18,069
Views
70
CrossRef citations to date
0
Altmetric
Review

Hydrogel: Diversity of Structures and Applications in Food Science

, &

References

  • Erol, O.; Pantula, A.; Liu, W.; Gracias, D. H. Transformer Hydrogels: A Review. Adv. Mater. Technol. US. 2019, 4, 1900043. doi: 10.1002/admt.201900043.
  • Ahmed, E. M.;. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. doi: 10.1016/j.jare.2013.07.006.
  • Kamata, H.; Akagi, Y.; Kayasuga-Kariya, Y.; Chung, U.; Sakai, T. “Nonswellable” Hydrogel without Mechanical Hysteresis. Science. 2014, 343, 873–875. doi: 10.1126/science.1247811.
  • Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A. Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering. Biomaterials. 2012, 33, 6020–6041. doi: 10.1016/j.biomaterials.2012.04.050.
  • Li, J.; Mooney, D. J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. doi: 10.1038/natrevmats.2016.71.
  • Shouji, T.; Yamamoto, K.; Kadokawa, J. Chemoenzymatic Synthesis and Self-Assembling Gelation Behavior of Amylose-Grafted Poly(γ-Glutamic Acid). Int. J. Biol. Macromol. 2017, 97, 99–105. doi: 10.1016/j.ijbiomac.2017.01.001.
  • Fan, Z.; Zhang, Y.; Zhang, W.; Li, X. In Situ Injectable Poly(γ-Glutamic Acid) Based Biohydrogel Formed by Enzymatic Crosslinking. J. Appl. Polym. Sci. 2015, 132, 42301. doi: 10.1002/app.42301.
  • Plamper, F. A.; Richtering, W. Functional Microgels and Microgel Systems. Acc. Chem. Res. 2017, 50, 131–140. doi: 10.1021/acs.accounts.6b00544.
  • Elsayed, M. M.;. Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects. J. Polym. Environ. 2019, 27, 871–891. doi: 10.1007/s10924-019-01376-4.
  • Cao, Y.; Mezzenga, R. Design Principles of Food Gels. Nat. Food. 2020, 1, 106–118. doi: 10.1038/s43016-019-0009-x.
  • Qin, H.; Zhang, T.; Li, N.; Cong, H.; Yu, S. Anisotropic and Self-Healing Hydrogels with Multi-Responsive Actuating Capability. Nat. Commun. 2019, 10, 2202. doi: 10.1038/s41467-019-10243-8.
  • Jaspers, M.; Dennison, M.; Mabesoone, M. F. J.; MacKintosh, F. C.; Rowan, A. E.; Kouwer, P. H. J. Ultra-Responsive Soft Matter From Strain-Stiffening Hydrogels. Nat. Commun. 2014, 5, 5808. doi: 10.1038/ncomms6808.
  • Park, J.; Pramanick, S.; Park, D.; Yeo, J.; Lee, J.; Lee, H.; Kim, W. J. Therapeutic-Gas-Responsive Hydrogel. Adv. Mater. 2017, 29, 1702859. doi: 10.1002/adma.201702859.
  • Yetisen, A. K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz-Esparza, G. U.; Tamayol, A.; Zhang, Y. S.; Mahmood, I.; Yang, S.; Kim, K. S.;, et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Adv. Mater. 2017, 29, 1606380. doi: 10.1002/adma.201606380.
  • Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-Driven Expansion of Spiropyran Hydrogels. J. Am. Chem. Soc. 2020, 142, 8447–8453. doi: 10.1021/jacs.0c02201.
  • Dai, L.; Ma, M.; Xu, J.; Si, C.; Wang, X.; Liu, Z.; Ni, Y. All-Lignin-Based Hydrogel with Fast pH-Stimuli-Responsiveness for Mechanical Switching and Actuation. Chem. Mater. 2020. doi: 10.1021/acs.chemmater.0c01198.
  • Wang, H.; Heilshorn, S. C. Adaptable Hydrogel Networks with Reversible Linkages for Tissue Engineering. Adv. Mater. 2015, 27, 3717–3736. doi: 10.1002/adma.201501558.
  • Huang, S.; Shuyi, S.; Gan, H.; Linjun, W.; Lin, C.; Danyuan, X.; Zhou, H.; Lin, X.; Qin, Y. Facile Fabrication and Characterization of Highly Stretchable Lignin-Based Hydroxyethyl Cellulose Self-Healing Hydrogel. Carbohyd. Polym. 2019, 223, 115080. doi: 10.1016/j.carbpol.2019.115080.
  • Chen, M.; Tian, J.; Liu, Y.; Cao, H.; Li, R.; Wang, J.; Wu, J.; Zhang, Q. Dynamic Covalent Constructed Self-Healing Hydrogel for Sequential Delivery of Antibacterial Agent and Growth Factor in Wound Healing. Chem. Eng. J. 2019, 373, 413–424. doi: 10.1016/j.cej.2019.05.043.
  • Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X.; Guo, B. Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing. Biomaterials. 2018, 183, 185–199. doi: 10.1016/j.biomaterials.2018.08.044.
  • Wei, Z.; Yang, J. H.; Liu, Z. Q.; Xu, F.; Zhou, J. X.; Zrinyi, M.; Osada, Y.; Chen, Y. M. Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel. Adv. Funct. Mater. 2015, 25, 1352–1359. doi: 10.1002/adfm.201401502.
  • Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial Anti-Oxidant Electroactive Injectable Hydrogel as Self-Healing Wound Dressing with Hemostasis and Adhesiveness for Cutaneous Wound Healing. Biomaterials. 2017, 122, 34–47. doi: 10.1016/j.biomaterials.2017.01.011.
  • Su, E.; Yurtsever, M.; Okay, O. A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as A Superabsorbent Polymer. Macromolecules. 2019, 52, 3257–3267. doi: 10.1021/acs.macromol.9b00032.
  • Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C. P.; Kadumudi, F. B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G.;, et al. Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Adv Sci 2019, 6, 1801664. doi: 10.1002/advs.201801664.
  • Li, L.; Yan, B.; Yang, J.; Huang, W.; Chen, L.; Zeng, H. Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties. ACS Appl. Mater. Inter. 2017, 9, 9221–9225. doi: 10.1021/acsami.6b16192.
  • Cirillo,; Curcio,; Nicoletta,; Iemma. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics. 2019, 11, 486. doi: 10.3390/pharmaceutics11090486.
  • Piantanida, E.; Alonci, G.; Bertucci, A.; De Cola, L. Design of Nanocomposite Injectable Hydrogels for Minimally Invasive Surgery. Acc. Chem. Res. 2019, 52, 2101–2112. doi: 10.1021/acs.accounts.9b00114.
  • Tu, Y.; Chen, N.; Li, C.; Liu, H.; Zhu, R.; Chen, S.; Xiao, Q.; Liu, J.; Ramakrishna, S.; He, L. Advances in Injectable Self-Healing Biomedical Hydrogels. Acta Biomater. 2019, 90, 1–20. doi: 10.1016/j.actbio.2019.03.057.
  • Zhang, S.; Chen, Y.; Liu, H.; Wang, Z.; Ling, H.; Wang, C.; Ni, J.; Saltik, B. C.; Wang, X.; Meng, X.;, et al.. Room-Temperature-Formed Pedot: Pss Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics. Adv. Mater. 2019, e1904752. doi: 10.1002/adma.201904752.
  • Li, W.; Liu, X.; Deng, Z.; Chen, Y.; Yu, Q.; Tang, W.; Sun, T. L.; Zhang, Y. S.; Yue, K. Tough Bonding, On-Demand Debonding, and Facile Rebonding between Hydrogels and Diverse Metal Surfaces. Adv. Mater. 2019, 1904732. doi: 10.1002/adma.201904732.
  • Yuk, H.; Zhang, T.; Lin, S.; Parada, G. A.; Zhao, X. Tough Bonding of Hydrogels to Diverse Non-Porous Surfaces. Nat. Mater. 2016, 15, 190–196. doi: 10.1038/nmat4463.
  • Gan, D.; Huang, Z.; Wang, X.; Jiang, L.; Wang, C.; Zhu, M.; Ren, F.; Fang, L.; Wang, K.; Xie, C.;, et al. Graphene Oxide-Templated Conductive and Redox-Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics. Adv. Funct. Mater. 2019, 30, 1907678. doi: 10.1002/adfm.201907678.
  • Han, L.; Wang, M.; Prieto-López, L. O.; Deng, X.; Cui, J. Self-Hydrophobization in a Dynamic Hydrogel for Creating Nonspecific Repeatable Underwater Adhesion. Adv. Funct. Mater. 2019, 30, 1907064. doi: 10.1002/adfm.201907064.
  • Rose, S.; Prevoteau, A.; Elzière, P.; Hourdet, D.; Marcellan, A.; Leibler, L. Nanoparticle Solutions as Adhesives for Gels and Biological Tissues. Nature. 2014, 505, 382–385. doi: 10.1038/nature12806.
  • Cheng, W.; Hu, X.; Wang, D.; Liu, G. Preparation and Characteristics of Corn Straw-Co-Amps-Co-Aa Superabsorbent Hydrogel. Polymers-Basel. 2015, 7, 2431–2445. doi: 10.3390/polym7111522.
  • Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, P.; Aizenberg, J. Reversible Switching of Hydrogel-Actuated Nanostructures Into Complex Micropatterns. Science. 2007, 315, 487–490. doi: 10.1126/science.1135516.
  • Chin, S. Y.; Poh, Y. C.; Kohler, A.; Compton, J. T.; Hsu, L. L.; Lau, K. M.; Kim, S.; Lee, B. W.; Lee, F. Y.; Sia, S. K. Additive Manufacturing of Hydrogel-Based Materials for Next-Generation Implantable Medical Devices. Sci. Rob. 2017, 2, eaah6451. doi: 10.1126/scirobotics.aah6451.
  • Banerjee, H.; Ren, H. Optimizing Double-Network Hydrogel for Biomedical Soft Robots. Soft Rob. 2017, 4, 191–201. doi: 10.1089/soro.2016.0059.
  • Yuk, H.; Lin, S.; Ma, C.; Takaffoli, M.; Fang, N. X.; Zhao, X. Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water. Nat. Commun. 2017, 8, 14230. doi: 10.1038/ncomms14230.
  • Ge, G.; Lu, Y.; Qu, X.; Zhao, W.; Ren, Y.; Wang, W.; Wang, Q.; Huang, W.; Dong, X. Muscle-Inspired Self-Healing Hydrogels for Strain and Temperature Sensor. ACS Nano. 2020, 14, 218–228. doi: 10.1021/acsnano.9b07874.
  • Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel Machines. Mater. Today. 2020. doi: 10.1016/j.mattod.2019.12.026.
  • Bakarich, S. E.; Gorkin, R.; Panhuis, M. I. H.; Spinks, G. M. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromol. Rapid Comm. 2015, 36, 1211–1217. doi: 10.1002/marc.201500079.
  • Lee, H. R.; Woo, J.; Han, S. H.; Lim, S. M.; Lim, S.; Kang, Y. W.; Song, W. J.; Park, J. M.; Chung, T. D.; Joo, Y. C.;, et al. A Stretchable Ionic Diode from Copolyelectrolyte Hydrogels with Methacrylated Polysaccharides. Adv. Funct. Mater. 2019, 29, 1806909. doi: 10.1002/adfm.201806909.
  • Sun, J.; Keplinger, C.; Whitesides, G. M.; Suo Z. Ionic Skin. Adv. Mater. 2014, 26, 7608–7614. doi: 10.1002/adma.201403441..
  • Kim, C.; Lee, H.; Oh, K. H.; Sun, J. Highly Stretchable, Transparent Ionic Touch Panel. Science. 2016, 353, 682–687. doi: 10.1126/science.aaf8810.
  • Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly Stretchable Electroluminescent Skin for Optical Signaling and Tactile Sensing. Science. 2016, 351, 1071–1074. doi: 10.1126/science.aac5082.
  • Yang, C.; Suo, Z. Hydrogel Ionotronics. Nat. Rev. Mater. 2018, 3, 125–142. doi: 10.1038/s41578-018-0018-7.
  • Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, Transparent, Ionic Conductors. Science. 2013, 341, 984–987. doi: 10.1126/science.1240228.
  • Yuk, H.; Lu, B.; Zhao, X. Hydrogel Bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. doi: 10.1039/C8CS00595H.
  • Liu, X.; Steiger, C.; Lin, S.; Parada, G. A.; Liu, J.; Chan, H. F.; Yuk, H.; Phan, N. V.; Collins, J.; Tamang, S.;, et al. Ingestible Hydrogel Device. Nat. Commun. 2019, 10, 493. doi: 10.1038/s41467-019-08355-2.
