1,909
Views
4
CrossRef citations to date
0
Altmetric
Review

Soy Milk By-product: Its Composition and Utilisation

ORCID Icon &

References

  • IBISWorld. Soy and Almond Milk Production in Australia; IBISWorld Industry Research Reports in Australia, 2017.
  • Pardeshi, I.; Murumkar, R.; Tayade, P. Optimization of Process for Spray Drying of Soymilk and Sprouted Soybean Milk. J. Grain Processing Storage 2014, 1(1), 13–20.
  • Wang, H.; Murphy, P. A. Isoflavone Content in Commercial Soybean Foods. J. Agric. Food Chem. 1994, 42(8), 1666–1673. DOI: 10.1021/jf00044a016.
  • Anderson, R. L.; Wolf, W. J. Compositional Changes in Trypsin Inhibitors, Phytic Acid, Saponins and Isoflavones Related to Soybean Processing. J. Nutr. 1995, 125(suppl_3), 581S–588S.
  • Rinaldi, V.; Ng, P.; Bennink, M. Effects of Extrusion on Dietary Fiber and Isoflavone Contents of Wheat Extrudates Enriched with Wet Okara. Cereal Chem. 2000, 77(2), 237–240. DOI: 10.1094/CCHEM.2000.77.2.237.
  • Khare, S. K.; Jha, K.; Gandhi, A. P. Citric Acid Production from Okara (Soy-residue) by Solid-state Fermentation. Bioresour. Technol. 1995, 54(3), 323–325.
  • Vong, W. C.; Liu, S.-Q. Biovalorisation of Okara (Soybean Residue) for Food and Nutrition. Trends Food Sci. Technol. 2016, 52, 139–147.
  • Li, S.; Zhu, D.; Li, K.; Yang, Y.; Lei, Z.; Zhang, Z. Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Ind. Eng. 2013, 2013, Article ID 423590, 8.
  • Singh, B.; Singh, J. P.; Singh, N.; Kaur, A. Saponins in Pulses and Their Health Promoting Activities: A Review. Food Chem. 2017, 233, 540–549.
  • Zhong-Hua, L.; Hong-Lian, G.; Rui-Ling, L.; Jin-Hui, Z. Extraction and Antioxidant Activity of Soybean Saponins from Low-temperature Soybean Meal by MTEH. Open Biotechnol. J. 2015, 9, 178–184. DOI: 10.2174/1874070701509010178.
  • Lu, F.; Liu, Y.; Li, B. Okara Dietary Fiber and Hypoglycemic Effect of Okara Foods. Bioact. Carbohydr. Diet. Fibre. 2013, 2, 126–132. DOI: 10.1016/j.bcdf.2013.10.002.
  • Dietary Fiber and Your Health. Nutr. Weight Control. Longevity 2015, 13–16.
  • Cederroth, C. R.; Nef, S. Soy, Phytoestrogens and Metabolism: A Review. Mol. Cell. Endocrinol. 2009, 304(1–2), 30–42. DOI: 10.1016/j.mce.2009.02.027.
  • Liener, I. E.;. Implications of Antinutritional Components in Soybean Foods. Crit. Rev. Food Sci. Nutr. 1994, 34(1), 31–67. DOI: 10.1080/10408399409527649.
  • Liu, K.;. Soybeans: Chemistry, Technology, and Utilization; Chapman & Hall: New York, 1997; pp p xxvi, 532 p.
  • Mizutani, T.; Hashimoto, H. Effect of Grinding Temperature on Hydroperoxide and Off-flavor Contents during Soymilk Manufacturing Process. J. Food Sci. 2004, 69(3), SNQ112–SNQ116.
  • Vishwanathan, K.; Singh, V.; Subramanian, R. Wet Grinding Characteristics of Soybean for Soymilk Extraction. J. Food Eng. 2011, 106(1), 28–34. DOI: 10.1016/j.jfoodeng.2011.04.002.
  • Zuo, F.; Peng, X.; Shi, X.; Guo, S. Effects of High-temperature Pressure Cooking and Traditional Cooking on Soymilk: Protein Particles Formation and Sensory Quality. Food Chem. 2016, 209, 50–56. DOI: 10.1016/j.foodchem.2016.04.026.
  • Yu, H.; Liu, R.; Hu, Y.; Xu, B., Flavor Profiles of Soymilk Processed with Four Different Processing Technologies and 26 Soybean Cultivars Grown in China. Int. J. Food Prop. 2017, 20 (sup3), S2887–2898 sup3 20 doi:10.1080/10942912.2017.1382507
  • Petres, J.; Márkus, Z.; Gelencsér, É.; Bogár, Z.; Gajzágó, I.; Czukor, B. Effect of Dielectric Heat Treatment on Protein Nutritional Values and Some Antinutritional Factors in Soya Bean. J. Sci. Food Agric. 1990, 53(1), 35–41. DOI: 10.1002/jsfa.2740530105.
