2016.11.007.
  • Harborne, J. B.; Turner, B. L.; Harborne, J. Plant Chemosystematics; Academic Press: London, 1984; Vol. 123.
  • Henning, W.; Herrmann, K. Flavonol Tetraglycosides from the Leaves of Prunus Cerasus and P. Avium. Phytochem. 1980, 19(12), 2727–2729. DOI: 10.1016/S0031-9422(00)83951-5.
  • Mo, -Y.-Y.; Geibel, M.; Bonsall, R. F.; Gross, D. C. Analysis of Sweet Cherry (Prunus avium L.) Leaves for Plant Signal Molecules that Activate the syrB Gene Required for Synthesis of the Phytotoxin, Syringomycin, by Pseudomonas syringae pv syringae. Plant Physiol. 1995, 107(2), 603–612. DOI: 10.1104/pp.107.2.603.
  • Erlund, I.;. Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology. Nutr. Res. 2004, 24(10), 851–874. DOI: 10.1016/j.nutres.2004.07.005.
  • Willits, M. G.; Giovanni, M. T.; Prata, R. T.; Kramer, C. M.; De Luca, V.; Steffens, J. C.; Graser, G. Bio-fermentation of Modified Flavonoids: An Example of in Vivo Diversification of Secondary Metabolites. Phytochem. 2004, 65(1), 31–41. DOI: 10.1016/j.phytochem.2003.10.005.
  • Dai, J.; Mumper, R. J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010, 15(10), 7313–7352. DOI: 10.3390/molecules15107313.
  • Musialik, M.; Kuzmicz, R.; Pawłowski, T. S.; Litwinienko, G. Acidity of Hydroxyl Groups: An Overlooked Influence on Antiradical Properties of Flavonoids. J. Org. Chem. 2009, 74(7), 2699–2709. DOI: 10.1021/jo802716v.
  • Tzeng, S.-H.; Ko, W.-C.; Ko, F.-N.; Teng, C.-M. Inhibition of Platelet Aggregation by Some Flavonoids. Thromb. Res. 1991, 64(1), 91–100. DOI: 10.1016/0049-3848(91)90208-E.
  • Faggio, C.; Sureda, A.; Morabito, S.; Silva, A. S.; Mocan, A.; Nabavi, S. F.; Nabavi, S. M. Flavonoids and Platelet Aggregation: A Brief Review. Eur. J. Pharmacol. 2017, 807, 91–100. DOI: 10.1016/j.ejphar.2017.04.009.
  • Deschner, E. E.; Ruperto, J.; Wong, G.; Newmark, H. L. Quercetin and Rutin as Inhibitors of Azoxymethanol-induced Colonic Neoplasia. Carcinogenesis. 1991, 12(7), 1193–1196. DOI: 10.1093/carcin/12.7.1193.
  • Batra, P.; Sharma, A. K. Anti-cancer Potential of Flavonoids: Recent Trends and Future Perspectives. Biotech. 2013, 3(6), 439–459.
  • Suttana, W. A.;. Activities of Flavonoids: Mechanisms of Actions. Srinagarind Med. J. 2013, 28(4), 567–582.
  • Middleton, E.; Kandaswami, C. Effects of Flavonoids on Immune and Inflammatory Cell Functions. Biochem Pharmacol. 1992, 43(6), 1167–1179. DOI: 10.1016/0006-2952(92)90489-6.
  • Rathee, P.; Chaudhary, H.; Rathee, S.; Rathee, D.; Kumar, V.; Kohli, K. Mechanism of Action of Flavonoids as Anti-inflammatory Agents: A Review. Inflamm. Allergy Drug Targets. 2009, 8(3), 229–235. DOI: 10.2174/187152809788681029.
  • Testai, L.; Martelli, A.; Cristofaro, M.; Breschi, M. C.; Calderone, V. Cardioprotective Effects of Different Flavonoids against Myocardial Ischaemia/reperfusion Injury in Langendorff‐perfused Rat Hearts. J. Pharm. Pharmacol. 2013, 65(5), 750–756. DOI: 10.1111/jphp.12032.
  • Robards, K.; Antolovich, M. Analytical Chemistry of Fruit Bioflavonoids: A review. Analyst. 1997, 122(2), 11–34. DOI: 10.1039/a606499j.
  • Kim, D.-O.; Heo, H. J.; Kim, Y. J.; Yang, H. S.; Lee, C. Y. Sweet and Sour Cherry Phenolics and Their Protective Effects on Neuronal Cells. J. Agric. Food Chem. 2005, 53(26), 9921–9927. DOI: 10.1021/jf0518599.
  • Giménez, M. J.; Valverde, J. M.; Valero, D.; Guillén, F.; Martínez-Romero, D.; Serrano, M.; Castillo, S. Quality and Antioxidant Properties on Sweet Cherries as Affected by Preharvest Salicylic and Acetylsalicylic Acids Treatments. Food Hem. 2014, 160, 226–232.
  • Lobo, A. M.; Lourenço, A. M. Biossíntese De Produtos Naturais, Ana. Lobo, Ana M. Lourenço, Eds., Instituto Superior Técnico; Lisbon, 2007.
  • Ross, J. A.; Kasum, C. M. Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Ann Rev Nutr. 2002, 22(1), 19–34. DOI: 10.1146/annurev.nutr.22.111401.144957.
  • Hollman, P. C. H.; Katan, M. B. Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food Chem. Toxicol. 1999, 37(9), 937–942. DOI: 10.1016/S0278-6915(99)00079-4.
  • King, A. M. Y.; Young, G. Characteristics and Occurrence of Phenolic Phytochemicals. J. Am. Diet. Assoc. 1999, 99(2), 213–218. DOI: 10.1016/S0002-8223(99)00051-6.
  • Gebhardt, S.; Harnly, J.; Bhagwat, S.; Beecher, G.; Doherty, R.; Holden, J.; Haytowitz, D.; Eldridge, A.; Peterson, J.; Dwyer, J. USDA’s Flavonoid Database: Flavonoids in Fruit, Agricultural Research Service, 2002.
  • Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Flavonoids: Chemical Properties and Analytical Methodologies of Identification and Quantitation in Foods and Plants. Nat. Prod. Res. 2011, 25(5), 469–495. DOI: 10.1080/14786419.2010.482054.
  • Tsao, R.;. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients. 2010, 2(12), 1231–1246.