  • Ge, G.; Yuan, W.; Zhao, W.; Lu, Y.; Zhang, Y.; Wang, W.; Chen, P.; Huang, W.; Si, W.; Dong, X. Highly Stretchable and Autonomously Healable Epidermal Sensor Based on Multi-Functional Hydrogel Frameworks. J. Mater. Chem. A. 2019, 7, 5949–5956. doi: 10.1039/C9TA00641A.
  • Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z.;, et al. Tough Adhesives for Diverse Wet Surfaces. Science 2017, 357, 378–381. doi: 10.1126/science.aah6362.
  • Guo, J. L.; Kim, Y. S.; Xie, V. Y.; Smith, B. T.; Watson, E.; Lam, J.; Pearce, H. A.; Engel, P. S.; Mikos, A. G. Modular, Tissue-Specific, and Biodegradable Hydrogel Cross-Linkers for Tissue Engineering. Sci. Adv. 2019, 5, eaaw7396. doi: 10.1126/sciadv.aaw7396.
  • Sharma, B.; Fermanian, S.; Gibson, M.; Unterman, S.; Herzka, D. A.; Cascio, B.; Coburn, J.; Hui, A. Y.; Marcus, N.; Gold, G. E.;, et al. Human Cartilage Repair with a Photoreactive Adhesive-Hydrogel Composite. Sci. Transl. Med. 2013, 5, 167ra6. doi: 10.1126/scitranslmed.3004838.
  • Naahidi, S.; Jafari, M.; Logan, M.; Wang, Y.; Yuan, Y.; Bae, H.; Dixon, B.; Chen, P. Biocompatibility of Hydrogel-Based Scaffolds for Tissue Engineering Applications. Biotechnol. Adv. 2017, 35, 530–544. doi: 10.1016/j.biotechadv.2017.05.006.
  • Prince, E.; Kumacheva, E. Design and Applications of Man-Made Biomimetic Fibrillar Hydrogels. Nat. Rev. Mater. 2019, 4, 99–115. doi: 10.1038/s41578-018-0077-9.
  • Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science. 2009, 324, 59. doi: 10.1126/science.1169494.
  • Johnson, C. T.; Wroe, J. A.; Agarwal, R.; Martin, K. E.; Guldberg, R. E.; Donlan, R. M.; Westblade, L. F.; Garcia, A. J. Hydrogel Delivery of Lysostaphin Eliminates Orthopedic Implant Infection by Staphylococcus Aureus and Supports Fracture Healing. PANS. 2018, 115, E4960–E4969. doi: 10.1073/pnas.1801013115.
  • Zhang, S.; Ermann, J.; Succi, M. D.; Zhou, A.; Hamilton, M. J.; Cao, B.; Korzenik, J. R.; Glickman, J. N.; Vemula, P. K.; Glimcher, L. H.;, et al. An Inflammation-Targeting Hydrogel for Local Drug Delivery in Inflammatory Bowel Disease. Sci. Transl. Med. 2015, 7, 300ra128. doi: 10.1126/scitranslmed.aaa5657.
  • Liu, Q.; Zhan, C.; Barhoumi, A.; Wang, W.; Santamaria, C.; McAlvin, J. B.; Kohane, D. S. A Supramolecular Shear-Thinning Anti-Inflammatory Steroid Hydrogel. Adv. Mater. 2016, 28, 6680–6686. doi: 10.1002/adma.201601147.
  • Weaver, J. D.; Headen, D. M.; Aquart, J.; Johnson, C. T.; Shea, L. D.; Shirwan, H.; Garcia, A. J. Vasculogenic Hydrogel Enhances Islet Survival, Engraftment, and Function in Leading Extrahepatic Sites. Sci. Adv. 2017, 3, e1700184. doi: 10.1126/sciadv.1700184.
  • Ghobril, C.; Grinstaff, M. W. The Chemistry and Engineering of Polymeric Hydrogel Adhesives for Wound Closure: A Tutorial. Chem. Soc. Rev. 2015, 44, 1820–1835. doi: 10.1039/c4cs00332b.
  • Brown, T. E.; Anseth, K. S. Spatiotemporal Hydrogel Biomaterials for Regenerative Medicine. Chem. Soc. Rev. 2017, 46, 6532–6552. doi: 10.1039/c7cs00445a.
  • Guo, S.; Kang, G.; Phan, D. T.; Hsu, M. N.; Por, Y. C.; Chen, C. H. Polymerization-Induced Phase Separation Formation of Structured Hydrogel Particles via Microfluidics for Scar Therapeutics. Sci. Rep-UK. 2018, 8, 2245. doi: 10.1038/s41598-018-20516-9.
  • Li, Y.; Kumacheva, E. Hydrogel Microenvironments for Cancer Spheroid Growth and Drug Screening. Sci. Adv. 2018, 4, eaas8998. doi: 10.1126/sciadv.aas8998.
  • Seliktar, D.;. Designing Cell-Compatible Hydrogels for Biomedical Applications. Science. 2012, 336, 1124–1128. doi: 10.1126/science.1214804.
  • Huebsch, N.;. Translational Mechanobiology: Designing Synthetic Hydrogel Matrices for Improved in Vitro Models and Cell-Based Therapies. Acta Biomater. 2019, 94, 97–111. doi: 10.1016/j.actbio.2019.05.055.
  • Hong, Y.; Zhou, F.; Hua, Y.; Zhang, X.; Ni, C.; Pan, D.; Zhang, Y.; Jiang, D.; Yang, L.; Lin, Q.;, et al. A Strongly Adhesive Hemostatic Hydrogel for the Repair of Arterial and Heart Bleeds. Nat. Commun. 2019, 10, 2060. doi: 10.1038/s41467-019-10004-7.
  • Kong, W.; Wang, C.; Jia, C.; Kuang, Y.; Pastel, G.; Chen, C.; Chen, G.; He, S.; Huang, H.; Zhang, J.;, et al. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels. Adv. Mater. 2018, 30, 1801934. doi: 10.1002/adma.201801934.
  • Lei, Z.; Wu, P. A Supramolecular Biomimetic Skin Combining A Wide Spectrum of Mechanical Properties and Multiple Sensory Capabilities. Nat. Commun. 2018, 9, 1134. doi: 10.1038/s41467-018-03456-w.
  • Che, L.; Lei, Z.; Wu, P.; Song, D. A 3D Printable and Bioactive Hydrogel Scaffold to Treat Traumatic Brain Injury. Adv. Funct. Mater. 2019, 29, 1904450. doi: 10.1002/adfm.201904450.
  • Wang, Y.; Shang, L.; Chen, G.; Sun, L.; Zhang, X.; Zhao, Y. Bioinspired Structural Color Patch with Anisotropic Surface Adhesion. Sci. Adv. 2020, 6, eaax8258. doi: 10.1126/sciadv.aax8258.
  • Beebe, D. J.; Moore, J. S.; Bauer, J. M.; Yu, Q.; Liu, R. H.; Devadoss, C.; Jo, B. H. Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic Channels. Nature. 2000, 404, 588–590. doi: 10.1038/35007047.
  • Zhang, Y. Z.; Lee, K. H.; Anjum, D. H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef, H. N. Mxenes Stretch Hydrogel Sensor Performance to New Limits. Sci. Adv. 2018, 4, eaat0098. doi: 10.1126/sciadv.aat0098.
  • Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A Bioinspired Mineral Hydrogel as A Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing. Adv. Mater. 2017, 29, 1700321. doi: 10.1002/adma.201700321.
  • Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability. Adv. Mater. 2017, 29, 1700533. doi: 10.1002/adma.201700533.
  • Lee, J. S.; Song, J.; Kim, S. O.; Kim, S.; Lee, W.; Jackman, J. A.; Kim, D.; Cho, N. J.; Lee, J. Multifunctional Hydrogel Nano-Probes for Atomic Force Microscopy. Nat. Commun. 2016, 7, 11566. doi: 10.1038/ncomms11566.
  • Gupta, S. C.; Baheti, G. L.; Gupta, B. P. Application of Hydrogel System for Neutron Attenuation. Radiat. Phys. Chem. 2000, 59, 103–107. doi: 10.1016/S0969-806X(00)00189-4.
  • Ito, K.;. Topological Gels. In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2015; pp 2528–2534.
  • Granick, S.; Rubinstein, M. A. Multitude of Macromolecules. Nat. Mater. 2004, 3, 586–587. doi: 10.1038/nmat1199.
  • Katsuno, C.; Konda, A.; Urayama, K.; Takigawa, T.; Kidowaki, M.; Ito, K. Pressure-Responsive Polymer Membranes of Slide-Ring Gels with Movable Cross-Links. Adv. Mater. 2013, 25, 4636–4640. doi: 10.1002/adma.201301252.
  • Haraguchi, K.; Takehisa, T. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-Swelling Properties. Adv. Mater. 2002, 14, 1120–1124. doi: 10.1002/1521-4095(20020816)14:16<120::aid-adma1120>3.0.CO;2-9.
  • Xia, L.; Xie, R.; Ju, X.; Wang, W.; Chen, Q.; Chu, L. Nano-Structured Smart Hydrogels with Rapid Response and High Elasticity. Nat. Commun. 2013, 4, 2226.
  • Hu, Z.; Chen, G. Novel Nanocomposite Hydrogels Consisting of Layered Double Hydroxide with Ultrahigh Tensibility and Hierarchical Porous Structure at Low Inorganic Content. Adv. Mater. 2014, 26, 5950–5956. doi: 10.1002/adma.201400179.
  • Okumura, Y.; Ito, K. The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-Links. Adv.Mate. 2001, 13, 485–487. doi: 10.1002/1521-4095(200104)13:7<485::aid-adma485>3.0.CO;2-T.
  • Tang, Z.; Chen, Q.; Chen, F.; Zhu, L.; Lu, S.; Ren, B.; Zhang, Y.; Yang, J.; Zheng, J. General Principle for Fabricating Natural Globular Protein-Based Double-Network Hydrogels with Integrated Highly Mechanical Properties and Surface Adhesion on Solid Surfaces. Chem. Mater.. 2019, 31, 179–189. doi: 10.1021/acs.chemmater.8b03860.
  • Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155–1158. doi: 10.1002/adma.200304907..
  • Morovati, V.; Dargazany, R. Micro-Mechanical Modeling of the Stress Softening in Double-Network Hydrogels. Int. J. Solids Struct. 2019, 164, 1–11. doi: 10.1016/j.ijsolstr.2019.01.002.
  • Hu, J.; Hiwatashi, K.; Kurokawa, T.; Liang, S. M.; Wu, Z. L.; Gong, J. P. Microgel-Reinforced Hydrogel Films with High Mechanical Strength and Their Visible Mesoscale Fracture Structure. Macromolecules. 2011, 44, 7775–7781. doi: 10.1021/ma2016248.
  • Yan, X.; Yang, J.; Chen, F.; Zhu, L.; Tang, Z.; Qin, G.; Chen, Q.; Chen, G. Mechanical Properties of Gelatin/Polyacrylamide/Graphene Oxide Nanocomposite Double-Network Hydrogels. Compos. Sci. Technol. 2018, 163, 81–88. doi: 10.1016/j.compscitech.2018.05.011.
  • Xiao, S.; Zhao, T.; Wang, J.; Wang, C.; Du, J.; Ying, L.; Lin, J.; Zhang, C.; Hu, W.; Wang, L.;, et al.. Gelatin Methacrylate (Gelma)-based Hydrogels for Cell Transplantation: An Effective Strategy for Tissue Engineering. Stem Cell Rev. Rep. 2019, 15, 664–679. doi:10.1007/s12015-019-09893-4.
  • Zhou, X.; Zhao, F.; Guo, Y.; Rosenberger, B.; Yu, G. Architecting Highly Hydratable Polymer Networks to Tune the Water State for Solar Water Purification. Sci. Adv. 2019, 5, eaaw5484. doi: 10.1126/sciadv.aaw5484.
  • Hu, N.; Zhang, L.; Yang, C.; Zhao, J.; Yang, Z.; Wei, H.; Liao, H.; Feng, Z.; Fisher, A.; Zhang, Y.;, et al. Three-Dimensional Skeleton Networks of Graphene Wrapped Polyaniline Nanofibers: An Excellent Structure for High-Performance Flexible Solid-State Supercapacitors. Sci. Rep-UK 2016, 6, 19777. doi: 10.1038/srep19777.
  • Qu, Y.; Chu, B. Y.; Peng, J. R.; Liao, J. F.; Qi, T. T.; Shi, K.; Zhang, X. N.; Wei, Y. Q.; Qian, Z. Y. A Biodegradable Thermo-Responsive Hybrid Hydrogel: Therapeutic Applications in Preventing the Post-Operative Recurrence of Breast Cancer. NPG Asia Mater. 2015, 7, e207. doi: 10.1038/am.2015.83.