  • Yalcin, S.; Basman, A. Effects of Infrared Treatment on Urease, Trypsin Inhibitor and Lipoxygenase Activities of Soybean Samples. Food Chem. 2015, 169, 203–210. DOI: 10.1016/j.foodchem.2014.07.114.
  • de Toledo, T. C. F.; Canniatti-Brazaca, S. G.; Arthur, V.; Piedade, S. M. S. Effects of Gamma Radiation on Total Phenolics, Trypsin and Tannin Inhibitors in Soybean Grains. Radiat. Phys. Chem. 2007, 76(10), 1653–1656. DOI: 10.1016/j.radphyschem.2007.02.001.
  • Cai, T.; Chang, K.; Shih, M.; Hou, H.; Ji, M. Comparison of Bench and Production Scale Methods for Making Soymilk and Tofu from 13 Soybean Varieties. Food Res. Int. 1997, 30(9), 659–668. DOI: 10.1016/S0963-9969(98)00032-5.
  • Penha, C. B.; Falcão, H. G.; Ida, E. I.; Speranza, P.; Kurozawa, L. E. Enzymatic Pretreatment in the Extraction Process of Soybean to Improve Protein and Isoflavone Recovery and to Favor Aglycone Formation. Food Res. Int. 2020, 137, 109624. DOI: 10.1016/j.foodres.2020.109624.
  • Varghese, T.; Pare, A. Effect of Microwave Assisted Extraction on Yield and Protein Characteristics of Soymilk. J. Food Eng. 2019, 262, 92–99. DOI: 10.1016/j.jfoodeng.2019.05.020.
  • Sessa, D. J.; Haney, J. K.; Nelsen, T. C. Inactivation of Soybean Trypsin Inhibitors with Ascorbic Acid Plus Copper. J. Agric. Food Chem. 1990, 38(7), 1469–1474. DOI: 10.1021/jf00097a008.
  • Chauhan, O.; Chauhan, G. Anti-nutrients in Soybeans at Different Stages of Soy Milk Production. J. Food Sci. Technol. 2007, 44(4), 378–380.
  • Fukuda, Y.; Tatsukawa, E.; Saneoka, H.; Hoshina, T.; Uefuji, M.; Victor, R. Growth Characteristics, Phytate Contents, and Coagulation Properties of Soymilk from a Low-phytate Japanese Soybean (Glycine Max (L.) Merr.) Line. Soil Sci. Plant. Nutr. 2011, 57(5), 674–680. DOI: 10.1080/00380768.2011.608167.
  • Huang, H.; Kwok, K. C.; Liang, H. Effects of Tea Polyphenols on the Activities of Soybean Trypsin Inhibitors and Trypsin. J. Sci. Food Agric. 2004, 84(2), 121–126. DOI: 10.1002/jsfa.1610.
  • Theodoropoulos, V. C. T.; Turatti, M. A.; Greiner, R.; Macedo, G. A.; Pallone, J. A. L. Effect of Enzymatic Treatment on Phytate Content and Mineral Bioacessability in Soy Drink. Food Res. Int. 2018, 108, 68–73. DOI: 10.1016/j.foodres.2018.03.018.
  • García-Mantrana, I.; Monedero, V.; Haros, M. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus Casei Expressing Phytases from Bifidobacteria. Plant Foods Human Nutr. 2015, 70(3), 269–274. DOI: 10.1007/s11130-015-0489-2.
  • O’Toole, D. K.;. Characteristics and Use of Okara, the Soybean Residue from Soy Milk Production a Review. J. Agric. Food Chem. 1999, 47(2), 363–371. DOI: 10.1021/jf980754l.
  • Radočaj, O.; Dimić, E. Valorization of Wet Okara, a Value‐Added Functional Ingredient, in a Coconut‐Based Baked Snack. Cereal Chem. 2013, 90(3), 256–262. DOI: 10.1094/CCHEM-11-12-0145-R.
  • Van der Riet, W.; Wight, A.; Cilliers, J.; Datel, J. Food Chemical Investigation of Tofu and Its Byproduct Okara. Food Chem. 1989, 34(3), 193–202. DOI: 10.1016/0308-8146(89)90140-4.
  • Voss, G.; Rodríguez-Alcalá, L.; Valente, L.; Pintado M. Impact of Different Thermal Treatments and Storage Conditions on the Stability of Soybean Byproduct (Okara). J. Food Meas. Charact. 2018, 12 (3), 1981-1996.