  • Grayer, R. J.; Veitch, N. C. Flavanones and Dihydroflavonols. In Flavonoids: Chemistry, Biochemistry and Applications, O. M. ANderson, K. R.,Markham,Eds.; CRC Press, 2005; pp 917–1002.
  • Tripoli, E.; Guardia, M. L.; Giammanco, S.; Majo, D. D.; Giammanco, M. Citrus Flavonoids: Molecular Structure, Biological Activity and Nutritional Properties: A Review. Food Chem. 2007, 104(2), 466–479. DOI: 10.1016/j.foodchem.2006.11.054.
  • Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Quantitation of Flavonoid Constituents in Citrus Fruits. J. Agric. Food Chem. 1999, 47(9), 3565–3571.
  • United States Department of Agriculture (USDA): 2015. http://fnic.nal.usda.gov/food-composition (accessed Sep 6, 2016).
  • Dixon, R. A.; Pasinetti, G. M. Flavonoids and Isoflavonoids: From Plant Biology to Agriculture and Neuroscience. Plant Physiol. 2010, 154(2), 453–457. DOI: 10.1104/pp.110.161430.
  • Mortensen, A.; Kulling, S. E.; Schwartz, H.; Rowland, I.; Ruefer, C. E.; Rimbach, G.; Cassidy, A.; Magee, P.; Millar, J.; Hall, W. L. Analytical and Compositional Aspects of Isoflavones in Food and Their Biological Effects. Mol. Nutr. Food Res. 2009, 53(S2), 266–309.
  • Arts, I.; van de Putte, B.; Hollman, P. Catechin Contents of Foods Commonly Consumed in the Netherlands. 2. Tea, Wine, Fruit Juices, and Chocolate Milk. J. Agric. Food Chem. 2000, 48(5), 1752–1757.
  • Silva, L. R.; Costa, R. In Health Benefits of Nongallated and Gallated Flavan-3-ols: A Prospectus, Amanda L. Kinsey, Ed., Nova Science Publishers, 2014; Vol. 20, pp. 1–50.
  • Watson, R. R.; Preedy, V. R.; Zibadi, S. Polyphenols in Human Health and Disease; Ronald R. Watson, Victor R. Preedi, Sherma, Zibadi, Eds.; Academic Press, 2013.
  • Fernandes, I.; Nave, F.; Gonçalves, R.; de Freitas, V.; Mateus, N. On the Bioavailability of Flavanols and Anthocyanins: Flavanol–anthocyanin Dimers. Food Chem. 2012, 135(2), 812–818. DOI:10.1016/j.foodchem.2012.05.037
  • Friedrich, J.; Lee, C. Identification of Non-anthocyanin Phenolic Compounds in Sweet and Sour Cherries. In IFT Annual Meeting Book of Abstracts, 1998, June 20‐4; Atlanta, Ga. Chicago; pp 20–24.
  • Pazmiño-Durán, E. A.; Giusti, M. M.; Wrolstad, R. E.; Glória, M. B. A. Anthocyanins from Oxalis Triangularis as Potential Food Colorants. Food Chem. 2001, 75(2), 211–216. DOI: 10.1016/S0308-8146(01)00201-1.
  • Castaneda-Ovando, A.; de Lourdes Pacheco-hernández, M.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113(4), 859–871. DOI: 10.1016/j.foodchem.2008.09.001.
  • Schüller, E.; Halbwirth, H.; Mikulic-Petkovsek, M.; Slatnar, A.; Veberic, R.; Forneck, A.; Stich, K.; Spornberger, A. High Concentrations of Anthocyanins in Genuine Cherry-juice of Old Local Austrian Prunus Avium Varieties. Food Chem. 2015, 173, 935–942. DOI: 10.1016/j.foodchem.2014.10.113.
  • Hayaloglu, A. A.; Demir, N. Phenolic Compounds, Volatiles, and Sensory Characteristics of Twelve Sweet Cherry (Prunus Avium L.) Cultivars Grown in Turkey. J. Food Sci. 2016, 81(1), 7–18. DOI: 10.1111/1750-3841.13175.
  • Serradilla, M. J.; Lozano, M.; Bernalte, M. J.; Ayuso, M. C.; López-Corrales, M.; González-Gómez, D. Physicochemical and Bioactive Properties Evolution during Ripening of ‘Ambrunés’ Sweet Cherry Cultivar. Food Sci. Technol. 2011, 44(1), 199–205.
  • Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81(1), 7–18. DOI: 10.1093/ajcn/81.1.230S.
  • Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C. G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, Bioactivity and Impact on Health of Dietary Flavonoids and Related Compounds: An Update. Arch. Toxicol. 2014, 88(10), 1803–1853.
  • Day, A. J.; Cañada, F. J.; Dı́az, J. C.; Kroon, P. A.; Mclauchlan, R.; Faulds, C. B.; Plumb, G. W.; Morgan, M. R.; Williamson, G. Dietary Flavonoid and Isoflavone Glycosides are Hydrolysed by the Lactase Site of Lactase Phlorizin Hydrolase. FEBS Lett. 2000, 468(2–3), 166–170. DOI: 10.1016/S0014-5793(00)01211-4.
  • Gee, J.; DuPont, M.; Day, A.; Plumb, G.; Williamson, G.; Johnson, I. Intestinal Transport of Quercetin Glycosides in Rats Involves Both Deglycosylation and Interaction with the Hexose Transport Pathway. J. Nutr. 2000, 130(11), 2765–2771. DOI: 10.1093/jn/130.11.2765.
  • Del Rio, D.; Calani, L.; Cordero, C.; Salvatore, S.; Pellegrini, N.; Brighenti, F. Bioavailability and Catabolism of Green Tea Flavan-3-ols in Humans. Nutrition. 2010, 26(11), 1110–1116. DOI: 10.1016/j.nut.2009.09.021.
  • Paul, P.; Suwan, J.; Liu, J.; Dordick, J. S.; Linhardt, R. J. Recent Advances in Sulfotransferase Enzyme Activity Assays. Anal. Bioanal. Chem. 2012, 403(6), 1491–1500. DOI: 10.1007/s00216-012-5944-4.
  • Piskula, M. K.; Terao, J. Accumulation of (−)-epicatechin Metabolites in Rat Plasma after Oral Administration and Distribution of Conjugation Enzymes in Rat Tissues. J. Nutr. 1998, 128(7), 1172–1178. DOI: 10.1093/jn/128.7.1172.