  • Wu, Y.; Wang, L.; Qing, Y.; Yan, N.; Tian, C.; Huang, Y. A Green Route to Prepare Fluorescent and Absorbent Nano-Hybrid Hydrogel for Water Detection. Sci. Rep-UK. 2017, 7, 4380. doi: 10.1038/s41598-017-04542-7.
  • Alam, M. A.; Takafuji, M.; Ihara, H. Silica Nanoparticle-Crosslinked Thermosensitive Hybrid Hydrogels as Potential Drug-Release Carriers. Polym. J. 2014, 46, 293–300.
  • Li, J.; Pan, K.; Tian, H.; Yin, L. Yin Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromol. Mater. Eng. 2020, 305(8), 2000285. doi:10.1002/mame.v305.8 8 305 133
  • Akhtar, M. F.; Hanif, M.; Ranjha, N. M. Methods of Synthesis of Hydrogels … a Review. Saudi Pharm. J. 2016, 24, 554–559. doi: 10.1016/j.jsps.2015.03.022.
  • Zhang, Y. S.; Khademhosseini, A. Advances in Engineering Hydrogels. Science. 2017, 356, eaaf3627. doi: 10.1126/science.aaf3627.
  • Dhanjai,; Sinha, A.; Kalambate, P. K.; Mugo, S. M.; Kamau, P.; Chen, J.; Jain, R. Polymer Hydrogel Interfaces in Electrochemical Sensing Strategies: A Review. TrAC Trends Anal. Chem. 2019, 118, 488–501. doi: 10.1016/j.trac.2019.06.014.
  • Harada, A.; Takashima, Y.; Nakahata, M. Supramolecular Polymeric Materials via Cyclodextrin–Guest Interactions. Acc. Chem. Res. 2014, 47, 2128–2140. doi: 10.1021/ar500109h.
  • Clarke, D. E.; Pashuck, E. T.; Bertazzo, S.; Weaver, J. V. M.; Stevens, M. M. Self-Healing, Self-Assembled Β-sheet Peptide–Poly(γ-Glutamic Acid) Hybrid Hydrogels. J. Am. Chem. Soc. 2017, 139, 7250–7255. doi: 10.1021/jacs.7b00528.
  • Jacob, R. S.; Ghosh, D.; Singh, P. K.; Basu, S. K.; Jha, N. N.; Das, S.; Sukul, P. K.; Patil, S.; Sathaye, S.; Kumar, A.;, et al. Self Healing Hydrogels Composed of Amyloid Nano Fibrils for Cell Culture and Stem Cell Differentiation. Biomaterials 2015, 54, 97–105. doi: 10.1016/j.biomaterials.2015.03.002.
  • Zhang, G.; Ngai, T.; Deng, Y.; Wang, C. An Injectable Hydrogel with Excellent Self-Healing Property Based on Quadruple Hydrogen Bonding. Macromol. Chem. Phys. 2016, 217, 2172–2181. doi: 10.1002/macp.201600319.
  • Miyamae, K.; Nakahata, M.; Takashima, Y.; Harada, A. Self-Healing, Expansion-Contraction, and Shape-Memory Properties of a Preorganized Supramolecular Hydrogel through Host-Guest Interactions. Angew. Chem. Int. Ed. Engl. 2015, 54, 8984–8987. doi: 10.1002/anie.201502957.
  • Kakuta, T.; Takashima, Y.; Nakahata, M.; Otsubo, M.; Yamaguchi, H.; Harada, A. Preorganized Hydrogel: Self-Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guest-Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups. Adv. Mater. 2013, 25, 2849–2853. doi: 10.1002/adma.201205321.
  • Gulyuz, U.; Okay, O. Self-Healing Poly(Acrylic Acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength. Macromolecules. 2014, 47, 6889–6899. doi: 10.1021/ma5015116.
  • Algi, M. P.; Okay, O. Highly Stretchable Self-Healing Poly(N,N-Dimethylacrylamide) Hydrogels. Eur. Polym. J. 2014, 59, 113–121. doi: 10.1016/j.eurpolymj.2014.07.022.
  • Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity. Nat. Mater. 2013, 12, 932–937. doi: 10.1038/nmat3713.
  • Bai, T.; Liu, S.; Sun, F.; Sinclair, A.; Zhang, L.; Shao, Q.; Jiang, S. Zwitterionic Fusion in Hydrogels and Spontaneous and Time-Independent Self-Healing under Physiological Conditions. Biomaterials. 2014, 35, 3926–3933. doi: 10.1016/j.biomaterials.2014.01.077.
  • Sun, T. L.; Luo, F.; Kurokawa, T.; Karobi, S. N.; Nakajima, T.; Gong, J. P. Molecular Structure of Self-Healing Polyampholyte Hydrogels Analyzed from Tensile Behaviors. Soft Matter. 2015, 11, 9355–9366. doi: 10.1039/C5SM01423A.
  • Shao, C.; Wang, M.; Meng, L.; Chang, H.; Wang, B.; Xu, F.; Yang, J.; Wan, P. Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chem. Mater. 2018, 30, 3110–3121. doi: 10.1021/acs.chemmater.8b01172.
  • Sun, S.; Mao, L.; Lei, Z.; Yu, S.; Cölfen, H. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for “Mineral Plastics”. Angew. Chem. Int. Ed. 2016, 55, 11765–11769. doi: 10.1002/anie.201602849.
  • Ihsan, A. B.; Sun, T. L.; Kurokawa, T.; Karobi, S. N.; Nakajima, T.; Nonoyama, T.; Roy, C. K.; Luo, F.; Gong, J. P. Self-Healing Behaviors of Tough Polyampholyte Hydrogels. Macromolecules. 2016, 49, 4245–4252. doi: 10.1021/acs.macromol.6b00437.
  • Henderson, K. J.; Zhou, T. C.; Otim, K. J.; Shull, K. R. Ionically Cross-Linked Triblock Copolymer Hydrogels with High Strength. Macromolecules. 2010, 43, 6193–6201. doi: 10.1021/ma100963m.
  • Tsao, C. T.; Chang, C. H.; Lin, Y. Y.; Wu, M. F.; Wang, J.; Han, J. L.; Hsieh, K. H. Antibacterial Activity and Biocompatibility of a Chitosan-γ-Poly(Glutamic Acid) Polyelectrolyte Complex Hydrogel. Carbohyd. Res. 2010, 345, 1774–1780. doi: 10.1016/j.carres.2010.06.002.
  • Liu, Z.; Wang, Y.; Ren, Y.; Jin, G.; Zhang, C.; Chen, W.; Yan, F. Poly(Ionic Liquid) Hydrogel-Based Anti-Freezing Ionic Skin for a Soft Robotic Gripper. Mater. Horiz. 2020, 7, 919–927. doi: 10.1039/C9MH01688K.
  • Augst, A. D.; Kong, H. J.; Mooney, D. J. Alginate Hydrogels as Biomaterials. Macromol. Biosci. 2006, 6, 623–633. doi: 10.1002/mabi.200600069.
  • Leong, J.; Lam, W.; Ho, K.; Voo, W.; Lee, M. F.; Lim, H.; Lim, S.; Tey, B.; Poncelet, D.; Chan, E. Advances in Fabricating Spherical Alginate Hydrogels with Controlled Particle Designs by Ionotropic Gelation as Encapsulation Systems. Particuology. 2016, 24, 44–60. doi: 10.1016/j.partic.2015.09.004.
  • Gulrez, S. K. H.; Al-Assaf, S.; Phillips, G. O. Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications; Carpi, A., ed.; InTechOpen: London, UK, 2011; pp p 127.
  • Nilsen-Nygaard, J.; Hattrem, M. N.; Draget, K. I. Propylene Glycol Alginate (Pga) Gelled Foams: A Systematic Study of Surface Activity and Gelling Properties as A Function of Degree of Esterification. Food Hydrocolloid. 2016, 57, 80–91. doi: 10.1016/j.foodhyd.2016.01.011.
  • Hong, S.; Sycks, D.; Chan, H. F.; Lin, S.; Lopez, G. P.; Guilak, F.; Leong, K. W.; Zhao, X. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv. Mater. 2015, 27, 4035–4040. doi: 10.1002/adma.201501099.
  • Chen, Q.; Yan, X.; Zhu, L.; Chen, H.; Jiang, B.; Wei, D.; Huang, L.; Yang, J.; Liu, B.; Zheng, J. Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions. Chem. Mater. 2016, 28, 5710–5720. doi: 10.1021/acs.chemmater.6b01920.
  • Desiraju, G. R.;. Hydrogen Bridges in Crystal Engineering:  Interactions without Borders. Acc. Chem. Res. 2002, 35, 565–573. doi: 10.1021/ar010054t.
  • Li, G.; Yan, Q.; Xia, H.; Zhao, Y. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(Vinyl Alcohol) Physical Hydrogel. ACS Appl. Mater. Inter. 2015, 7, 12067–12073. doi: 10.1021/acsami.5b02234.
  • Li, G.; Zhang, H.; Fortin, D.; Xia, H.; Zhao, Y. Poly(Vinyl Alcohol)-Poly(Ethylene Glycol) Double-Network Hydrogel: A General Approach to Shape Memory and Self-Healing Functionalities. Langmuir. 2015, 31, 11709–11716. doi: 10.1021/acs.langmuir.5b03474.
  • Song, P. A.; Xu, Z.; Guo, Q. Bioinspired Strategy to Reinforce PVA with Improved Toughness and Thermal Properties via Hydrogen-Bond Self-Assembly. ACS Macro Lett. 2013, 2, 1100–1104. doi: 10.1021/mz4005265.
  • Li, J.; Wang, Z.; Wen, L.; Nie, J.; Yang, S.; Xu, J.; Cheng, S. Z. D. Highly Elastic Fibers Made From Hydrogen-Bonded Polymer Complex. ACS Macro Lett. 2016, 5, 814–818. doi: 10.1021/acsmacrolett.6b00346.
  • Tang, L.; Liu, W.; Liu, G. High-Strength Hydrogels with Integrated Functions of H-Bonding and Thermoresponsive Surface-Mediated Reverse Transfection and Cell Detachment. Adv. Mater. 2010, 22, 2652–2656. doi: 10.1002/adma.200904016.
  • Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W. A. Mechanically Strong, Highly Stable, Thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel. Adv. Mater. 2015, 27, 3566–3571. doi: 10.1002/adma.201500534.
  • Hu, X.; Vatankhah-Varnoosfaderani, M.; Zhou, J.; Li, Q.; Sheiko, S. S. Weak Hydrogen Bonding Enables Hard, Strong, Tough, and Elastic Hydrogels. Adv. Mater. 2015, 27, 6899–6905. doi: 10.1002/adma.201503724.
  • Chen, Y.; Peng, L.; Liu, T.; Wang, Y.; Shi, S.; Wang, H. Poly(Vinyl Alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors. ACS Appl. Mater. Inter. 2016, 8, 27199–27206. doi: 10.1021/acsami.6b08374.
  • Shi, S.; Peng, X.; Liu, T.; Chen, Y.; He, C.; Wang, H. Facile Preparation of Hydrogen-Bonded Supramolecular Polyvinyl Alcohol-Glycerol Gels with Excellent Thermoplasticity and Mechanical Properties. Polymer. 2017, 111, 168–176. doi: 10.1016/j.polymer.2017.01.051.
  • Liu, T.; Peng, X.; Chen, Y.; Bai, Q.; Shang, C.; Zhang, L.; Wang, H. Hydrogen-Bonded Polymer–Small Molecule Complexes with Tunable Mechanical Properties. Macromol. Rapid Comm. 2018, 39, 1800050. doi: 10.1002/marc.201800050.
  • Yokoyama, F.; Masada, I.; Shimamura, K.; Ikawa, T.; Monobe, K. Morphology and Structure of Highly Elastic Poly(Vinyl Alcohol) Hydrogel Prepared by Repeated Freezing-and-Melting. Colloid Polym. Sci. 1986, 264, 595–601. doi: 10.1007/BF01412597.
  • Nugent, M. J. D.; Hanley, A.; Tomkins, P. T.; Higginbotham, C. L. Investigation of a Novel Freeze-Thaw Process for the Production of Drug Delivery Hydrogels. J. Mater. Sci.: Mater. Med. 2005, 16, 1149–1158. doi: 10.1007/s10856-005-4722-7.
  • Willcox, P. J.; Howie, D. W., Jr.; Schmidt-Rohr, K.; Hoagland, D. A.; Gido, S. P.; Pudjijanto, S.; Kleiner, L. W.; Venkatraman, S. Microstructure of Poly(Vinyl Alcohol) Hydrogels Produced by Freeze/Thaw Cycling. J. Polym. Sci. B Polym. Phys. 1999, 37, 3438–3454. doi: 10.1002/(SICI)1099-0488(19991215)37:24<3438::aid-polb6>3.0.CO;2-9.