  • de Figueiredo, V. R. G.; Yamashita, F.; Vanzela, A. L. L.; Ida, E. I.; Kurozawa, L. E. Action of Multi-enzyme Complex on Protein Extraction to Obtain a Protein Concentrate from Okara. J. Food Sci. Technol. 2018, 55(4), 1508–1517. DOI: 10.1007/s13197-018-3067-4.
  • Stanojevic, S. P.; Barac, M. B.; Pesic, M. B.; Vucelic-Radovic, B. V. Composition of Proteins in Okara as a Byproduct in Hydrothermal Processing of Soy Milk. J. Agric. Food Chem. 2012, 60(36), 9221–9228. DOI: 10.1021/jf3004459.
  • Kumar, V.; Rani, A.; Husain, L. Investigations of Amino Acids Profile, Fatty Acids Composition, Isoflavones Content and Antioxidative Properties in Soy Okara. Asian J. Chem. 2016, 28(4), 903. DOI: 10.14233/ajchem.2016.19548.
  • Puechkamut, Y.; Panyathitipong, W. Characteristics of Proteins from Fresh and Dried Residues of Soy Milk Production. Kasetsart J. Nat. Sci. 2012, 46(5), 804–811.
  • Quitain, A. T.; Oro, K.; Katoh, S.; Moriyoshi, T. Recovery of Oil Components of Okara by Ethanol-modified Supercritical Carbon Dioxide Extraction. Bioresour. Technol. 2006, 97(13), 1509–1514. DOI: 10.1016/j.biortech.2005.06.010.
  • Mann, J.; Cummings, J. Possible Implications for Health of the Different Definitions of Dietary Fibre. Nutr. Metab. Cardiovasc. Dis. 2009, 19(3), 226–229. DOI: 10.1016/j.numecd.2009.02.002.
  • Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-rich By-products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124(2), 411–421. DOI: 10.1016/j.foodchem.2010.06.077.
  • Redondo-Cuenca, A.; Villanueva-Suárez, M. J.; Mateos-Aparicio, I. Soybean Seeds and Its By-product Okara as Sources of Dietary Fibre. Measurement by AOAC and Englyst Methods. Food Chem. 2008, 108(3), 1099–1105. DOI: 10.1016/j.foodchem.2007.11.061.
  • Mitsuoka, T.;. Prebiotics and Intestinal Flora. Biosci. Microflora. 2002, 21(1), 3–12. DOI: 10.12938/bifidus1996.21.3.
  • Mateos-Aparicio, I.; Mateos-Peinado, C.; Rupérez, P. High Hydrostatic Pressure Improves the Functionality of Dietary Fibre in Okara By-product from Soybean. Innovative Food Sci. Emerg. Technol. 2010, 11(3), 445–450. DOI: 10.1016/j.ifset.2010.02.003.
  • Santos, V. A. Q.; Nascimento, C. G.; Schimidt, C. A.; Mantovani, D.; Dekker, R. F.; da Cunha, M. A. A. Solid-state Fermentation of Soybean Okara: Isoflavones Biotransformation, Antioxidant Activity and Enhancement of Nutritional Quality. LWT. 2018, 92, 509–515. DOI: 10.1016/j.lwt.2018.02.067.
  • Pérez-López, E.; Mateos-Aparicio, I.; Rupérez, P. Okara Treated with High Hydrostatic Pressure Assisted by Ultraflo® L: Effect on Solubility of Dietary Fibre. Innovative Food Sci. Emerg. Technol. 2016, 33, 32–37. DOI: 10.1016/j.ifset.2015.12.017.
  • Pérez-López, E.; Mateos-Aparicio, I.; Rupérez, P. High Hydrostatic Pressure Aided by Food-grade Enzymes as a Novel Approach for Okara Valorization. Innovative Food Sci. Emerg. Technol. 2017, 42, 197–203. DOI: 10.1016/j.ifset.2017.07.012.
  • Pérez-López, E.; Mateos-Aparicio, I.; Rupérez, P. Low Molecular Weight Carbohydrates Released from Okara by Enzymatic Treatment under High Hydrostatic Pressure. Innovative Food Sci. Emerg. Technol. 2016, 38, 76–82. DOI: 10.1016/j.ifset.2016.09.014.
  • Yoshida, B. Y.; Prudencio, S. H. Physical, Chemical, and Technofunctional Properties of Okara Modified by a Carbohydrase Mixture. LWT. 2020, 134, 110141. DOI: 10.1016/j.lwt.2020.110141.
  • Chen, P.-C.; Lin, C.; Chen, M.-H.; Chiang, P.-Y. The Micronization Process for Improving the Dietary Value of Okara (Soybean Residue) by Planetary Ball Milling. LWT. 2020, 132, 109848. DOI: 10.1016/j.lwt.2020.109848.