  • Heleno, S. A.; Martins, A.; Queiroz, M. J. R.; Ferreira, I. C. Bioactivity of Phenolic Acids: Metabolites versus Parent Compounds: A Review. Food Chem. 2015, 173, 501–513. DOI: 10.1016/j.foodchem.2014.10.057.
  • Crespy, V.; Morand, C.; Besson, C.; Cotelle, N.; Vézin, H.; Demigné, C.; Rémésy, C. The Splanchnic Metabolism of Flavonoids Highly Differed according to the Nature of the Compound. Am. J. Physiol. Gastrointest Liver Physiol. 2003, 284(6), G980–G988. DOI: 10.1152/ajpgi.00223.2002.
  • Scalbert, A.; Williamson, G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000, 130(8), 2073–2085. DOI: 10.1093/jn/130.8.2073S.
  • Steinberg, F. M.; Bearden, M. M.; Keen, C. L. Cocoa and Chocolate Flavonoids: Implications for Cardiovascular Health. J. Am. Diet. Assoc. 2003, 103(2), 215–223. DOI: 10.1053/jada.2003.50028.
  • Palafox‐Carlos, H.; Ayala‐Zavala, J. F.; González‐Aguilar, G. A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76(1), 6–15. DOI: 10.1111/j.1750-3841.2010.01957.x.
  • Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J. P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly) Phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects against Chronic Diseases. Antioxid. Redox Signal. 2013, 18(14), 1818–1892. DOI: 10.1089/ars.2012.4581.
  • Olthof, M. R.; Hollman, P. C.; Katan, M. B. Chlorogenic Acid and Caffeic Acid are Absorbed in Humans. J. Nutr. 2001, 131(1), 66–71. DOI: 10.1093/jn/131.1.66.
  • Rechner, A. R.; Spencer, J. P.; Kuhnle, G.; Hahn, U.; Rice-Evans, C. A. Novel Biomarkers of the Metabolism of Caffeic Acid Derivatives in Vivo. Free Radical Biol. Med. 2001, 30(11), 1213–1222. DOI: 10.1016/S0891-5849(01)00506-8.
  • Kern, S. M.; Bennett, R. N.; Mellon, F. A.; Kroon, P. A.; Garcia-Conesa, M.-T. Absorption of Hydroxycinnamates in Humans after High-bran Cereal Consumption. J. Agric. Food Chem. 2003, 51(20), 6050–6055. DOI: 10.1021/jf0302299.
  • Bourne, L. C.; Rice-Evans, C. Bioavailability of Ferulic Acid. Biochem. Biophys Res Commun. 1998, 253(2), 222–227. DOI: 10.1006/bbrc.1998.9681.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79(5), 727–747.
  • Clifford, M. N.;. Chlorogenic Acids and Other Cinnamates–nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 1999, 79(3), 362–372. DOI: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.
  • Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H.; Higashio, H.; Terao, J. Absorption of Chlorogenic Acid and Caffeic Acid in Rats after Oral Administration. J. Agric. Food Chem. 2000, 48(11), 5496–5500. DOI: 10.1021/jf000483q.
  • Gonthier, M.-P.; Verny, M.-A.; Besson, C.; Rémésy, C.; Scalbert, A. Chlorogenic Acid Bioavailability Largely Depends on Its Metabolism by the Gut Microflora in Rats. J. Nutr. 2003, 133(6), 1853–1859. DOI: 10.1093/jn/133.6.1853.
  • Andreasen, M. F.; Kroon, P. A.; Williamson, G.; Garcia-Conesa, M.-T. Esterase Activity Able to Hydrolyze Dietary Antioxidant Hydroxycinnamates Is Distributed along the Intestine of Mammals. J. Agric. Food Chem. 2001, 49(11), 5679–5684. DOI: 10.1021/jf010668c.
  • Stalmach, A.;. Bioavailability of Dietary Anthocyanins and Hydroxycinnamic Acids. In Polyphenols in Human Health and Disease; Ronald R. Watson, Victor R. Preedy, Sherma Zibadi, Eds.; Academic Press: 2014. Vol. 1, pp 561–576.
  • Azzini, E.; Bugianesi, R.; Romano, F.; Di Venere, D.; Miccadei, S.; Durazzo, A.; Foddai, M.; Catasta, G.; Linsalata, V.; Maiani, G. Absorption and Metabolism of Bioactive Molecules after Oral Consumption of Cooked Edible Heads of Cynara Scolymus L. (Cultivar Violetto Di Provenza) in Human Subjects: A Pilot Study. Br. J. Nutr. 2007, 97(5), 963–969. DOI: 10.1017/S0007114507617218.
  • Stalmach, A.; Mullen, W.; Barron, D.; Uchida, K.; Yokota, T.; Cavin, C.; Steiling, H.; Williamson, G.; Crozier, A. Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption. Drug Metab. Dispos. 2009, 37(8), 1749–1758. DOI: 10.1124/dmd.109.028019.
  • Ahmad, N.; Zuo, Y.; Lu, X.; Anwar, F.; Hameed, S. Characterization of Free and Conjugated Phenolic Compounds in Fruits of Selected Wild Plants. Food Chem. 2016, 190, 80–89. DOI: 10.1016/j.foodchem.2015.05.077.
  • Aguilera, Y.; Martin-Cabrejas, M. A.; de Mejia, E. G. Phenolic Compounds in Fruits and Beverages Consumed as Part of the Mediterranean Diet: Their Role in Prevention of Chronic Diseases. Phytochem. Rev. 2016, 15(3), 405–423. DOI: 10.1007/s11101-015-9443-z.
  • Šilarová, P.; Česlová, L.; Meloun, M. Fast Gradient HPLC/MS Separation of Phenolics in Green Tea to Monitor Their Degradation. Food Chem. 2017, 237, 471–480. DOI: 10.1016/j.foodchem.2017.05.133.
  • Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-industrial By-products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99(1), 191–203. DOI: 10.1016/j.foodchem.2005.07.042.
  • Conforti, F.; Menichini, F.; Formisano, C.; Rigano, D.; Senatore, F.; Arnold, N. A.; Piozzi, F. Comparative Chemical Composition, Free Radical-scavenging and Cytotoxic Properties of Essential Oils of Six Stachys Species from Different Regions of the Mediterranean Area. Food Chem. 2009, 116(4), 898–905. DOI: 10.1016/j.foodchem.2009.03.044.