  • Gong, Z.; Zhang, G.; Zeng, X.; Li, J.; Li, G.; Huang, W.; Sun, R.; Wong, C. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. ACS Appl. Mater. Inter. 2016, 8, 24030–24037. doi: 10.1021/acsami.6b05627.
  • Guo, P.; Liang, J.; Li, Y.; Lu, X.; Fu, H.; Jing, H.; Guan, S.; Han, D.; Niu, L. High-Strength and Ph-Responsive Self-Healing Polyvinyl Alcohol/Poly 6-Acrylamidohexanoic Acid Hydrogel Based on Dual Physically Cross-Linked Network. Colloids Surf. A. 2019, 571, 64–71. doi: 10.1016/j.colsurfa.2019.03.027.
  • Liu, T.; Jiao, C.; Peng, X.; Chen, Y.; Chen, Y.; He, C.; Liu, R.; Wang, H. Super-Strong and Tough Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Hydrogels Reinforced by Hydrogen Bonding. J. Mater. Chem. B. 2018, 6, 8105–8114. doi: 10.1039/C8TB02556H.
  • Shi, L.; Ding, P.; Wang, Y.; Zhang, Y.; Ossipov, D.; Hilborn, J. Self-Healing Polymeric Hydrogel Formed by Metal–Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications. Macromol. Rapid Comm. 2019, 40, 1800837. doi: 10.1002/marc.201800837.
  • Haas, K. L.; Franz, K. J. Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology. Chem. Rev. 2009, 109, 4921–4960. doi: 10.1021/cr900134a.
  • Nastri, F.; Chino, M.; Maglio, O.; Bhagi-Damodaran, A.; Lu, Y.; Lombardi, A. Design and Engineering of Artificial Oxygen-Activating Metalloenzymes. Chem. Soc. Rev. 2016, 45, 5020–5054. doi: 10.1039/C5CS00923E.
  • Harrington, M. J.; Masic, A.; Holten-Andersen, N.; Waite, J. H.; Fratzl, P. Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings. Science. 2010, 328, 216. doi: 10.1126/science.1181044.
  • Krogsgaard, M.; Nue, V.; Birkedal, H. Mussel‐Inspired Materials: Self‐Healing through Coordination Chemistry. Chem. Eur. J. 2016, 22, 844–857. doi: 10.1002/chem.201503380.
  • Mauro, M.;. Dynamic Metal–Ligand Bonds as Scaffolds for Autonomously Healing Multi‐Responsive Materials. Eur. J. Inorg. Chem. 2018, 2018, 2090–2100. doi: 10.1002/ejic.201800226.
  • Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. Self-Healing Multiphase Polymers Via Dynamic Metal–Ligand Interactions. J. Am. Chem. Soc. 2014, 136, 16128–16131. doi: 10.1021/ja5097094.
  • Cook, T. R.; Zheng, Y.; Stang, P. J. Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chem. Rev. 2013, 113, 734–777. doi: 10.1021/cr3002824.
  • Li, C.; Wang, C.; Keplinger, C.; Zuo, J.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.;; et al.. A Highly Stretchable Autonomous Self-Healing Elastomer. Nat. Chem. 2016, 8, 618–624.
  • Zhang, J.; Su, C. Metal-Organic Gels: From Discrete Metallogelators to Coordination Polymers. Coordin. Chem. Rev. 2013, 257, 1373–1408. doi: 10.1016/j.ccr.2013.01.005.
  • Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z.; Messersmith, P. B.; Holten-Andersen, N. Control of Hierarchical Polymer Mechanics with Bioinspired Metal-Coordination Dynamics. Nat. Mater. 2015, 14, 1210–1216. doi: 10.1038/nmat4401.
  • Waite, J. H.;. Mussel Power. Nat. Mater. 2008, 7, 8–9. doi: 10.1038/nmat2087.
  • Lin, Q.; Gourdon, D.; Sun, C.; Holten-Andersen, N.; Anderson, T. H.; Waite, J. H.; Israelachvili, J. N. Adhesion Mechanisms of the Mussel Foot Proteins Mfp-1 and Mfp-3. Proc. National Academy Sci. 2007, 104, 3782. doi: 10.1073/pnas.0607852104.
  • Sedó, J.; Saiz-Poseu, J.; Busqué, F.; Ruiz-Molina, D. Catechol-Based Biomimetic Functional Materials. Adv. Mater. 2013, 25, 653–701. doi: 10.1002/adma.201202343.
  • Zhang, W.; Wang, R.; Sun, Z.; Zhu, X.; Zhao, Q.; Zhang, T.; Cholewinski, A.; Yang, F. K.; Zhao, B.; Pinnaratip, R.;, et al. Catechol-Functionalized Hydrogels: Biomimetic Design, Adhesion Mechanism, and Biomedical Applications. Chem. Soc. Rev. 2020, 49, 433–464. doi: 10.1039/C9CS00285E.
  • Krogsgaard, M.; Behrens, M. A.; Pedersen, J. S.; Birkedal, H. Self-Healing Mussel-Inspired Multi-Ph-Responsive Hydrogels. Biomacromolecules. 2013, 14, 297–301. doi: 10.1021/bm301844u.
  • Li, L.; Smitthipong, W.; Zeng, H. Mussel-Inspired Hydrogels for Biomedical and Environmental Applications. Polym. Chem. UK. 2015, 6, 353–358. doi: 10.1039/C4PY01415D.
  • Hou, S.; Ma, P. X. Stimuli-Responsive Supramolecular Hydrogels with High Extensibility and Fast Self-Healing via Precoordinated Mussel-Inspired Chemistry. Chem. Mater. 2015, 27, 7627–7635. doi: 10.1021/acs.chemmater.5b02839.
  • Liu, Y.; Meng, H.; Qian, Z.; Fan, N.; Choi, W.; Zhao, F.; Lee, B. P. A Moldable Nanocomposite Hydrogel Composed of A Mussel-Inspired Polymer and A Nanosilicate as A Fit-to-Shape Tissue Sealant. Angew. Chem. Int. Ed. 2017, 56, 4224–4228. doi: 10.1002/anie.201700628.
  • Han, L.; Lu, X.; Wang, M.; Gan, D.; Deng, W.; Wang, K.; Fang, L.; Liu, K.; Chan, C. W.; Tang, Y.;, et al. A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Small 2017, 13, 1601916. doi: 10.1002/smll.201601916.
  • Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. Ph-Induced Metal-Ligand Cross-Links Inspired by Mussel Yield Self-Healing Polymer Networks with Near-Covalent Elastic Moduli. Proc. National Academy Sci. 2011, 108, 2651. doi: 10.1073/pnas.1015862108.
  • Zhang, Z.; Gao, Z.; Wang, Y.; Guo, L.; Yin, C.; Zhang, X.; Hao, J.; Zhang, G.; Chen, L. Eco-Friendly, Self-Healing Hydrogels for Adhesive and Elastic Strain Sensors, Circuit Repairing, and Flexible Electronic Devices. Macromolecules. 2019, 52, 2531–2541. doi: 10.1021/acs.macromol.8b02466.
  • Jing, X.; Mi, H.; Lin, Y.; Enriquez, E.; Peng, X.; Turng, L. Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. ACS Appl. Mater. Inter. 2018, 10, 20897–20909. doi: 10.1021/acsami.8b06475.
  • Shi, L.; Wang, F.; Zhu, W.; Xu, Z.; Fuchs, S.; Hilborn, J.; Zhu, L.; Ma, Q.; Wang, Y.; Weng, X.;, et al. Self-Healing Silk Fibroin-Based Hydrogel for Bone Regeneration: Dynamic Metal-Ligand Self-Assembly Approach. Adv. Funct. Mater. 2017, 27, 1700591. doi: 10.1002/adfm.201700591.
  • Weng, G.; Thanneeru, S.; He, J. Dynamic Coordination of Eu–Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli. Adv. Mater. 2018, 30, 1706526. doi: 10.1002/adma.201706526.
  • Wei, S.; Lu, W.; Le, X.; Ma, C.; Lin, H.; Wu, B.; Zhang, J.; Theato, P.; Chen, T. Bioinspired Synergistic Fluorescence-Color Switchable Polymeric Hydrogel Actuator. Angew. Chem. Int. Ed. 2019. doi: 10.1002/anie.201908437.
  • Slager, J.; Domb, A. J. Biopolymer Stereocomplexes. Adv. Drug Deliver. Rev. 2003, 55, 549–583. doi: 10.1016/S0169-409X(03)00042-5.
  • Tsuji, H.;. Poly(Lactic Acid) Stereocomplexes: A Decade of Progress. Adv. Drug Deliver. Rev. 2016, 107, 97–135. doi: 10.1016/j.addr.2016.04.017.
  • Fox, T. G.; Garrett, B. S.; Goode, W. E.; Gratch, S.; Kincaid, J. F.; Spell, A.; Stroupe, J. D. Crystalline Polymers of Methyl Methacrylate. J. Am. Chem. Soc. 1958, 80, 1768–1769. doi: 10.1021/ja01540a068.
  • Basu, A.; Kunduru, K. R.; Doppalapudi, S.; Domb, A. J.; Khan, W. Poly(Lactic Acid) Based Hydrogels. Adv. Drug Deliver. Rev. 2016, 107, 192–205. doi: 10.1016/j.addr.2016.07.004.
  • Jing, Y.; Quan, C.; Liu, B.; Jiang, Q.; Zhang, C. A Mini Review on the Functional Biomaterials Based on Poly(Lactic Acid) Stereocomplex. Polym. Rev. 2016, 56, 262–286. doi: 10.1080/15583724.2015.1111380.
  • Wei, X.; Bao, R.; Cao, Z.; Yang, W.; Xie, B.; Yang, M. Stereocomplex Crystallite Network in Asymmetric Plla/ Pdla Blends: Formation, Structure, and Confining Effect On the Crystallization Rate of Homocrystallites. Macromolecules. 2014, 47, 1439–1448. doi: 10.1021/ma402653a.
  • Lim, D. W.; Park, T. G. Stereocomplex Formation between Enantiomeric Pla–Peg–Pla Triblock Copolymers: Characterization and Use as Protein-Delivery Microparticulate Carriers. J. Appl. Polym. Sci. 2000, 75, 1615–1623. doi: 10.1002/(SICI)1097-4628(20000328)75:13<615::aid-app7>3.0.CO;2-L.
  • Cao, H.; Chang, X.; Mao, H.; Zhou, J.; Wu, Z. L.; Shan, G.; Bao, Y.; Pan, P. Stereocomplexed Physical Hydrogels with High Strength and Tunable Crystallizability. Soft Matter. 2017, 13, 8502–8510. doi: 10.1039/c7sm01491k.
  • Savadkoohi, S.; Farahnaky, A. Dynamic Rheological and Thermal Study of the Heat-Induced Gelation of Tomato-Seed Proteins. J. Food Eng. 2012, 113, 479–485. doi: 10.1016/j.jfoodeng.2012.06.010.
  • Cordobes, F.; Partal, P.; Guerrero, A. Rheology and Microstructure of Heat-Induced Egg Yolk Gels. Rheol. Acta. 2004, 43, 184–195. doi: 10.1007/s00397-003-0338-3.
  • Gosal, W. S.; Ross-Murphy, S. B. Globular Protein Gelation. Curr. Opin. Colloid Interface Sci. 2000, 5, 188–194. doi: 10.1016/S1359-0294(00)00057-1.
  • Ma, J.; Cui, P.; Zhao, L.; Huang, R. Synthesis and Solution Behavior of Hydrophobic Association Water-Soluble Polymers Containing Arylalkyl Group. Eur. Polym. J. 2002, 38, 1627–1633. doi: 10.1016/S0014-3057(02)00034-4.
  • Liu, C.; Liu, X.; Yu, J.; Gao, G.; Liu, F. Network Structure and Mechanical Properties of Hydrophobic Association Hydrogels: Surfactant Effect I. J. Appl. Polym. Sci. 2015, 132, 41222. doi: 10.1002/app.41222.
  • Han, Y.; Tan, J.; Wang, D.; Xu, K.; An, H. Novel Approach to Promote the Hydrophobic Association: Introduction of Short Alkyl Chains into Hydrophobically Associating Polyelectrolytes. J. Appl. Polym. Sci. 2019, 136, 47581. doi: 10.1002/app.47581.
  • Gruber, A.; Isik, D.; Fontanezi, B. B.; Boettcher, C.; Schaefer-Korting, M.; Klinger, D. A Versatile Synthetic Platform for Amphiphilic Nanogels with Tunable Hydrophobicity. Polym. Chem. UK 2018, 9, 5572–5584. doi: 10.1039/c8py01123k..