  • Li, H.; Long, D.; Peng, J.; Ming, J.; Zhao, G. A Novel In-situ Enhanced Blasting Extrusion Technique — Extrudate Analysis and Optimization of Processing Conditions with Okara. Innovative Food Sci. Emerg. Technol. 2012, 16, 80–88. DOI: 10.1016/j.ifset.2012.04.009.
  • Maeta, A.; Katsukawa, M.; Inomoto, Y.; Hayase, Y.; Takahashi, K. Intake of Okara Soup for 2 Weeks for Breakfast Improved Defecation Habits in Young Japanese Women with Self‐reported Constipation: A Randomized, Double‐blind, Placebo‐controlled, Intervention Study. J. Food Sci. 2020, 85(10), 3570–3576. DOI: 10.1111/1750-3841.15392.
  • Wiboonsirikul, J.; Mori, M.; Khuwijitjaru, P.; Adachi, S. Properties of Extract from Okara by Its Subcritical Water Treatment. Int. J. Food Prop. 2013, 16(5), 974–982. DOI: 10.1080/10942912.2011.573119.
  • Zaheer, K.; Humayoun Akhtar, M. An Updated Review of Dietary Isoflavones: Nutrition, Processing, Bioavailability and Impacts on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1280–1293. DOI: 10.1080/10408398.2014.989958.
  • Atmaca, A.; Kleerekoper, M.; Bayraktar, M.; Kucuk, O. Soy Isoflavones in the Management of Postmenopausal Osteoporosis. Menopause. 2008, 15(4), 748–757. DOI: 10.1097/gme.0b013e31815c1e7f.
  • Kang, X.; Zhang, Q.; Wang, S.; Huang, X.; Jin, S. Effect of Soy Isoflavones on Breast Cancer Recurrence and Death for Patients Receiving Adjuvant Endocrine Therapy. Can. Med. Assoc. J. 2010, 182(17), 1857–1862. DOI: 10.1503/cmaj.091298.
  • Curtis, P. J.; Sampson, M.; Potter, J.; Dhatariya, K.; Kroon, P. A.; Cassidy, A. Chronic Ingestion of Flavan-3-ols and Isoflavones Improves Insulin Sensitivity and Lipoprotein Status and Attenuates Estimated 10-year CVD Risk in Medicated Postmenopausal Women with Type 2 Diabetes: A 1-year, Double-blind, Randomized, Controlled Trial. Diabetes Care. 2012, 35(2), 226–232. DOI: 10.2337/dc11-1443.
  • Jankowiak, L.; Kantzas, N.; Boom, R.; van der Goot, A. J. Isoflavone Extraction from Okara Using Water as Extractant. Food Chem. 2013, 90, 371–378. DOI: 10.1016/j.foodchem.2014.03.082.
  • Jankowiak, L.; Trifunovic, O.; Boom, R. M.; van der Goot, A. J. The Potential of Crude Okara for Isoflavone Production. J. Food Eng. 2014, 160, 166–172. DOI: 10.1016/j.jfoodeng.2013.10.011.
  • Jing, X.;. Change of Content and Configuration of Isoflavones in Process of Soybean Residue Fermentation with Mucor. China Brewing. 2009, 5, 33.
  • Sahin, A.;. Soy Foods and Supplementation: A Review of Commonly Perceived Health Benefits and Risks. Alt. Ther. Health Med. 2014, 20, 39.
  • Messina, M.; Barnes, S. The Role of Soy Products in Reducing Risk of Cancer. J. Natl. Cancer Inst. 1991, 83(8), 541–546.
  • Kitagawa, I.; Yoshikawa, M.; Hayashi, T.; Taniyama, T. Quantitative Determination of Soyasaponins in Soybeans of Various Origins and Soybean Products by Means of High Performance Liquid Chromatography. Yakugaku Zasshi. 1984, 104(3), 275–279.
  • Hayashi, K.; Hayashi, H.; Hiraoka, N.; Ikeshiro, Y. Inhibitory Activity of Soyasaponin II on Virus Replication in Vitro. Planta Med. 1997, 63(2), 102–105.
  • Nile, S. H.; Nile, A.; Oh, J.-W.; Kai, G. Soybean Processing Waste: Potential Antioxidant, Cytotoxic and Enzyme Inhibitory Activities. Food Biosci. 2020, 38, 100778.
  • Xiao, Z.-P.; Shi, D.-H.; Li, H.-Q.; Zhang, L.-N.; Xu, C.; Zhu, H.-L. Polyphenols Based on Isoflavones as Inhibitors of Helicobacter Pylori Urease. Bioorg. Med. Chem. 2007, 15(11), 3703–3710.