  • Jiménez, J. P.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M. E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Effects of Grape Antioxidant Dietary Fiber in Cardiovascular Disease Risk Factors. Nutrition. 2008, 24(7), 646–653. DOI: 10.1016/j.nut.2008.03.012.
  • Kim, G.-N.; Shin, J.-G.; Jang, H.-D. Antioxidant and Antidiabetic Activity of Dangyuja (Citrus grandis Osbeck) Extract Treated with Aspergillus saitoi. Food Chem. 2009, 117(1), 35–41. DOI: 10.1016/j.foodchem.2009.03.072.
  • Wang, L.; Weller, C. L. Recent Advances in Extraction of Nutraceuticals from Plants. Trends Food Sci. Technol. 2006, 17(6), 300–312. DOI: 10.1016/j.tifs.2005.12.004.
  • Martins, S.; Aguilar, C. N.; Garza‐Rodriguez, I. D. L.; Mussatto, S. I.; Teixeira, J. A. Kinetic Study of Nordihydroguaiaretic Acid Recovery from Larrea Tridentata by Microwave‐assisted Extraction. J. Chem. Technol. Biotechnol. 2010, 85(8), 1142–1147. DOI: 10.1002/jctb.2412.
  • de Rijke, E.; Out, P.; Niessen, W. M.; Ariese, F.; Gooijer, C.; Udo, A. T. Analytical Separation and Detection Methods for Flavonoids. J. Chromatogr. A. 2006, 1112(1), 31–63. DOI: 10.1016/j.chroma.2006.01.019.
  • Corrales, M.; García, A. F.; Butz, P.; Tauscher, B. Extraction of Anthocyanins from Grape Skins Assisted by High Hydrostatic Pressure. J. Food Eng. 2009, 90(4), 415–421. DOI: 10.1016/j.jfoodeng.2008.07.003.
  • Silva, L. R.; Queiroz, M. Bioactive Compounds of Red Grapes from Dão Region (Portugal): Evaluation of Phenolic and Organic Profile. Asian Pac. J. Trop. Biomed. 2016, 6(4), 315–321. DOI: 10.1016/j.apjtb.2015.12.015.
  • Liesivuori, J.;. Methanol and Formic Acid Toxicity: Biochemical Mechanisms. Basic Clin. Pharmacol. Toxicol. 1991, 69(3), 157–163. DOI: 10.1111/j.1600-0773.1991.tb01290.x.
  • Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction Systems for Fruit and Vegetable Samples. Molecules. 2010, 15(12), 8813–8826. DOI: 10.3390/molecules15128813.
  • Hennion, M.-C.;. Solid-phase Extraction: Method Development, Sorbents, and Coupling with Liquid Chromatography. J. Chromatogr. A. 1999, 856(1), 3–54. DOI: 10.1016/S0021-9673(99)00832-8.
  • Michalkiewicz, A.; Biesaga, M.; Pyrzynska, K. Solid-phase Extraction Procedure for Determination of Phenolic Acids and Some Flavonols in Honey. J. Chromatogr. A. 2008, 1187(1), 18–24. DOI: 10.1016/j.chroma.2008.02.001.
  • Ross, K.; Beta, T.; Arntfield, S. A Comparative Study on the Phenolic Acids Identified and Quantified in Dry Beans Using HPLC as Affected by Different Extraction and Hydrolysis Methods. Food Chem. 2009, 113(1), 336–344. DOI: 10.1016/j.foodchem.2008.07.064.
  • Müller, E.; Berger, R.; Blass, E.; Sluyts, D.; Pfennig, A. Liquid–liquid Extraction Equipment. In Ullman’s Encyclopedia of Industrial Chemistry (Online Version). Wiley-VCH Verlag GmbH &Co: KGaA, Weinheim: Germany, 2008.
  • Bleve, M.; Ciurlia, L.; Erroi, E.; Lionetto, G.; Longo, L.; Rescio, L.; Schettino, T.; Vasapollo, G. An Innovative Method for the Purification of Anthocyanins from Grape Skin Extracts by Using Liquid and Sub-critical Carbon Dioxide. Sep. Purif. Technol. 2008, 64(2), 192–197. DOI: 10.1016/j.seppur.2008.10.012.
  • Khoddami, A.; Wilkes, M. A.; Roberts, T. H. Techniques for Analysis of Plant Phenolic Compounds. Molecules. 2013, 18(2), 2328–2375. DOI: 10.3390/molecules18022328.
  • Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T. Investigation of the Effects of Ultrasound on Vegetal Tissues during Solvent Extraction. Ultrason. Sonochem. 2001, 8(2), 137–142. DOI: 10.1016/S1350-4177(00)00033-X.
  • Vinatoru, M.;. An Overview of the Ultrasonically Assisted Extraction of Bioactive Principles from Herbs. Ultrason. Sonochem. 2001, 8(3), 303–313. DOI: 10.1016/S1350-4177(01)00071-2.
  • Camel, V.;. Recent Extraction Techniques for Solid Matrices—supercritical Fluid Extraction, Pressurized Fluid Extraction and Microwave-assisted Extraction: Their Potential and Pitfalls. Analyst. 2001, 126(7), 1182–1193. DOI: 10.1039/b008243k.
  • Cheng, X.-L.; Wan, J.-Y.; Li, P.; Qi, L.-W. Ultrasonic/microwave Assisted Extraction and Diagnostic Ion Filtering Strategy by Liquid Chromatography–quadrupole Time-of-flight Mass Spectrometry for Rapid Characterization of Flavonoids in Spatholobus Suberectus. J. Chromatogr. A. 2011, 1218(34), 5774–5786. DOI: 10.1016/j.chroma.2011.06.091.
  • Herrero, M.; Cifuentes, A.; Ibañez, E. Sub-and Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-by-products, Algae and Microalgae: A Review. Food Chem. 2006, 98(1), 136–148. DOI: 10.1016/j.foodchem.2005.05.058.
  • Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Phenolic Acids, Flavonoids, Vitamin C and Antioxidant Capacity of Strawberry Juices Processed by High-intensity Pulsed Electric Fields or Heat Treatments. Eur. Food Res. Technol. 2008, 228(2), 239. DOI: 10.1007/s00217-008-0928-5.
  • Inglett, G. E.; Rose, D. J.; Chen, D.; Stevenson, D. G.; Biswas, A. Phenolic Content and Antioxidant Activity of Extracts from Whole Buckwheat (Fagopyrum Esculentum Möench) with or without Microwave Irradiation. Food Chem. 2010, 119(3), 1216–1219. DOI: 10.1016/j.foodchem.2009.07.041.