  • Li, B.; Thompson, M. E. Phase Transition in Amphiphilic Poly(N-Isopropylacrylamide): Controlled Gelation. Phys. Chem. Chem. Phys. 2018, 20, 13623–13631. doi: 10.1039/C8CP01609G..
  • Manouras, T.; Koufakis, E.; Anastasiadis, S. H.; Vamvakaki, M. A Facile Route towards Pdmaema Homopolymer Amphiphiles. Soft Matter. 2017, 13, 3777–3782. doi: 10.1039/c7sm00365j.
  • Xiong, C.; Peng, K.; Tang, X.; Ye, Z.; Shi, Y.; Yang, H. Co2-Responsive Self-Healable Hydrogels Based on Hydrophobically-Modified Polymers Bridged by Wormlike Micelles. RSC Adv. 2017, 7, 34669–34675. doi: 10.1039/C7RA06418G.
  • Liu, Y.; Li, Z.; Niu, N.; Zou, J.; Liu, F. A Simple Coordination Strategy for Preparing A Complex Hydrophobic Association Hydrogel. J. Appl. Polym. Sci. 2018, 135, 46400. doi: 10.1002/app.46400.
  • Jiang, G.; Liu, C.; Liu, X.; Zhang, G.; Yang, M.; Liu, F. Construction and Properties of Hydrophobic Association Hydrogels with High Mechanical Strength and Reforming Capability. Macromol. Mater. Eng. 2009, 294, 815–820. doi: 10.1002/mame.200900160.
  • Can, V.; Kochovski, Z.; Reiter, V.; Severin, N.; Siebenbürger, M.; Kent, B.; Just, J.; Rabe, J. P.; Ballauff, M.; Okay, O. Nanostructural Evolution and Self-Healing Mechanism of Micellar Hydrogels. Macromolecules. 2016, 49, 2281–2287. doi: 10.1021/acs.macromol.6b00156.
  • Jeon, I.; Cui, J.; Illeperuma, W. R.; Aizenberg, J.; Vlassak, J. J. Extremely Stretchable and Fast Self-Healing Hydrogels. Adv. Mater. 2016, 28, 4678–4683. doi: 10.1002/adma.201600480.
  • Yang, F.; Ren, B.; Cai, Y.; Tang, J.; Li, D.; Wang, T.; Feng, Z.; Chang, Y.; Xu, L.; Zheng, J. Mechanically Tough and Recoverable Hydrogels via Dual Physical Crosslinkings. J. Polym. Sci. B Polym. Phys. 2018, 56, 1294–1305. doi: 10.1002/polb.24729.
  • Cao, J.; Li, J.; Chen, Y.; Zhang, L.; Zhou, J. Dual Physical Crosslinking Strategy to Construct Moldable Hydrogels with Ultrahigh Strength and Toughness. Adv. Funct. Mater. 2018, 28, 1800739. doi: 10.1002/adfm.201800739.
  • Jiang, H.; Duan, L.; Ren, X.; Gao, G. Hydrophobic Association Hydrogels with Excellent Mechanical and Self-Healing Properties. Eur. Polym. J. 2019, 112, 660–669. doi: 10.1016/j.eurpolymj.2018.10.031.
  • Li, S.; Gao, Y.; Jiang, H.; Duan, L.; Tough, G. G. Sticky and Remoldable Hydrophobic Association Hydrogel Regulated by Polysaccharide and Sodium Dodecyl Sulfate as Emulsifiers. Carbohyd. Polym. 2018, 201, 591–598. doi: 10.1016/j.carbpol.2018.08.100.
  • Tuncaboylu, D. C.; Sari, M.; Oppermann, W.; Okay, O. Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions. Macromolecules. 2011, 44, 4997–5005. doi: 10.1021/ma200579v.
  • Hao, J.; Weiss, R. A. Viscoelastic and Mechanical Behavior of Hydrophobically Modified Hydrogels. Macromolecules. 2011, 44, 9390–9398. doi: 10.1021/ma202130u.
  • Mihajlovic, M.; Staropoli, M.; Appavou, M.; Wyss, H. M.; Pyckhout-Hintzen, W.; Sijbesma, R. P. Tough Supramolecular Hydrogel Based on Strong Hydrophobic Interactions in a Multiblock Segmented Copolymer. Macromolecules. 2017, 50, 3333–3346. doi: 10.1021/acs.macromol.7b00319.
  • Abdurrahmanoglu, S.; Can, V.; Okay, O. Design of High-Toughness Polyacrylamide Hydrogels by Hydrophobic Modification. Polymer. 2009, 50, 5449–5455. doi: 10.1016/j.polymer.2009.09.042.
  • Jiang, G.; Liu, F.; Liu, X.; Liu, C.; Chen, Q.; Zhang, G.; Yang, M. Network Structure and Compositional Effects on Tensile Mechanical Properties of Hydrophobic Association Hydrogels with High Mechanical Strength. Polymer. 2010, 51, 1507–1515. doi: 10.1016/j.polymer.2010.01.061.
  • Tuncaboylu, D. C.; Sahin, M.; Argun, A.; Oppermann, W.; Okay, O. Dynamics and Large Strain Behavior of Self-Healing Hydrogels with and without Surfactants, Macromolecules. 2012, 45, 1991–2000. doi:10.1021/ma202672y
  • Akay, G.; Hassan-Raeisi, A.; Tuncaboylu, D. C.; Orakdogen, N.; Abdurrahmanoglu, S.; Oppermann, W.; Okay, O. Self-Healing Hydrogels Formed in Catanionic Surfactant Solutions. Soft Matter. 2013, 9, 2254–2261. doi: 10.1039/c2sm27515e.
  • Gulyuz, U.; Okay, O. Self-Healing Poly(Acrylic Acid) Hydrogels: Effect of Surfactant. Macromol. Symp. 2015, 358, 232–238. doi: 10.1002/masy.201500063.
  • Xu, J.; Ren, X.; Gao, G. Salt-Inactive Hydrophobic Association Hydrogels with Fatigue Resistant and Self-Healing Properties. Polymer. 2018, 150, 194–203. doi: 10.1016/j.polymer.2018.07.045.
  • Trabbic, K. A.; Yager, P. Comparative Structural Characterization of Naturally- and Synthetically-Spun Fibers of Bombyx Mori Fibroin. Macromolecules. 1998, 31, 462–471. doi: 10.1021/ma9708860.
  • Su, D.; Yao, M.; Liu, J.; Zhong, Y.; Chen, X.; Shao, Z. Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of Beta-Sheet Domains. ACS Appl. Mater. Inter. 2017, 9, 17489–17498. doi: 10.1021/acsami.7b04623.
  • Lin, Y.; Xia, X.; Shang, K.; Elia, R.; Huang, W.; Cebe, P.; Leisk, G.; Omenetto, F.; Kaplan, D. L. Tuning Chemical and Physical Cross-Links in Silk Electrogels for Morphological Analysis and Mechanical Reinforcement. Biomacromolecules. 2013, 14, 2629–2635. doi: 10.1021/bm4004892.
  • Luo, K.; Yang, Y.; Shao, Z. Physically Crosslinked Biocompatible Silk-Fibroin-Based Hydrogels with High Mechanical Performance. Adv. Funct. Mater. 2016, 26, 872–880. doi: 10.1002/adfm.201503450.
  • Zhu, Z.; Ling, S.; Yeo, J.; Zhao, S.; Tozzi, L.; Buehler, M. J.; Omenetto, F.; Li, C.; Kaplan, D. L. High-Strength, Durable All-Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications. Adv. Funct. Mater. 2018, 28, 1704757. doi: 10.1002/adfm.201704757.
  • Yang, J.; Xu, C.; Wang, C.; Kopeček, J. Refolding Hydrogels Self-Assembled from N-(2-Hydroxypropyl)Methacrylamide Graft Copolymers by Antiparallel Coiled-Coil Formation. Biomacromolecules. 2006, 7, 1187–1195. doi: 10.1021/bm051002k.
  • Wang, C.; Stewart, R. J.; KopeČek, J. Hybrid Hydrogels Assembled from Synthetic Polymers and Coiled-Coil Protein Domains. Nature. 1999, 397, 417–420. doi: 10.1038/17092.
  • Xu, C.; Kopeček, J. Genetically Engineered Block Copolymers: Influence of the Length and Structure of the Coiled-Coil Blocks on Hydrogel Self-Assembly. Pharm. Res.-Dordr. 2008, 25, 674–682. doi: 10.1007/s11095-007-9343-z.
  • Wang, C.; Kopeček, J.; Stewart, R. J. Hybrid Hydrogels Cross-Linked by Genetically Engineered Coiled-Coil Block Proteins. Biomacromolecules. 2001, 2, 912–920. doi: 10.1021/bm0155322.
  • Lupas, A.;. Coiled Coils: New Structures and New Functions. Trends Biochem. Sci. 1996, 21, 375–382. doi: 10.1016/S0968-0004(96)10052-9.
  • Yang, J.; Xu, C.; Kopečková, P.; Kopeček, J. Hybrid Hydrogels Self-Assembled From Hpma Copolymers Containing Peptide Grafts. Macromol. Biosci. 2006, 6, 201–209. doi: 10.1002/mabi.200500208..
  • Kopeček, J.;. Swell Gels. Nature. 2002, 417, 389–391. doi: 10.1038/417388a.
  • van de Manakker, F.; van der Pot, M.; Vermonden, T.; van Nostrum, C. F.; Hennink, W. E. Self-Assembling Hydrogels Based on β-Cyclodextrin/Cholesterol Inclusion Complexes. Macromolecules. 2008, 41, 1766–1773. doi: 10.1021/ma702607r.
  • Wang, Y.; Zhou, L.; Sun, G.; Xue, J.; Jia, Z.; Zhu, X.; Yan, D. Construction of Different Supramolecular Polymer Systems by Combining the Host–Guest and Hydrogen-Bonding Interactions. J. Polym. Sci. B Polym. Phys. 2008, 46, 1114–1120. doi: 10.1002/polb.21444.
  • Choi, S.; Kwon, T.; Coskun, A.; Choi, J. W. Highly Elastic Binders Integrating Polyrotaxanes for Silicon Microparticle Anodes in Lithium Ion Batteries. Science. 2017, 357, 279. doi: 10.1126/science.aal4373.
  • Kato, K.; Inoue, K.; Kidowaki, M.; Ito, K. Organic-Inorganic Hybrid Slide-Ring Gels: Polyrotaxanes Consisting of Poly(Dimethylsiloxane) and γ-Cyclodextrin and Subsequent Topological Cross-Linking. Macromolecules. 2009, 42, 7129–7136. doi: 10.1021/ma9011895.
  • Gotoh, H.; Liu, C.; Imran, A. B.; Hara, M.; Seki, T.; Mayumi, K.; Ito, K.; Takeoka, Y. Optically Transparent, High-Toughness Elastomer Using a Polyrotaxane Cross-Linker as a Molecular Pulley. Sci. Adv. 2018, 4, eaat7629. doi: 10.1126/sciadv.aat7629.
  • Yao, X.; Huang, P.; Nie, Z. Cyclodextrin-Based Polymer Materials: From Controlled Synthesis to Applications. Prog. Polym. Sci. 2019, 93, 1–35. doi: 10.1016/j.progpolymsci.2019.03.004.
  • Hu, Q.; Tang, G.; Chu, P. K. Cyclodextrin-Based Host–Guest Supramolecular Nanoparticles for Delivery: From Design to Applications. Acc. Chem. Res. 2014, 47, 2017–2025. doi: 10.1021/ar500055s.
  • Davis, M. E.; Brewster, M. E. Cyclodextrin-Based Pharmaceutics: Past, Present and Future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. doi: 10.1038/nrd1576.
  • Liu, K. L.; Zhang, Z.; Li, J. Supramolecular Hydrogels Based on Cyclodextrin-Polymer Polypseudorotaxanes: Materials Design and Hydrogel Properties. Soft Matter. 2011, 7, 1129–11297. doi: 10.1039/c1sm06340e.
  • Collier, J. H.; Rudra, J. S.; Gasiorowski, J. Z.; Jung, J. P. Multi-Component Extracellular Matrices Based On Peptide Self-Assembly. Chem. Soc. Rev. 2010, 39, 3413–3424. doi: 10.1039/B914337H.
  • Zhang, X.; Chu, X.; Wang, L.; Wang, H.; Liang, G.; Zhang, J.; Long, J.; Yang, Z. Rational Design of a Tetrameric Protein to Enhance Interactions between Self-Assembled Fibers Gives Molecular Hydrogels. Angew. Chem. Int. Ed. 2012, 51, 4388–4392. doi: 10.1002/anie.201108612.