  • Nile, S. H.; Park, S. W. Antioxidant, α-Glucosidase and Xanthine Oxidase Inhibitory Activity of Bioactive Compounds from Maize (Zea Mays L.). Chem. Biol. Drug Des. 2014, 83(1), 119–125.
  • Grizotto, R. K.; Aguirre, J. M. D. Study of the Flash Drying of the Residue from Soymilk Processing-” Okara”. Food Sci. Technol (Campinas). 2011, 31(3), 645–653.
  • Brown, A. C., Understanding Food: Principles and Preparation. 6 ed.; Cengage learning: Boston MA, 2019
  • Travaglini, D.; Silveira, E.; Travaglini, M.; Vitti, P.; Pereira, L.; de Aguirre, J.; de Campos, S.; Geraldini, A.; Figueiredo, I. The Processing of Soy Milk Residue Mixed with Corn Grits. Boletim do Instituto de Tecnologia de Alimentos (Brazil) 1980, 17 (3), 275-296.
  • de Aguirre, J.; Travaglini, D.; Cabral, A.; Travaglini, M.; Silveira, E.; Sales, A.; de Figueiredo, I.; Ferreira, V. The Drying and Storage of the Residue from the Water Extraction Soymilk Process [Brazil]. Boletim do Instituto de Tecnologia de Alimentos 1981, 18 (2), 227-243.
  • Guimarães, R. M.; Ida, E. I.; Falcão, H. G.; Rezende, T. A. M. D.; Silva, J. D. S.; Alves, C. C. F.; Silva, M. A. P. D.; Egea, M. B. Evaluating Technological Quality of Okara Flours Obtained by Different Drying Processes. LWT. 2020, 123, 109062.
  • Sengupta, S.; Chakraborty, M.; Bhowal, J.; Bhattacharya, D. Study on the Effects of Drying Process on the Composition and Quality of Wet Okara. Int. J. Sci. Environ. Technol. 2012, 1(4), 319–330.
  • Wachiraphansakul, S.; Devahastin, S. Drying Kinetics and Quality of Okara Dried in a Jet Spouted Bed of Sorbent Particles. LWT Food Sci. Technol. 2007, 40(2), 207–219.
  • Lazarin, R. A.; Falcão, H. G.; Ida, E. I.; Berteli, M. N.; Kurozawa, L. E. Rotating-Pulsed Fluidized Bed Drying of Okara: Evaluation of Process Kinetic and Nutritive Properties of Dried Product. Food Bioprocess. Technol. 2020, 13(9), 1611–1620.
  • Wang, G.; Deng, Y.; Xu, X.; He, X.; Zhao, Y.; Zou, Y.; Liu, Z.; Yue, J. Optimization of Air Jet Impingement Drying of Okara Using Response Surface Methodology. Food Control. 2016, 59, 743–749.
  • Nimmol, C.; Hirunwat, A. Multistage Impinging Stream Drying for Okara. Appl. Eng. Agric. 2017, 33(4), 445.
  • Perussello, C. A.; Mariani, V. C.; Do Amarante, Á. C. C. Numerical and Experimental Analysis of the Heat and Mass Transfer during Okara Drying. Appl. Therm. Eng. 2012, 48, 325–331.
  • Chen, Y.; Barthakur, N. N.; Arnold, N. P. Electrohydrodynamic (EHD) Drying of Potato Slabs. J. Food Eng. 1994, 23(1), 107–119.
  • Li, F.-D.; Li, L.-T.; Sun, J.-F.; Tatsumi, E. Effect of Electrohydrodynamic (EHD) Technique on Drying Process and Appearance of Okara Cake. J. Food Eng. 2006, 77(2), 275–280.
  • Ostermann‐Porcel, M. V.; Rinaldoni, A. N.; Rodriguez‐Furlán, L. T.; Campderrós, M. E. Quality Assessment of Dried Okara as a Source of Production of Gluten‐free Flour. J. Sci. Food Agric. 2017, 97(9), 2934–2941.
  • Aguado, A. C.;. Development of Okara Powder as a Gluten Free Alternative to All Purpose Flour for Value Added Use in Baked Goods. Masters Thesis, University of Maryland, College Park, Maryland, 2010
  • IBISWorld. Bread Production in Australia; IBISWorld, 2017.
  • Taylor, M. R.; Brester, G. W.; Boland, M. A. Hard White Wheat and Gold Medal Flour: General Mills’ Contracting Program. Rev. Agric. Econ. 2005, 27(1), 117–129.
  • Lu, F.; Li, B.; Zhang, Y.; Zhang, Z. Application of Bean Curd Residue in Bread. Sci. Technol. Food Ind. 2011, 9, 085.