  • Queiroz, C.; Moreira, C.; Lavinas, F.; Lopes, M.; Fialho, E.; Valente-Mesquita, V. Effect of High Hydrostatic Pressure on Phenolic Compounds, Ascorbic Acid and Antioxidant Activity in Cashew Apple Juice. High Press. Res. 2010, 30(4), 507–513. DOI: 10.1080/08957959.2010.530598.
  • Milos, M.; Mastelic, J.; Jerkovic, I. Chemical Composition and Antioxidant Effect of Glycosidically Bound Volatile Compounds from Oregano (Origanum Vulgare L. Ssp. Hirtum). Food Chem. 2000, 71(1), 79–83. DOI: 10.1016/S0308-8146(00)00144-8.
  • Justesen, U.; Knuthsen, P.; Leth, T. Quantitative Analysis of Flavonols, Flavones, and Flavanones in Fruits, Vegetables and Beverages by High-performance Liquid Chromatography with Photo-diode Array and Mass Spectrometric Detection. J. Chromatogr. A. 1998, 799(1), 101–110. DOI: 10.1016/S0021-9673(97)01061-3.
  • Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A. C.; Alwasel, S. H.; Köksal, E. Antioxidant Activity and Phenolic Compounds of Ginger (Zingiber Officinale Rosc.) Determined by HPLC-MS/MS. J. Food Meas. Charact. 2017, 11(2), 556–566. DOI: 10.1007/s11694-016-9423-z.
  • Ouchemoukh, S.; Amessis-Ouchemoukh, N.; Gómez-Romero, M.; Aboud, F.; Giuseppe, A.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Characterisation of Phenolic Compounds in Algerian Honeys by RP-HPLC Coupled to Electrospray Time-of-flight Mass Spectrometry. Food Sci. Technol. 2016, 85(B), 460–469.
  • Stalikas, C. D.;. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30(18), 3268–3295. DOI: 10.1002/jssc.200700261.
  • Ayaz, F. A.; Hayirlioglu-Ayaz, S.; Gruz, J.; Novak, O.; Strnad, M. Separation, Characterization, and Quantitation of Phenolic Acids in a Little-known Blueberry (Vaccinium arctostaphylos L.) Fruit by HPLC-MS. J. Agric. Food Chem. 2005, 53(21), 8116–8122. DOI: 10.1021/jf058057y.
  • Bureau, S.; Renard, C. M.; Reich, M.; Ginies, C.; Audergon, J.-M. Change in Anthocyanin Concentrations in Red Apricot Fruits during Ripening. Food Sci. Technol. 2009, 42(1), 372–377.
  • Fang, N.; Yu, S.; Prior, R. L. LC/MS/MS Characterization of Phenolic Constituents in Dried Plums. J. Agric. Food Chem. 2002, 50(12), 3579–3585. DOI: 10.1021/jf0201327.
  • Ferreres, F.; Magalhães, S.; Gil-Izquierdo, A.; Valentão, P.; Cabrita, A.; Fonseca, A.; Andrade, P. HPLC-DAD-ESI/MSn Profiling of Phenolic Compounds from Lathyrus cicera L. Seeds. Food Chem. 2017, 214, 678–685. DOI: 10.1016/j.foodchem.2016.07.129.
  • Lopes-Lutz, D.; Dettmann, J.; Nimalaratne, C.; Schieber, A. Characterization and Quantification of Polyphenols in Amazon Grape (Pourouma cecropiifolia Martius). Molecules. 2010, 15(12), 8543–8552. DOI: 10.3390/molecules15128543.
  • Churchwell, M. I.; Twaddle, N. C.; Meeker, L. R.; Doerge, D. R. Improving LC–MS Sensitivity through Increases in Chromatographic Performance: Comparisons of UPLC–ES/MS/MS to HPLC–ES/MS/MS. J. Chromatogr. B. 2005, 825(2), 134–143. DOI: 10.1016/j.jchromb.2005.05.037.
  • Kraushofer, T.; Sontag, G. Determination of Some Phenolic Compounds in Flax Seed and Nettle Roots by HPLC with Coulometric Electrode Array Detection. Eur. Food Res. Technol. 2002, 215(6), 529–533. DOI: 10.1007/s00217-002-0606-y.
  • Wang, C.; Zuo, Y. Ultrasound-assisted Hydrolysis and Gas Chromatography–mass Spectrometric Determination of Phenolic Compounds in Cranberry Products. Food Chem. 2011, 128(2), 562–568. DOI: 10.1016/j.foodchem.2011.03.066.
  • Lee, J.; Rennaker, C.; Wrolstad, R. E. Correlation of Two Anthocyanin Quantification Methods: HPLC and Spectrophotometric Methods. Food Chem. 2008, 110(3), 782–786. DOI: 10.1016/j.foodchem.2008.03.010.
  • Naczk, M.; Shahidi, F. Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis. J Pharma Biomed Anal. 2006, 41(5), 1523–1542. DOI: 10.1016/j.jpba.2006.04.002.
  • Caridi, D.; Trenerry, V. C.; Rochfort, S.; Duong, S.; Laugher, D.; Jones, R. Profiling and Quantifying Quercetin Glucosides in Onion (Allium cepa L.) Varieties Using Capillary Zone Electrophoresis and High Performance Liquid Chromatography. Food Chem. 2007, 105(2), 691–699. DOI: 10.1016/j.foodchem.2006.12.063.
  • Xiao, Z.; Yu, D.; Niu, Y.; Chen, F.; Song, S.; Zhu, J.; Zhu, G. Characterization of Aroma Compounds of Chinese Famous Liquors by Gas Chromatography–Mass Spectrometry and Flash GC Electronic-nose. J. Chromatogr. B. 2014, 945, 92–100. DOI: 10.1016/j.jchromb.2013.11.032.
  • Littlewood, A. B.;. Gas Chromatography: Principles, Techniques, and Applications; Academic Press, 1970.
  • Blainski, A.; Lopes, G. C.; De Mello, J. C. P. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules. 2013, 18(6), 6852–6865. DOI: 10.3390/molecules18066852.
  • Costa, D. C.; Costa, H.; Albuquerque, T. G.; Ramos, F.; Castilho, M. C.; Sanches-Silva, A. Advances in Phenolic Compounds Analysis of Aromatic Plants and Their Potential Applications. Trends Food Sci. Technol. 2015, 45(2), 336–354. DOI: 10.1016/j.tifs.2015.06.009.