  • Fan, Z.; Cheng, P.; Liu, M.; Li, D.; Liu, G.; Zhao, Y.; Ding, Z.; Chen, F.; Wang, B.; Tan, X.;, et al. Poly(Glutamic Acid) Hydrogels Crosslinked Via Native Chemical Ligation. New J. Chem. 2017, 41, 8656–8662. doi: 10.1039/C7NJ00439G.
  • Kahn, J. S.; Hu, Y.; Willner, I. Stimuli-Responsive Dna-Based Hydrogels: From Basic Principles to Applications. Acc. Chem. Res. 2017, 50, 680–690. doi: 10.1021/acs.accounts.6b00542.
  • Wang, J.; Chao, J.; Liu, H.; Su, S.; Wang, L.; Huang, W.; Willner, I.; Fan, C. Clamped Hybridization Chain Reactions for the Self-Assembly of Patterned DNA Hydrogels. Angew. Chem. Int. Ed. 2017, 56, 2171–2175. doi: 10.1002/anie.201610125.
  • Cangialosi, A.; Yoon, C.; Liu, J.; Huang, Q.; Guo, J.; Nguyen, T. D.; Gracias, D. H.; Schulman, R. DNA Sequence–Directed Shape Change of Photopatterned Hydrogels via High-Degree Swelling. Science. 2017, 357, 1126–1130. doi: 10.1126/science.aan3925.
  • Liu, J.;. Oligonucleotide-Functionalized Hydrogels as Stimuli Responsive Materials and Biosensors. Soft Matter. 2011, 7, 6757–6767. doi: 10.1039/C1SM05284E.
  • Xing, Y.; Cheng, E.; Yang, Y.; Chen, P.; Zhang, T.; Sun, Y.; Yang, Z.; Liu, D. Self-Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness. Adv. Mater. 2011, 23, 1117–1121. doi: 10.1002/adma.201003343.
  • Li, F.; Lyu, D.; Liu, S.; Guo, W. DNA Hydrogels and Microgels for Biosensing and Biomedical Applications. Adv. Mater. 2019, 1806538. doi: 10.1002/adma.201806538.
  • Song, J.; He, W.; Shen, H.; Zhou, Z.; Li, M.; Su, P.; Yang, Y. Self-Assembly of a Magnetic Dna Hydrogel as a New Biomaterial for Enzyme Encapsulation with Enhanced Activity and Stability. Chem. Commun. 2019, 55, 2449–2452. doi: 10.1039/C8CC09717H.
  • Shao, Y.; Jia, H.; Cao, T.; Liu, D. Supramolecular Hydrogels Based On DNA Self-Assembly. Acc. Chem. Res. 2017, 50, 659–668. doi: 10.1021/acs.accounts.6b00524.
  • Wang, D.; Hu, Y.; Liu, P.; Luo, D. Bioresponsive DNA Hydrogels: Beyond the Conventional Stimuli Responsiveness. Acc. Chem. Res. 2017, 50, 733–739. doi: 10.1021/acs.accounts.6b00581.
  • Cao, T.; Jia, H.; Dong, Y.; Gui, S.; Liu, D. In Situ Formation of Covalent Second Network in a DNA Supramolecular Hydrogel and Its Application for 3D Cell Imaging. ACS Appl. Mater. Inter. 2020, 12, 4185–4192. doi: 10.1021/acsami.9b11534.
  • English, M. A.; Soenksen, L. R.; Gayet, R. V.; de Puig, H.; Angenent-Mari, N. M.; Mao, A. S.; Nguyen, P. Q.; Collins, J. J. Programmable Crispr-Responsive Smart Materials. Science. 2019, 365, 780–785. doi: 10.1126/science.aaw5122.
  • Tang, J.; Yao, C.; Gu, Z.; Jung, S.; Luo, D.; Yang, D. Super-Soft and Super-Elastic Dna Robot with Magnetically Driven Navigational Locomotion for Cell Delivery in Confined Space. Angew. Chem. Int. Ed. 2020, 59, 2490–2495. doi: 10.1002/anie.201913549.
  • Li, F.; Tang, J.; Geng, J.; Luo, D.; Yang, D. Polymeric DNA Hydrogel: Design, Synthesis and Applications. Prog. Polym. Sci. 2019, 98, 101163. doi: 10.1016/j.progpolymsci.2019.101163.
  • Kawase, T.; Kurata, H. Ball-, Bowl-, And Belt-Shaped Conjugated Systems and their Complexing Abilities:  Exploration of the Concave−Convex π-π Interaction. Chem. Rev. 2006, 106, 5250–5273. doi: 10.1021/cr0509657.
  • Cai, W.; Xu, D.; Qian, L.; Wei, J.; Xiao, C.; Qian, L.; Lu, Z.; Cui, S. Force-Induced Transition of π-π Stacking in a Single Polystyrene Chain. J. Am. Chem. Soc. 2019, 141, 9500–9503. doi: 10.1021/jacs.9b03490.
  • Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Nanostructured Hydrogels for Three‐Dimensional Cell Culture through Self‐Assembly of Fluorenylmethoxycarbonyl–Dipeptides. Adv. Mater. 2006, 18, 611–614. doi: 10.1002/adma.200501522.
  • Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. Fmoc-Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on Π–Π Interlocked Β-sheets. Adv. Mater. 2008, 20, 37–41. doi: 10.1002/adma.200701221.
  • Li, F.; Zhu, Y.; You, B.; Zhao, D.; Ruan, Q.; Zeng, Y.; Ding, C. Smart Hydrogels Co-Switched by Hydrogen Bonds and Π–Π Stacking for Continuously Regulated Controlled-Release System. Adv. Funct. Mater. 2010, 20, 669–676. doi: 10.1002/adfm.200901245.
  • Xu, Y.; Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Three-Dimensional Self-Assembly of Graphene Oxide and Dna into Multifunctional Hydrogels. ACS Nano. 2010, 4, 7358–7362. doi: 10.1021/nn1027104.
  • Noble, B. B.; Coote, M. L. First Principles Modelling of Free-Radical Polymerisation Kinetics. Int. Rev. Phys. Chem. 2013, 32, 467–513. doi: 10.1080/0144235X.2013.797277.
  • Sadeghi, I.; Yi, H.; Asatekin, A. A. Method for Manufacturing Membranes with Ultrathin Hydrogel Selective Layers for Protein Purification: Interfacially Initiated Free Radical Polymerization (Iifrp). Chem. Mater. 2018, 30, 1265–1276. doi: 10.1021/acs.chemmater.7b04598.
  • Zhao, T.; Wang, G.; Hao, D.; Chen, L.; Liu, K.; Liu, M. Macroscopic Layered Organogel–Hydrogel Hybrids with Controllable Wetting and Swelling Performance. Adv. Funct. Mater. 2018, 28, 1800793. doi: 10.1002/adfm.201800793.
  • Nezhad-Mokhtari, P.; Ghorbani, M.; Roshangar, L.; Soleimani Rad, J. A. Review on the Construction of Hydrogel Scaffolds by Various Chemically Techniques for Tissue Engineering. Eur. Polym. J. 2019, 117, 64–76. doi: 10.1016/j.eurpolymj.2019.05.004.
  • Pérez-Madrigal, M. M.; Edo, M. G.; Díaz, A.; Puiggalí, J.; Alemán, C. Poly-γ-Glutamic Acid Hydrogels as Electrolyte for Poly(3,4-Ethylenedioxythiophene)-Based Supercapacitors. J. Phys. Chem. C. 2017, 121, 3182–3193. doi: 10.1021/acs.jpcc.6b10693.
  • Lone, S.; Yoon, D. H.; Lee, H.; Cheong, I. W. Gelatin–Chitosan Hydrogel Particles for Efficient Removal of Hg(II) from Wastewater. Environ. Sci. 2019, 5, 83–90. doi: 10.1039/C8EW00678D.
  • Fu, F.; Chen, Z.; Zhao, Z.; Wang, H.; Shang, L.; Gu, Z.; Zhao, Y. Bio-Inspired Self-Healing Structural Color Hydrogel. P. Natl. Acad. Sci. USA. 2017, 114, 5900–5905. doi: 10.1073/pnas.1703616114.
  • Yu, S.; Zhang, X.; Tan, G.; Tian, L.; Liu, D.; Liu, Y.; Yang, X.; Pan, W. A. Novel pH-Induced Thermosensitive Hydrogel Composed of Carboxymethyl Chitosan and Poloxamer Cross-Linked by Glutaraldehyde for Ophthalmic Drug Delivery. Carbohyd. Polym. 2017, 155, 208–217. doi: 10.1016/j.carbpol.2016.08.073..
  • Muharam, S.; Yuningsih, L. M.; Sumitra, M. R. Characterization of Superabsorbent Hydrogel Based on Epichlorohydrin Crosslink and Carboxymethyl Functionalization of Cassava Starch. Am. Inst. Phys. Conf. Ser. 2017, 1862, 030083.
  • Huang, Y.; Liu, M.; Wang, L.; Gao, C.; Xi, S. A Novel Triple-Responsive Poly(3-Acrylamidephenylboronic Acid-Co-2-(Dimethylamino) Ethyl Methacrylate)/(β-Cyclodextrin-Epichlorohydrin)Hydrogels: Synthesis and Controlled Drug Delivery. React. Funct. Polym. 2011, 71, 666–673. doi: 10.1016/j.reactfunctpolym.2011.03.007.
  • Mak, Y. W.; Leung, W. W. Crosslinking of Genipin and Autoclaving in Chitosan-Based Nanofibrous Scaffolds: Structural and Physiochemical Properties. J. Mater. Sci. 2019, 54, 10941–10962. doi: 10.1007/s10853-019-03649-8.
  • Výborný, K.; Vallová, J.; Kočí, Z.; Kekulová, K.; Jiráková, K.; Jendelová, P.; Hodan, J.; Kubinová. Genipin and Edc Crosslinking of Extracellular Matrix Hydrogel Derived from Human Umbilical Cord for Neural Tissue Repair. Sci. Rep-UK. 2019, 9, 1–15. doi: 10.1038/s41598-019-47059-x.
  • Sung, H.; Chang, W.; Ma, C.; Lee, M. Crosslinking of Biological Tissues Using Genipin and/Or Carbodiimide. J. Biomed. Mater. Res. A. 2003, 64A, 427–438. doi: 10.1002/jbm.a.10346.
  • Yu, Y.; Feng, R.; Li, J.; Wang, Y.; Song, Y.; Tan, G.; Liu, D.; Liu, W.; Yang, X.; Pan, H.;, et al. A Hybrid Genipin-Crosslinked Dual-Sensitive Hydrogel/Nanostructured Lipid Carrier Ocular Drug Delivery Platform. Asian J. Pharm. Sci. 2019, 14, 423–434. doi: 10.1016/j.ajps.2018.08.002.
  • Liu, Y.; Cai, Z.; Sheng, L.; Ma, M.; Xu, Q.; Jin, Y. Structure-Property of Crosslinked Chitosan/Silica Composite Films Modified by Genipin and Glutaraldehyde under Alkaline Conditions. Carbohyd. Polym. 2019, 215, 348–357. doi: 10.1016/j.carbpol.2019.04.001.
  • Bi, L.; Cao, Z.; Hu, Y.; Song, Y.; Yu, L.; Yang, B.; Mu, J.; Huang, Z.; Han, Y. Effects of Different Cross-Linking Conditions on the Properties of Genipin-Cross-Linked Chitosan/Collagen Scaffolds for Cartilage Tissue Engineering. J. Mater. Sci.: Mater. Med. 2011, 22, 51–62. doi: 10.1007/s10856-010-4177-3.
  • Klein, M. P.; Hackenhaar, C. R.; Lorenzoni, A. S. G.; Rodrigues, R. C.; Costa, T. M. H.; Ninow, J. L.; Hertz, P. F. Chitosan Crosslinked with Genipin as Support Matrix for Application in Food Process: Support Characterization and Β-d-galactosidase Immobilization. Carbohyd. Polym. 2016, 137, 184–190. doi: 10.1016/j.carbpol.2015.10.069.
  • Arndt, K.; Schmidt, T.; Reichelt, R. Thermo-Sensitive Poly(Methyl Vinyl Ether) Micro-Gel Formed by High Energy Radiation. Polymer. 2001, 42, 6785–6791. doi: 10.1016/S0032-3861(01)00164-1.
  • Kim, M. H.; Kim, B. S.; Lee, J.; Cho, D.; Kwon, O. H.; Park, W. H. Silk Fibroin/Hydroxyapatite Composite Hydrogel Induced by Gamma-Ray Irradiation for Bone Tissue Engineering. Biomater. Res. 2017, 21, 12. doi: 10.1186/s40824-017-0098-2.