  • Yang, L.; Bo, L.; Fei, L.; Mingshan, S. Effect of Okara Powder on Textural Properties of Bread Dough. J. Henan Inst. Sci. Technol. 2012, 3, 015.
  • Xiao, L. C. D. H. L.; Xiangyang, W. Z. L. Effects of Extruded Soybean Residue on Dough Characteristics and Bread Quality of Flour. J. Chin. Cereal. Oils Assoc. 2010, 12, 005.
  • Wickramarathna, G.; Arampath, P. Utilization of Okara in Bread Making. J. Biosci. 2003, 31, 29–33.
  • Stone, H.; Bleibaum, R.; Thomas,H.A. Sensory Evaluation Practices. 4 ed.; Academic press: Amsterdam, 2012.
  • Silva, L. H. D.; Paucar-Menacho, L. M.; Vicente, C. A.; Salles, A. S.; Steel, C. J.; Chang, Y. Development of Loaf Bread with the Addition of “Okara” Flour. Braz. J. Food Technol. 2009, 12(1/4), 315–322.
  • Fei, L.; Zhenkun, C.; Yang, L.; Bo, L. The Effect of Okara on the Qualities of Noodle and Steamed Bread. Adv. J. Food Sci. Technol. 2013, 5(7), 960–968.
  • Kang, M.; Bae, I.; Lee, H. Rice Noodle Enriched with Okara: Cooking Property, Texture, and in Vitro Starch Digestibility. Food Biosci. 2018, 22, 178–183.
  • Ahlawat, D.; Punia, D. Effect of Solar Tunnel and Freeze Drying Techniques on the Organoleptic Acceptability of Products Prepared Incorporating Okara (Soy By-product). Int. J. Food Sci. 2012, 3(3), 10–13.
  • Amir, E. J.; Grandegger, K.; Esper, A.; Sumarsono, M.; Djaya, C.; Mühlbauer, W. Development of a Multi-purpose Solar Tunnel Dryer for Use in Humid Tropics. Renew. Energy. 1991, 1(2), 167–176.
  • Ostermann-Porcel, M. V.; Quiroga-Panelo, N.; Rinaldoni, A. N.; Campderrós, M. E. Incorporation of Okara into Gluten-free Cookies with High Quality and Nutritional Value. J. Food Qual. 2017, 2017, 1–8
  • Tavares, B. O.; Silva, E. P. D.; Silva, V. S. N. D.; Soares Junior, M. S.; Ida, E. I.; Damiani, C. Stability of Gluten Free Sweet Biscuit Elaborated with Rice Bran, Broken Rice and Okara. Food Sci. Technol (Campinas). 2016, 36(2), 296–303.
  • Li, W.; Chenjie, W.; Tong, C.; Liu, S.; Hong, Y.; Min, C. Effect of Okara on the Sensory Quality of Cake. Res. Health Nutr. 2014, 2, 1–4.
  • Park, J.; Choi, I.; Kim, Y. Cookies Formulated from Fresh Okara Using Starch, Soy Flour and Hydroxypropyl Methylcellulose Have High Quality and Nutritional Value. LWT Food Sci. Technol. 2015, 63(1), 660–666.
  • Lee, D. P. S.; Gan, A. X.; Kim, J. E. Incorporation of Biovalorised Okara in Biscuits: Improvements of Nutritional, Antioxidant, Physical, and Sensory Properties. LWT. 2020, 134, 109902. DOI: 10.1016/j.lwt.2020.109902.
  • Katayama, M.; Wilson, L. Utilization of Okara, a Byproduct from Soymilk Production, through the Development of Soy‐Based Snack Food. J. Food Sci. 2008, 73(3). DOI: 10.1111/j.1750-3841.2008.00662.x.
  • Grizotto, R. K.; Andrade, J. C. D.; Miyagusku, L.; Yamada, E. A. Physical, Chemical, Technological and Sensory Characteristics of Frankfurter Type Sausage Containing Okara Flour. Food Sci. Technol. 2012, 32(3), 538–546. DOI: 10.1590/S0101-20612012005000076.
  • Chang, T.; Wang, C.; Wang, S.; Shi, L.; Yang, H.; Cui, M. Effect of Okara on Textural, Color and Rheological Properties of Pork Meat Gels. J. Food Qual. 2014, 37(5), 339–348. DOI: 10.1111/jfq.12096.
  • Noriham, A.; Ariffaizuddin, R. M.; Noorlaila, A.; Zakry, A. F. Potential Use of Okara as Meat Replacer in Beef Sausage. Jurnal Teknologi. 2016, 78(6), 13–18.
  • Turhan, S.; Temiz, H.; Sagir, I. Utilization of Wet Okara in Low‐fat Beef Patties. J. Muscle Foods. 2007, 18(2), 226–235. DOI: 10.1111/j.1745-4573.2007.00081.x.