  • Hu, F. B.;. Plant-based Foods and Prevention of Cardiovascular Disease: An Overview. Am. J. Clin. Nutr. 2003, 78(3), 544–551. DOI: 10.1093/ajcn/78.3.544S.
  • He, F.; Nowson, C.; Lucas, M.; MacGregor, G. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Coronary Heart Disease: Meta-analysis of Cohort Studies. J. Hum. Hypertens. 2007, 21(9), 717–728. DOI: 10.1038/sj.jhh.1002212.
  • Riboli, E.; Norat, T. Epidemiologic Evidence of the Protective Effect of Fruit and Vegetables on Cancer Risk. Am. J. Clin. Nutr. 2003, 78(3), 559–569. DOI: 10.1093/ajcn/78.3.559S.
  • Steinmetz, K. A.; Potter, J. D. Vegetables, Fruit, and Cancer Prevention: A Review. J. Am. Diet. Assoc. 1996, 96(10), 1027–1039. DOI: 10.1016/S0002-8223(96)00273-8.
  • Hertog, M. G.; Feskens, E. J.; Kromhout, D.; Hollman, P.; Katan, M. Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study. Lancet. 1993, 342(8878), 1007–1011. DOI: 10.1016/0140-6736(93)92876-U.
  • Parr, A. J.; Bolwell, G. P. Phenols in the Plant and in Man. The Potential for Possible Nutritional Enhancement of the Diet by Modifying the Phenols Content or Profile. J. Sci. Food Agric. 2000, 80(7), 985–1012.
  • Benavente-García, O.; Castillo, J.; Marin, F. R.; Ortuño, A.; Del Río, J. A. Uses and Properties of Citrus Flavonoids. J. Agric. Food Chem. 1997, 45(12), 4505–4515. DOI: 10.1021/jf970373s.
  • Manach, C.; Mazur, A.; Scalbert, A. Polyphenols and Prevention of Cardiovascular Diseases. Curr. Opin. Lipidol. 2005, 16(1), 77–84. DOI: 10.1097/00041433-200502000-00013.
  • Middleton, E.; Kandaswami, C.; Theoharides, T. C. The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. Pharmacol. Rev. 2000, 52(4), 673–751.
  • Samman, S.; Lyons Wall, P.; Cook, N. C. Flavonoids and Coronary Heart Disease: Dietary Perspectives. In Flavonoids in Health and Disease; Rice-Evans, L. Parcker, Eds.; Marcel Dekker: New York, 1998; pp 469–482.
  • Puupponen‐Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman‐Caldentey, K. M. Antimicrobial Properties of Phenolic Compounds from Berries. J. Appl. Microbiol. 2001, 90(4), 494–507. DOI: 10.1046/j.1365-2672.2001.01271.x.
  • DiazGranados, C. A.; Cardo, D. M.; McGowan, J. E. Antimicrobial Resistance: International Control Strategies, with a Focus on Limited-resource Settings. Int. J. Antimicrob. Agents. 2008, 32(1), 1–9. DOI: 10.1016/j.ijantimicag.2008.03.002.
  • Overbye, K. M.; Barrett, J. F. Antibiotics: Where Did We Go Wrong? Drug Discov. Today. 2005, 10(1), 45–52. DOI: 10.1016/S1359-6446(04)03285-4.
  • Rıos, J.; Recio, M. Medicinal Plants and Antimicrobial Activity. J. Ethnopharmacol. 2005, 100(1), 80–84. DOI: 10.1016/j.jep.2005.04.025.
  • Tajkarimi, M.; Ibrahim, S.; Cliver, D. Antimicrobial Herb and Spice Compounds in Food. Food Control. 2010, 21(9), 1199–1218. DOI: 10.1016/j.foodcont.2010.02.003.
  • Emad El Din, G. G.; Esmaiel, N. M.; Salem, M. Z.; Gomaa, S. E. In Vitro Screening for Antimicrobial Activity of Some Medicinal Plant Seed Extracts. Int J Biotechnol Wellness Ind. 2016, 5(4), 142–152.
  • Ahn, S.; Ryu, H.; Kang, D.; Jung, I.; Sohn, H. Antimicrobial and Antioxidant Activity of the Fruit of Prunus Avium L. Korean J Microbiol Biotechnol. 2009, 37(4), 371–376.
  • Piccirillo, C.; Demiray, S.; Ferreira, A. S.; Pintado, M.; Castro, P. M. Chemical Composition and Antibacterial Properties of Stem and Leaf Extracts from Ginja Cherry Plant. Ind. Crops Prod. 2013, 43, 562–569. DOI: 10.1016/j.indcrop.2012.08.004.
  • Delgado-Adámez, J.; Fernández-León, M. F.; Velardo-Micharet, B.; González-Gómez, D. In Vitro Assays of the Antibacterial and Antioxidant Activity of Aqueous Leaf Extracts from Different Prunus Salicina Lindl. Cultivars. Food Chem. Toxicol. 2012, 50(7), 2481–2486. DOI: 10.1016/j.fct.2012.02.024.
  • Hanbali, L. B.; Amiry, J. G.; Ghadieh, R. M.; Hasan, H. A.; Koussan, S. S.; Nakhal, Y. K.; Tarraf, A. M.; Haddad, J. J. The Antimicrobial Activity of Sweet Cherry (Prunus Avium) Extracts: Measurement of Sensitivity and Attenuation of Gram-positive and Gram-Negative Bacteria and C. Albicans in Culture. Curr. Nutr. Food Sci. 2012, 8(4), 292–303. DOI: 10.2174/157340112803832174.
  • Borneo, R.; León, A.; Aguirre, A.; Ribotta, P.; Cantero, J. Antioxidant Capacity of Medicinal Plants from the Province of Córdoba (Argentina) and Their in Vitro Testing in a Model Food System. Food Chem. 2009, 112(3), 664–670. DOI: 10.1016/j.foodchem.2008.06.027.
  • Liao, K.-L.; Yin, M.-C. Individual and Combined Antioxidant Effects of Seven Phenolic Agents in Human Erythrocyte Membrane Ghosts and Phosphatidylcholine Liposome Systems: Importance of the Partition Coefficient. J. Agric. Food Chem. 2000, 48(6), 2266–2270. DOI: 10.1021/jf990946w.