  • Yan, S.; Wang, T.; Li, X.; Jian, Y.; Zhang, K.; Li, G.; Yin, J. Fabrication of Injectable Hydrogels Based on Poly(L-Glutamic Acid) and Chitosan. RSC Adv. 2017, 7, 17005–17019. doi: 10.1039/C7RA01864A.
  • Joy, J.; Pereira, J.; Aid-Launais, R.; Pavon-Djavid, G.; Ray, A. R.; Letourneur, D.; Meddahi-Pellé, A.; Gupta, B. Gelatin-Oxidized Carboxymethyl Cellulose Blend Based Tubular Electrospun Scaffold for Vascular Tissue Engineering. Int. J. Biol. Macromol. 2018, 107, 1922–1935. doi: 10.1016/j.ijbiomac.2017.10.071.
  • Ju, H.; Zhu, F.; Xing, H.; Wu, Z. L.; Huang, F. Ultrastiff Hydrogels Prepared by Schiff’s Base Reaction of Bis(P‐Formylphenyl) Sebacate and Pillar[5]Arene Appended with Multiple Hydrazides. Macromol. Rapid Comm. 2017, 38, 1700232. doi: 10.1002/marc.201700232.
  • Molina, B. G.; Cianga, L.; Bendrea, A.; Cianga, I.; Del Valle, L. J.; Estrany, F.; Alemán, C.; Armelin, E. Amphiphilic Polypyrrole-Poly(Schiff Base) Copolymers with Poly(Ethylene Glycol) Side Chains: Synthesis, Properties and Applications. Polym. Chem. UK. 2018, 9, 4218–4232. doi: 10.1039/C8PY00762D.
  • Cañas, A. I.; Delgado, J. P.; Gartner, C. Biocompatible Scaffolds Composed of Chemically Crosslinked Chitosan and Gelatin for Tissue Engineering. J. Appl. Polym. Sci. 2016, 133, 43814. doi: 10.1002/app.43814.
  • Shi, J.; Guobao, W.; Chen, H.; Zhong, W.; Qiu, X.; Xing, M. M. Q. Schiff Based Injectable Hydrogel for in Situ Ph-Triggered Delivery of Doxorubicin for Breast Tumor Treatment. Polym. Chem. UK 2014, 5, 6180–6189. doi: 10.1039/C4PY00631C.
  • Zhao, X.; Li, P.; Guo, B.; Ma, P. X. Antibacterial and Conductive Injectable Hydrogels Based on Quaternized Chitosan-Graft-Polyaniline/Oxidized Dextran for Tissue Engineering. Acta Biomater. 2015, 26, 236–248. doi: 10.1016/j.actbio.2015.08.006.
  • Li, L.; Wang, N.; Jin, X.; Deng, R.; Nie, S.; Sun, L.; Wu, Q.; Wei, Y.; Gong, C. Biodegradable and Injectable in Situ Cross-Linking Chitosan-Hyaluronic Acid Based Hydrogels for Postoperative Adhesion Prevention. Biomaterials. 2014, 35, 3903–3917. doi: 10.1016/j.biomaterials.2014.01.050.
  • Sheng, X.; Li, X.; Li, M.; Zhang, R.; Deng, S.; Yang, W.; Chang, G.; Ye, X. An Injectable Oxidized Carboxymethyl Cellulose/Polyacryloyl Hydrazide Hydrogel Via Schiff Base Reaction. Aust. J. Chem. 2018, 71, 74. doi: 10.1071/CH17214.
  • Shen, Y.; Li, X.; Huang, Y.; Chang, G.; Cao, K.; Yang, J.; Zhang, R.; Sheng, X.; Ye, X. Ph and Redox Dual Stimuli-Responsive Injectable Hydrogels Based on Carboxymethyl Cellulose Derivatives. Macromol. Res. 2016, 24, 602–608. doi: 10.1007/s13233-016-4077-6.
  • Fan, M.; Ma, Y.; Tan, H.; Jia, Y.; Zou, S.; Guo, S.; Zhao, M.; Huang, H.; Ling, Z.; Chen, Y.;, et al. Covalent and Injectable Chitosan-Chondroitin Sulfate Hydrogels Embedded with Chitosan Microspheres for Drug Delivery and Tissue Engineering. Mater. Sci. Eng C 2017, 71, 67–74. doi: 10.1016/j.msec.2016.09.068.
  • Yan, S.; Zhang, X.; Zhang, K.; Di, H.; Feng, L.; Li, G.; Fang, J.; Cui, L.; Chen, X.; Yin, J. Injectable in Situ Forming Poly(L-Glutamic Acid) Hydrogels for Cartilage Tissue Engineering. J. Mater. Chem. B. 2016, 4, 947–961. doi: 10.1039/C5TB01488C.
  • Yan, S.; Wang, T.; Feng, L.; Zhu, J.; Zhang, K.; Chen, X.; Cui, L.; Yin, J. Injectable in Situ Self-Cross-Linking Hydrogels Based on Poly(L-Glutamic Acid) and Alginate for Cartilage Tissue Engineering. Biomacromolecules. 2014, 15, 4495–4508. doi: 10.1021/bm501313t.
  • Sun Han Chang, R.; Lee, J. C.; Pedron, S.; Harley, B. A. C.; Rogers, S. A. Rheological Analysis of the Gelation Kinetics of an Enzyme Cross-Linked Peg Hydrogel. Biomacromolecules. 2019, 20, 2198–2206. doi: 10.1021/acs.biomac.9b00116.
  • Lee, F.; Bae, K. H.; Kurisawa, M. Injectable Hydrogel Systems Crosslinked by Horseradish Peroxidase. Biomed. Mater. 2015, 11, 014101. doi: 10.1088/1748-6041/11/1/014101..
  • Sakai, S.; Taya, M. On-Cell Surface Cross-Linking of Polymer Molecules by Horseradish Peroxidase Anchored to Cell Membrane for Individual Cell Encapsulation in Hydrogel Sheath. ACS Macro Lett. 2014, 3, 972–975. doi: 10.1021/mz5004322.
  • Lei, K.; Sun, Y.; Sun, C.; Zhu, D.; Zheng, Z.; Wang, X. Fabrication of a Controlled in Situ Forming Polypeptide Hydrogel with a Good Biological Compatibility and Shapeable Property. ACS Appl. Mater. Inter. 2019, 2, 1751–1761. doi: 10.1021/acsabm.9b00157.
  • Zhang, Y.; Zhang, Y.; Wang, Q.; Fan, X. Preparation and Properties of a Chitosan–Hyaluronic Acid-Polypyrrole Conductive Hydrogel Catalyzed by Laccase. J. Polym. Environ. 2017, 25, 526–532. doi: 10.1007/s10924-016-0831-2.
  • Huber, D.; Tegl, G.; Baumann, M.; Sommer, E.; Gorji, E. G.; Borth, N.; Schleining, G.; Nyanhongo, G. S.; Guebitz, G. M. Chitosan Hydrogel Formation Using Laccase Activated Phenolics as Cross-Linkers. Carbohyd. Polym. 2017, 157, 814–822. doi: 10.1016/j.carbpol.2016.10.012.
  • Chen, H.; Gan, J.; Ji, A.; Song, S.; Yin, L. Development of Double Network Gels Based On Soy Protein Isolate and Sugar Beet Pectin Induced by Thermal Treatment and Laccase Catalysis. Food Chem. 2019, 292, 188–196. doi: 10.1016/j.foodchem.2019.04.059.
  • Deng, C.; Liu, Y.; Li, J.; Yadav, M. P.; Yin, L. Diverse Rheological Properties, Mechanical Characteristics and Microstructures of Corn Fiber Gum/Soy Protein Isolate Hydrogels Prepared by Laccase and Heat Treatment. Food Hydrocolloid. 2018, 76, 113–122. doi: 10.1016/j.foodhyd.2017.01.012.
  • Zhao, L.; Li, X.; Zhao, J.; Ma, S.; Ma, X.; Fan, D.; Zhu, C.; Liu, Y. A Novel Smart Injectable Hydrogel Prepared by Microbial Transglutaminase and Human-Like Collagen: Its Characterization and Biocompatibility. Mater. Sci. Eng C. 2016, 68, 317–326. doi: 10.1016/j.msec.2016.05.108.
  • Hu, H.; Zhu, X.; Hu, T.; Cheung, I. W. Y.; Pan, S.; Li-Chan, E. C. Y. Effect of Ultrasound Pre-Treatment On Formation of Transglutaminase-Catalysed Soy Protein Hydrogel as a Riboflavin Vehicle for Functional Foods. J. Funct. Foods. 2015, 19, 182–193. doi: 10.1016/j.jff.2015.09.023.
  • Chen, P.; Yang, K.; Wu, C.; Yu, J.; Lin, F.; Sun, J. Fabrication of Large Perfusable Macroporous Cell-Laden Hydrogel Scaffolds Using Microbial Transglutaminase. Acta Biomater. 2014, 10, 912–920. doi: 10.1016/j.actbio.2013.11.009.
  • Guo, J.; Jin, Y.; Yang, X.; Yu, S.; Yin, S.; Qi, J. Computed Microtomography and Mechanical Property Analysis of Soy Protein Porous Hydrogel Prepared by Homogenizing and Microbial Transglutaminase Cross-Linking. Food Hydrocolloid. 2013, 31, 220–226. doi: 10.1016/j.foodhyd.2012.10.023.
  • Tsai, C.; Hong, Y.; Lee, R. J.; Cheng, N.; Yu, J. Enhancement of Human Adipose-Derived Stem Cell Spheroid Differentiation in an in Situ Enzyme-Crosslinked Gelatin Hydrogel. J. Mater. Chem. B. 2019, 7, 1064–1075. doi: 10.1039/C8TB02835D.
  • Kim, S. H.; Lee, S. H.; Lee, J. E.; Park, S. J.; Kim, K.; Kim, I. S.; Lee, Y. S.; Hwang, N. S.; Kim, B. G. Tissue Adhesive, Rapid Forming, and Sprayable Ecm Hydrogel via Recombinant Tyrosinase Crosslinking. Biomaterials. 2018, 178, 401–412. doi: 10.1016/j.biomaterials.2018.04.057.
  • Choi, Y. R.; Kim, E. H.; Lim, S.; Choi, Y. S. Efficient Preparation of a Permanent Chitosan/Gelatin Hydrogel Using an Acid-Tolerant Tyrosinase. Biochem. Eng. J. 2018, 129, 50–56. doi: 10.1016/j.bej.2017.10.016.
  • Kobayashi, S.; Uyama, H.; Kimura, S. Enzymatic Polymerization. Chem. Rev. 2001, 101, 3793–3818. doi: 10.1021/cr990121l.
  • Wang, R.; Zhou, B.; Liu, W.; Feng, X.; Li, S.; Yu, D.; Chang, J.; Chi, B.; Xu, H. Fast in Situ Generated Ɛ-polylysine-poly (Ethylene Glycol) Hydrogels as Tissue Adhesives and Hemostatic Materials Using an Enzyme-Catalyzed Method. J. Biomater. Appl. 2015, 29, 1167–1179. doi: 10.1177/0885328214553960.
  • Singh, S.; Topuz, F.; Hahn, K.; Albrecht, K.; Groll, J. Embedding of Active Proteins and Living Cells in Redox-Sensitive Hydrogels and Nanogels through Enzymatic Cross-Linking. Angew. Chem. Int. Ed. Engl. 2013, 52, 3000–3003. doi: 10.1002/anie.201206266.
  • Tabatabai, A. P.; Partlow, B. P.; Raia, N. R.; Kaplan, D. L.; Blair, D. L. Silk Molecular Weight Influences the Kinetics of Enzymatically Cross-Linked Silk Hydrogel Formation. Langmuir. 2018, 34, 15383–15387. doi: 10.1021/acs.langmuir.8b02950.
  • Partlow, B. P.; Hanna, C. W.; Rnjak Kovacina, J.; Moreau, J. E.; Applegate, M. B.; Burke, K. A.; Marelli, B.; Mitropoulos, A. N.; Omenetto, F. G.; Kaplan, D. L. Highly Tunable Elastomeric Silk Biomaterials. Adv. Funct. Mater. 2014, 24, 4615–4624. doi: 10.1002/adfm.201400526.
  • Ren, C. D.; Kurisawa, M.; Chung, J. E.; Ying, J. Y. Liposomal Delivery of Horseradish Peroxidase for Thermally Triggered Injectable Hyaluronic Acid–Tyramine Hydrogel Scaffolds. J. Mater. Chem. B. 2015, 3, 4663–4670. doi: 10.1039/C4TB01832J.