  • Su, S. I. T.; Yoshida, C. M. P.; Contreras-Castillo, C. J.; Quiñones, E. M.; Venturini, A. C. Okara, a Soymilk Industry By-product, as a Non-meat Protein Source in Reduced Fat Beef Burgers. Food Sci. Technol (Campinas). 2013, 33, 52–56. DOI: 10.1590/S0101-20612013000500009.
  • Falcão, H. G.; Seibel, N. F.; Yamaguchi, M. M. Optimization of Beef Patties Formulation with Textured Soy Protein, Okara and Bacon Using a Simplex-centroid Mixture Design. Int. J. Latest Res. Sci. Technol. 2015, 4(6), 104–109.
  • Chou, D. H.; Morr, C. V. Protein-water Interactions and Functional Properties. J. Am. Oil Chem. Soc. 1979, 56(1), A53–A62. DOI: 10.1007/BF02671785.
  • El Nasri, N. A.; El Tinay, A. Functional Properties of Fenugreek (Trigonella Foenum Graecum) Protein Concentrate. Food Chem. 2007, 103(2), 582–589. DOI: 10.1016/j.foodchem.2006.09.003.
  • Melina, V.; Craig, W.; Levin, S. From the Academy: Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. DOI: 10.1016/j.jand.2016.09.025.
  • Guimarães, R. M.; Silva, T. E.; Lemes, A. C.; Boldrin, M. C. F.; da Silva, M. A. P.; Silva, F. G.; Egea, M. B. Okara: A Soybean By-product as an Alternative to Enrich Vegetable Paste. LWT. 2018, 92, 593–599. DOI: 10.1016/j.lwt.2018.02.058.
  • Nasution, Z.; Tung, M.; Faridah, Y. Okara: An Alternative Ingredient for Partial Substitution of Peanuts in Peanut Butter. Peanut Sci. 2012, 13(1), 18–20.
  • El-Rawas, A.; Hvizdzak, A.; Davenport, M.; Beamer, S.; Jaczynski, J.; Matak, K. Effect of Electron Beam Irradiation on Quality Indicators of Peanut Butter over a Storage Period. Food Chem. 2012, 133(1), 212–219. DOI: 10.1016/j.foodchem.2011.12.078.
  • Quintana, G.; Gerbino, E.; Gómez-Zavaglia, A. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus Plantarum during Freeze-drying, Spray-drying, and Storage. Front. Microbiol. 2017, 8, 641. DOI: 10.3389/fmicb.2017.00641.
  • de Moraes Filho, M. L.; Busanello, M.; Garcia, S. Optimization of the Fermentation Parameters for the Growth of Lactobacillus in Soymilk with Okara Flour. LWT - Food Sci. Technol. 2016, 74, 456–464. DOI: 10.1016/j.lwt.2016.08.009.
  • de Moraes Filho, M. L.; Busanello, M.; Prudencio, S. H.; Garcia, S. Soymilk with Okara Flour Fermented by Lactobacillus Acidophilus: Simplex-centroid Mixture Design Applied in the Elaboration of Probiotic Creamy Sauce and Storage Stability. LWT. 2018, 93, 339–345. DOI: 10.1016/j.lwt.2018.03.046.
  • de Albuquerque, M. A. C.; Bedani, R.; Vieira, A. D. S.; LeBlanc, J. G.; Saad, S. M. I. Supplementation with Fruit and Okara Soybean By-products and Amaranth Flour Increases the Folate Production by Starter and Probiotic Cultures. Int. J. Food Microbiol. 2016, 236, 26–32. DOI: 10.1016/j.ijfoodmicro.2016.07.008.
  • Zamani, B.; Farshbaf, S.; Golkar, H. R.; Bahmani, F.; Asemi, Z. Synbiotic Supplementation and the Effects on Clinical and Metabolic Responses in Patients with Rheumatoid Arthritis: A Randomised, Double-blind, Placebo-controlled Trial. Br. J. Nutr. 2017, 117(8), 1095–1102. DOI: 10.1017/S000711451700085X.
  • Bedani, R.; Rossi, E. A.; Cavallini, D. C. U.; Pinto, R. A.; Vendramini, R. C.; Augusto, E. M.; Abdalla, D. S. P.; Saad, S. M. I. Influence of Daily Consumption of Synbiotic Soy-based Product Supplemented with Okara Soybean By-product on Risk Factors for Cardiovascular Diseases. Food Res. Int. 2015, 73, 142–148. DOI: 10.1016/j.foodres.2014.11.006.