  • Aruoma, O. I.; Halliwell, B.; Hoey, B. M.; Butler, J. The Antioxidant Action of N-acetylcysteine: Its Reaction with Hydrogen Peroxide, Hydroxyl Radical, Superoxide, and Hypochlorous Acid. Free Radical Biol. Med. 1989, 6(6), 593–597. DOI: 10.1016/0891-5849(89)90066-X.
  • Al-Snafi, A. E.;. Medicinal Plants with Antioxidant and Free Radical Scavenging Effects (Part 2): Plant Based Review. IOSR J. Pharm. 2016, 6(7), 62–82.
  • Skotti, E.; Anastasaki, E.; Tarantilis, P.; Polissiou, M. Total Phenolic Compounds, Antioxidant Activity and Toxicity of Selected Medicinal and Aromatic Plants. Microbiokosmos. 5th Conference of Microbiokosmos, Athens, Greece, December 13-15, 2012.
  • Kutlu, T.; Takim, K.; Çeken, B.; Kizil, M. DNA Damage Protecting Activity and in Vitro Antioxidant Potential of the Methanol Extract of Cherry (Prunus Avium L). J. Med. Plant Res. 2014, 8(19), 715–726. DOI: 10.5897/JMPR2013.5350.
  • Serra, A. T.; Seabra, I. J.; Braga, M. E.; Bronze, M.; de Sousa, H. C.; Duarte, C. M. Processing Cherries (Prunus Avium) Using Supercritical Fluid Technology. Part 1: Recovery of Extract Fractions Rich in Bioactive Compounds. J. Supercrit. Fluids. 2010, 55(3), 1007–1013. DOI: 10.1016/j.supflu.2010.06.006.
  • Dos Santos, S. M.; Extracção, Purificação E Determinação Da Actividade Antioxidante De Compostos Fenólicos Da Espécie Prunus Avium. Msc Thesis. Universidade da Beira Interior, 2011.
  • Saleem, M. M. N. M.; Sulaiman, G. M.; Mohammad, A. A. W.; Mohammad, A. A. Biological Effects of Stick Cherry, Soybean Seed and Licorice Root Extracts on Concentration of Serum Hormone Levels in Male Mice. Iraqi J Med Sci. 2014, 71(4), 78–42.
  • USDA. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; WHO and FAO: Geneva, 2003.
  • Ozkanlar, S.; Akcay, F. Antioxidant Vitamins in Atherosclerosis–Animal Experiments and Clinical Studies. Adv. Clin. Exp. Med. 2012, 21, 2012.
  • Kohlmeier, L.; Hastings, S. B. Epidemiologic Evidence of a Role of Carotenoids in Cardiovascular Disease Prevention. Am. J. Clin. Nutr. 1995, 62(6), 1370–1376. DOI: 10.1093/ajcn/62.6.1370S.
  • Saleem, M.; Mohammed, A.; Al-Amiery, A.; Hussan, Y. In Vivo Study of Cherry Stick Effect on Concentration of Serum Total Cholesterol, Triglyceride and Total Protein in White Albino Male Mice. J. Fac. Med. Baghdad. 2010, 52(3), 342–345.
  • Olokoba, A. B.; Obateru, O. A.; Olokoba, L. B. Type 2 Diabetes Mellitus: A Review of Current Trends. Oman Med. J. 2012, 27(4), 269–273. DOI: 10.5001/omj.2012.68.
  • Kavishankar, G.; Lakshmidevi, N.; Murthy, S. M.; Prakash, H.; Niranjana, S. Diabetes and Medicinal plants-A Review. Int. J. Pharm. Biomed. Sci. 2011, 2(3), 65–80.
  • Rahimi, R.; Nikfar, S.; Larijani, B.; Abdollahi, M. A Review on the Role of Antioxidants in the Management of Diabetes and Its Complications. Biomed. Pharmacother. 2005, 59(7), 365–373. DOI: 10.1016/j.biopha.2005.07.002.
  • Maiti, R.; Jana, D.; Das, U.; Ghosh, D. Antidiabetic Effect of Aqueous Extract of Seed of Tamarindus Indica in Streptozotocin-induced Diabetic Rats. J. Ethnopharmacol. 2004, 92(1), 85–91. DOI: 10.1016/j.jep.2004.02.002.
  • Li, H.; Song, F.; Xing, J.; Tsao, R.; Liu, Z.; Screening, L. S. Structural Characterization of α-Glucosidase Inhibitors from Hawthorn Leaf Flavonoids Extract by Ultrafiltration LC-DAD-MSn and SORI-CID FTICR MS. J. Am. Soc. Mass Spectrom. 2009, 20(8), 1496–1503. DOI: 10.1016/j.jasms.2009.04.003.
  • Li, D. Q.; Qian, Z. M.; Li, S. P. Inhibition of Three Selected Beverage Extracts on Alpha-glucosidase and Rapid Identification of Their Active Compounds Using HPLC-DAD-MS/MS and Biochemical Detection. J. Agric. Food Chem. 2010, 58(11), 6608–6613. DOI: 10.1021/jf100853c.
  • Mamun-or-Rashid, A.; Hossain, M. S.; Naim Hassan, B.; Kumar Dash, M.; Sapon, A.; Sen, M. K. A Review on Medicinal Plants with Antidiabetic Activity. J. Pharmacogn. Phytochem. 2014, 3(4), 149–159.
  • Elekofehinti, O. O.;. Saponins: Anti-diabetic Principles from Medicinal Plants–A Review. Pathophysiology. 2015, 22(2), 95–103. DOI: 10.1016/j.pathophys.2015.02.001.
  • Sulaiman, G. M.; Al-Amiery, A. A.; Mohammed, A. A.; Al-Temimi, A. A. The Effect of Cherry Sticks Extract on the Levels of Glycoproteins in Alloxan-induced Experimental Diabetic Mice. Ann. Clin. Lab. Sci. 2012, 42(1), 34–41.
  • Al-Amiery, A. A.; Mohammed, A. A.; Alhyali, G. M. Novel in Vivo Studies on the Effect of Ethanolic Stick Cherries Extract in Diabetes Management. J. Appl. Sci. Res. 2011, 7(4), 476–478.
  • Tettey, C. O.; Lincha, V. R.; Lee, D. U.; Yang, I. J.; Shin, H. M. Anti‐Inflammatory Effects of the Flowers of Prunus Persica Var. Davidiana. J. Food Biochem. 2016, 40(2), 227–234. DOI: 10.1111/jfbc.12206.
  • Azab, A.; Nassar, A.; Azab, A. N. Anti-inflammatory Activity of Natural Products. Molecules. 2016, 21(10), 1321. DOI: 10.3390/molecules21101321.
  • Berkes, J.; Viswanathan, V.; Savkovic, S.; Hecht, G. Intestinal Epithelial Responses to Enteric Pathogens: Effects on the Tight Junction Barrier, Ion Transport, and Inflammation. Gut. 2003, 52(3), 439–451. DOI: 10.1136/gut.52.3.439.
  • Polya, G.;. Biochemical Targets of Plant Bioactive Compounds: A Pharmacological Reference Guide to Sites of Action and Biological Effects; CRC press: Florida, 2003.
  • Iwalewa, E.; McGaw, L.; Naidoo, V.; Eloff, J. Inflammation: The Foundation of Diseases and Disorders. A Review of Phytomedicines of South African Origin Used to Treat Pain and Inflammatory Conditions. Afr. J. Biotechnol. 2007, 6(25), 2868–2885. DOI: 10.5897/AJB2007.000-2457.
  • Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative Stress Induced-neurodegenerative Diseases: The Need for Antioxidants that Penetrate the Blood Brain Barrier. Neuropharmacol. 2001, 40(8), 959–975. DOI: 10.1016/S0028-3908(01)00019-3.
  • Jacob, R. A.; Spinozzi, G. M.; Simon, V. A.; Kelley, D. S.; Prior, R. L.; Hess-Pierce, B.; Kader, A. A. Consumption of Cherries Lowers Plasma Urate in Healthy Women. J. Nutr. 2003, 133(6), 1826–1829. DOI: 10.1093/jn/133.6.1826.
  • Kim, Y. C.;. Neuroprotective Phenolics in Medicinal Plants. Arch. Pharm. Res. 2010, 33(10), 1611–1632. DOI: 10.1007/s12272-010-1011-x.
  • Aruoma, O. I.; Bahorun, T.; Jen, L.-S. Neuroprotection by Bioactive Components in Medicinal and Food Plant Extracts. Mutat. Res. Rev. Mutat. Res. 2003, 544(2), 203–215. DOI: 10.1016/j.mrrev.2003.06.017.
  • Islam, M. R.; Zaman, A.; Jahan, I.; Chakravorty, R.; Chakraborty, S. In Silico QSAR Analysis of Quercetin Reveals Its Potential as Therapeutic Drug for Alzheimer’s Disease. J. Young Pharm. 2013, 5(4), 173–179. DOI: 10.1016/j.jyp.2013.11.005.
  • Echeverry, C.; Arredondo, F.; Abin-Carriquiry, J. A.; Midiwo, J. O.; Ochieng, C.; Kerubo, L.; Dajas, F. Pretreatment with Natural Flavones and Neuronal Cell Survival after Oxidative Stress: A Structure− Activity Relationship Study. J. Agric. Food Chem. 2010, 58(4), 2111–2115. DOI: 10.1021/jf902951v.
  • Suganthy, N.; Devi, K. P.; Nabavi, S. F.; Braidy, N.; Nabavi, S. M. Bioactive Effects of Quercetin in the Central Nervous System: Focusing on the Mechanisms of Actions. Biomed. Pharmacother. 2016, 84, 892–908. DOI: 10.1016/j.biopha.2016.10.011.
  • Prasad, J.; Baitharu, I.; Sharma, A. K.; Dutta, R.; Prasad, D.; Singh, S. B. Quercetin Reverses Hypobaric Hypoxia-induced Hippocampal Neurodegeneration and Improves Memory Function in the Rat. High Alt. Med. Biol. 2013, 14(4), 383–394. DOI: 10.1089/ham.2013.1014.
  • Chouhan, A.; Karma, A.; Artani, N.; Parihar, D. Overview on Cancer: Role of Medicinal Plants in Its Treatment. World J. Pharm. Pharm. Sci. 2016, 5(5), 185–207.
  • Carocho, M.; Ferreira, I. C. The Role of Phenolic Compounds in the Fight against Cancer–a Review. Anti Cancer Agents Med. Chem. 2013, 13(8), 1236–1258. DOI: 10.2174/18715206113139990301.
  • Martini, M.; De Santis, M. C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT Signaling Pathway and Cancer: An Updated Review. Ann. Med. 2014, 46(6), 372–383. DOI: 10.3109/07853890.2014.912836.
  • Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The Emerging Mechanisms of Isoform-specific PI3K Signalling. Nat. Rev. Mol. Cell Biol. 2010, 11(5), 329–341. DOI: 10.1038/nrm2882.
  • Wang, H.; Nair, M. G.; Strasburg, G. M.; Chang, Y.-C.; Booren, A. M.; Gray, J. I.; DeWitt, D. L. Antioxidant and Antiinflammatory Activities of Anthocyanins and Their Aglycon, Cyanidin, from Tart Cherries. J. Nat. Prod. 1999, 62(2), 294–296. DOI: 10.1021/np980501m.
  • Wang, H.; Nair, M. G.; Strasburg, G. M.; Booren, A. M.; Gray, J. I. Novel Antioxidant Compounds from Tart Cherries (Prunus Cerasus). J. Nat. Prod. 1999, 62(1), 86–88. DOI: 10.1021/np980268s.
  • Kang, S.-Y.; Seeram, N. P.; Nair, M. G.; Bourquin, L. D. Tart Cherry Anthocyanins Inhibit Tumor Development in ApcMinmice and Reduce Proliferation of Human Colon Cancer Cells. Cancer Lett. 2003, 194(1), 13–19. DOI: 10.1016/S0304-3940(02)00583-9.
  • Heo, M. Y.; Kim, S. H.; Yang, H. E.; Lee, S. H.; Jo, B. K.; Kim, H. P. Protection against Ultraviolet B-and C-induced DNA Damage and Skin Carcinogenesis by the Flowers of Prunus Persica Extract. Mutat Res Genet Toxicol Environ Mutagen. 2001, 496(1), 47–59.
  • Yagasaki, K.; Miura, Y.; Okauchi, R.; Furuse, T. Inhibitory Effects of Chlorogenic Acid and Its Related Compounds on the Invasion of Hepatoma Cells in Culture. Cytotechnology. 2000, 33(1), 229–235. DOI: 10.1023/A:1008141918852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.