  • Voss, G. B.; Osorio, H.; Valente, L. M. P.; Pintado, M. E. Impact of Thermal Treatment and Hydrolysis by Alcalase and Cynara Cardunculus Enzymes on the Functional and Nutritional Value of Okara. Process Biochem. 2019, 83, 137–147. DOI: 10.1016/j.procbio.2019.05.010.
  • Voss, G. B.; Monteiro, M. J. P.; Jauregi, P.; Valente, L. M. P.; Pintado, M. E. Functional Characterisation and Sensory Evaluation of a Novel Synbiotic Okara Beverage. Food Chem. 2021, 340, 127793. DOI: 10.1016/j.foodchem.2020.127793.
  • Hayashi, H.; Takiuchi, K.; Murao, S.; Arai, M. Structure and Insecticidal Activity of New Indole Alkaloids, Okaramines A and B, from Penicillium Simplicissimum AK-40. Agric Biol Chem. 1989, 53(2), 461–469.
  • Furutani, S.; Nakatani, Y.; Miura, Y.; Ihara, M.; Kai, K.; Hayashi, H.; Matsuda, K. GluCl a Target of Indole Alkaloid Okaramines: A 25 Year Enigma Solved. Sci. Rep. 2014, 4, 6190. DOI: 10.1038/srep06190.
  • Harthan, L. B.; Cherney, D. J. Okara as a Protein Supplement Affects Feed Intake and Milk Composition of Ewes and Growth Performance of Lambs. Anim. Nutr. 2017, 3(2), 171–174. DOI: 10.1016/j.aninu.2017.04.001.
  • Santana, R. A. V.; Brito, A. F.; Moura, D. C.; Ghedini, C. P.; Galvão, J. J. G. B.; Barbosa, F. A.; Oliveira, A. S.; Pereira, A. B. D.; Reis, S. F.; Souza, I. A.; et al. 1409 Okara Meal Can Completely Replace Soybean Meal in Diets of Early to Mid-lactation Dairy Cows. J. Anim. Sci. 2016, 94(suppl_5), 683. DOI: 10.2527/jam2016-1409.
  • Guliński, P.; Salamończyk, E.; Młynek, K. Improving Nitro-gen Use Efficiency of Dairy Cows in Relation to Urea in Milk–a Review. Anim. Sci. Pap. Rep. 2016, 34(1), 5–24.
  • Khounsaknalath, S.; Matsuda, K.; Shiotsuka, Y.; Etoh, T.; Fumita, T.; Shiroshita, T.; Sin, T.; Gotoh, T. The Influence of Fattening by Eco–Feed Based on Okara on the Growth, Meat Quality and Histochemical Properties of the Longissimus Thoracis Muscle in Japanese Black Cattle. J. Fac. Agric. Kyushu Univ. 2010, 55(2), 247–252.
  • Mo, W. Y.; Man, Y. B.; Wong, M. H. Use of Food Waste, Fish Waste and Food Processing Waste for China’s Aquaculture Industry: Needs and Challenge. Sci. Total Environ. 2018, 613, 635–643.
  • El-Saidy, D. M. S. D.;. Effect of Using Okara Meal, a By‐product from Soymilk Production as a Dietary Protein Source for Nile Tilapia (Oreochromis Niloticus L.) Mono‐sex Males. Aquac. Nutr. 2011, 17(4), 380–386. DOI: 10.1111/j.1365-2095.2010.00810.x.
  • Nguyen, K. Q.; Vuong, Q. V.; Nguyen, M. H.; Roach, P. D. The Effects of Drying Conditions on Bioactive Compounds and Antioxidant Activity of the Australian Maroon Bush, Scaevola Spinescens. J. Food Process. Preserv. 2018, 42(10). DOI: 10.1111/jfpp.13711.
  • Kieu Tran, T. M.; Kirkman, T.; Nguyen, M.; Van Vuong, Q. Effects of Drying on Physical Properties, Phenolic Compounds and Antioxidant Capacity of Robusta Wet Coffee Pulp (Coffea Canephora). Heliyon. 2020, 6(7), e04498. DOI: 10.1016/j.heliyon.2020.e04498.
  • Ejikeme, P. M.;. Investigation of the Physicochemical Properties of Microcrystalline Cellulose from Agricultural Wastes I: Orange Mesocarp. Cellulose. 2008, 15(1), 141–147. DOI: 10.1007/s10570-007-9147-7.
  • Silva, F. D. O.; Perrone, D. Characterization and Stability of Bioactive Compounds from Soybean Meal. LWT Food Sci. Technol. 2015, 63(2), 992–1000.
  • Martínez-Abad, A.; Ramos, M.; Hamzaoui, M.; Kohnen, S.; Jiménez, A.; Garrigós, M. C. Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods. 2020, 9(10), 1493. DOI: 10.3390/foods9101493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.