  • Eelkema, R.; Pich, A. Pros and Cons: Supramolecular or Macromolecular: What Is Best for Functional Hydrogels with Advanced Properties?. Adv. Mater. 2020, 32, 1906012. doi: 10.1002/adma.201906012.
  • Xu, D.; Huang, J.; Zhao, D.; Ding, B.; Zhang, L.; Cai, J. High-Flexibility, High-Toughness Double-Cross-Linked Chitin Hydrogels by Sequential Chemical and Physical Cross-Linkings. Adv. Mater. 2016, 28, 5844–5849. doi: 10.1002/adma.201600448.
  • Zhang, X.; Wang, J.; Jin, H.; Wang, S.; Song, W. Bioinspired Supramolecular Lubricating Hydrogel Induced by Shear Force. J. Am. Chem. Soc. 2018, 140, 3186–3189. doi: 10.1021/jacs.7b12886.
  • Chen, F.; Chen, Q.; Zhu, L.; Tang, Z.; Li, Q.; Qin, G.; Yang, J.; Zhang, Y.; Ren, B.; Zheng, J. General Strategy to Fabricate Strong and Tough Low-Molecular-Weight Gelator-Based Supramolecular Hydrogels with Double Network Structure. Chem. Mater. 2018, 30, 1743–1754. doi: 10.1021/acs.chemmater.8b00063.
  • Lei, Z.; Wu, P. A Highly Transparent and Ultra-Stretchable Conductor with Stable Conductivity during Large Deformation. Nat. Commun. 2019, 10, 3429. doi: 10.1038/s41467-019-11364-w.
  • Li, Z.; Zheng, Z.; Su, S.; Yu, L.; Wang, X. Preparation of a High-Strength Hydrogel with Slidable and Tunable Potential Functionalization Sites. Macromolecules. 2016, 49, 373–386. doi: 10.1021/acs.macromol.5b02359.
  • Li, Z.; Zheng, Z.; Su, S.; Yu, L.; Wang, X. Hydroxypropyl-β-Cd Vs. Its α-Homologue for a 3D Modified Polyrotaxane Network Formation and Properties: The Relationship between Modified Cd and Polymer Revealed through Comparison. Soft Matter. 2016, 12, 7089–7101. doi: 10.1039/C6SM01368F.
  • Jeong, D.; Joo, S.; Shinde, V. V.; Jung, S. Triple-Crosslinked β-Cyclodextrin Oligomer Self-Healing Hydrogel Showing High Mechanical Strength, Enhanced Stability and Ph Responsiveness. Carbohyd. Polym. 2018, 198, 563–574. doi: 10.1016/j.carbpol.2018.06.117.
  • Du, R.; Xu, Z.; Zhu, C.; Jiang, Y.; Yan, H.; Wu, H. C.; Vardoulis, O.; Cai, Y.; Zhu, X.; Bao, Z.;, et al. A Highly Stretchable and Self-Healing Supramolecular Elastomer Based on Sliding Crosslinks and Hydrogen Bonds. Adv. Funct. Mater. 2020, 30, 1907139. doi: 10.1002/adfm.201907139.
  • Li, S.; Chen, N.; Li, X.; Li, Y.; Xie, Z.; Ma, Z.; Zhao, J.; Hou, X.; Yuan, X. Bioinspired Double‐Dynamic‐Bond Crosslinked Bioadhesive Enables Post‐Wound Closure Care. Adv. Funct. Mater. 2020, 30, 2000130. doi: 10.1002/adfm.202000130.
  • Han, J.; Cui, Y.; Han, X.; Liang, C.; Liu, W.; Luo, D.; Yang, D. Super-Soft Dna/ Dopamine-Grafted-Dextran Hydrogel as Dynamic Wire for Electric Circuits Switched by a Microbial Metabolism Process. Adv Sci. 2020, n/a, 2000684. doi: 10.1002/advs.202000684.
  • Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M. Multifunctionality in Metal@Microgel Colloidal Nanocomposites. J. Mater. Chem. A. 2013, 1, 20–26. doi: 10.1039/C2TA00112H.
  • Karg, M.;. Multifunctional Inorganic/ Organic Hybrid Microgels. Colloid Polym. Sci. 2012, 290, 673–688. doi: 10.1007/s00396-012-2644-8.
  • Lu, Y.; Ballauff, M. Thermosensitive Core–Shell Microgels: From Colloidal Model Systems to Nanoreactors. Prog. Polym. Sci. 2011, 36, 767–792. doi: 10.1016/j.progpolymsci.2010.12.003.
  • Brijitta, J.; Schurtenberger, P. Responsive Hydrogel Colloids: Structure, Interactions, Phase Behavior, and Equilibrium and Nonequilibrium Transitions of Microgel Dispersions. Curr. Opin. Colloid Interface Sci. 2019, 40, 87–103. doi: 10.1016/j.cocis.2019.02.005.
  • Destribats, M.; Wolfs, M.; Pinaud, F.; Lapeyre, V.; Sellier, E.; Schmitt, V.; Ravaine, V. Pickering Emulsions Stabilized by Soft Microgels: Influence of the Emulsification Process on Particle Interfacial Organization and Emulsion Properties. Langmuir. 2013, 29, 12367–12374. doi: 10.1021/la402921b.
  • Shin, D. S.; Tokuda, E. Y.; Leight, J. L.; Miksch, C. E.; Brown, T. E.; Anseth, K. S. Synthesis of Microgel Sensors for Spatial and Temporal Monitoring of Protease Activity. ACS Biomater. Sci. Eng. 2018, 4, 378–387. doi: 10.1021/acsbiomaterials.7b00017.
  • Aliberti, A.; Ricciardi, A.; Giaquinto, M.; Micco, A.; Bobeico, E.; La Ferrara, V.; Ruvo, M.; Cutolo, A.; Cusano, A. Microgel Assisted Lab-On-Fiber Optrode. Sci. Rep-UK. 2017, 7, 14459. doi: 10.1038/s41598-017-14852-5.
  • Li, B.; Kappl, M.; Han, L.; Cui, J.; Zhou, F.; Del Campo, A. Goosebumps-Inspired Microgel Patterns with Switchable Adhesion and Friction. Small. 2019, 1902376. doi: 10.1002/smll.201902376.
  • Majerská, M.; Jakubec, M.; Klimša, V.; Rimpelová, S.; Král, V.; Štěpánek, F. Microgel Bioreactors for Cancer Cell Targeting by Ph-Dependent Generation of Radicals. Mol. Pharm. 2019, 16, 3275–3283. doi: 10.1021/acs.molpharmaceut.9b00531.
  • Zhou, X.; Chen, F.; Lu, H.; Kong, L.; Zhang, S.; Zhang, W.; Nie, J.; Du, B.; Wang, X. Ionic Microgel Loaded with Gold Nanoparticles for the Synergistic Dual-Drug Delivery of Doxorubicin and Diclofenac Sodium. Ind. Eng. Chem. Res. 2019, 58, 10922–10930. doi: 10.1021/acs.iecr.9b01904.
  • Kwok, M.; Sun, G.; Ngai, T. Microgel Particles at Interfaces: Phenomena, Principles, and Opportunities in Food Sciences. Langmuir. 2019, 35, 4205–4217. doi: 10.1021/acs.langmuir.8b04009.
  • Chen, Z.; Lv, X.; Zhao, M.; Zhang, P.; Ren, X.; Mei, X. Encapsulation of Green Tea Polyphenol by Ph Responsive, Antibacterial, Alginate Microgels Used for Minimally Invasive Treatment of Bone Infection. Colloids Surf. B. 2018, 170, 648–655. doi: 10.1016/j.colsurfb.2018.06.065.
  • Li, F.; Truong, V. X.; Fisch, P.; Levinson, C.; Glattauer, V.; Zenobi-Wong, M.; Thissen, H.; Forsythe, J. S.; Frith, J. E. Cartilage Tissue Formation through Assembly of Microgels Containing Mesenchymal Stem Cells. Acta Biomater. 2018, 77, 48–62. doi: 10.1016/j.actbio.2018.07.015.
  • Yao, M.; Li, B.; Ye, H.; Huang, W.; Luo, Q.; Xiao, H.; McClements, D. J.; Li, L. Enhanced Viability of Probiotics (Pediococcus Pentosaceus Li05) by Encapsulation in Microgels Doped with Inorganic Nanoparticles. Food Hydrocolloid. 2018, 83, 246–252. doi: 10.1016/j.foodhyd.2018.05.024.
  • Rabiee, H.; Jin, B.; Yun, S.; Dai, S. Gas-Responsive Cationic Microgels for Forward Osmosis Desalination. Chem. Eng. J. 2018, 347, 424–431. doi: 10.1016/j.cej.2018.04.148.
  • Nyström, L.; Strömstedt, A. A.; Schmidtchen, A.; Malmsten, M. Peptide-Loaded Microgels as Antimicrobial and Anti-Inflammatory Surface Coatings. Biomacromolecules. 2018, 19, 3456–3466. doi: 10.1021/acs.biomac.8b00776.
  • Gregoritza, M.; Abstiens, K.; Graf, M.; Goepferich, A. M. Fabrication of Antibody-Loaded Microgels Using Microfluidics and Thiol-Ene Photoclick Chemistry. Eur. J. Pharm. Biopharm. 2018, 127, 194–203. doi: 10.1016/j.ejpb.2018.02.024.
  • Duffy, C.; O’Sullivan, M.; Jacquier, J. Preparation of Novel Chitosan Iron Microgel Beads for Fortification Applications. Food Hydrocolloid. 2018, 84, 608–615. doi: 10.1016/j.foodhyd.2018.06.045.
  • Zhou, X.; Zhou, Y.; Nie, J.; Ji, Z.; Xu, J.; Zhang, X.; Du, B. Thermosensitive Ionic Microgels via Surfactant-Free Emulsion Copolymerization and in Situ Quaternization Cross-Linking. ACS Appl. Mater. Inter. 2014, 6, 4498–4513. doi: 10.1021/am500291n.
  • Hou, Y.; Xie, W.; Achazi, K.; Cuellar-Camacho, J. L.; Melzig, M. F.; Chen, W.; Haag, R. Injectable Degradable PVA Microgels Prepared by Microfluidic Technology for Controlled Osteogenic Differentiation of Mesenchymal Stem Cells. Acta Biomater. 2018, 77, 28–37. doi: 10.1016/j.actbio.2018.07.003.
  • Saavedra Isusi, G. I.; Karbstein, H. P.; van der Schaaf, U. S. Microgel Particle Formation: Influence of Mechanical Properties of Pectin-Based Gels on Microgel Particle Size Distribution. Food Hydrocolloid. 2019, 94, 105–113. doi: 10.1016/j.foodhyd.2019.02.053.
  • Mourran, A.; Wu, Y.; Gumerov, R. A.; Rudov, A. A.; Potemkin, I. I.; Pich, A.; Möller, M. When Colloidal Particles Become Polymer Coils. Langmuir. 2016, 32, 723–730. doi: 10.1021/acs.langmuir.5b03931.
  • Xue, J.; Zhang, Z.; Nie, J.; Du, B. Formation of Microgels by Utilizing the Reactivity of Catechols with Radicals. Macromolecules. 2017, 50, 5285–5292. doi: 10.1021/acs.macromol.7b01304.
  • Yao, L.; Li, Q.; Guan, Y.; Zhu, X. X.; Zhang, Y. Tetrahedral, Octahedral, and Triangular Dipyramidal Microgel Clusters with Thermosensitivity Fabricated from Binary Colloidal Crystals Template and Thiol–Ene Reaction. ACS Macro Lett. 2018, 7, 80–84. doi: 10.1021/acsmacrolett.7b00935.
  • Nayak, S.; Lyon, L. A. Soft Nanotechnology with Soft Nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 7686–7708. doi: 10.1002/anie.200501321.
  • Lehmann, S.; Seiffert, S.; Richtering, W. Diffusion of Guest Molecules within Sensitive Core–Shell Microgel Carriers. J. Colloid Interfaces Sci. 2014, 431, 204–208. doi: 10.1016/j.jcis.2014.06.014.
  • Borrmann, R.; Palchyk, V.; Pich, A.; Rueping, M. Reversible Switching and Recycling of Adaptable Organic Microgel Catalysts (Microgelzymes) for Asymmetric Organocatalytic Desymmetrization. ACS Catal. 2018, 8, 7991–7996. doi: 10.1021/acscatal.8b01408.
  • Agrawal, G.; Agrawal, R. Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers-Basel. 2018, 10, 418. doi: 10.3390/polym10040418.
  • Naseem, K.; Begum, R.; Wu, W.; Irfan, A.; Farooqi, Z. H. Advancement in Multi-Functional Poly(Styrene)-Poly(N-Isopropylacrylamide) Based Core–Shell Microgels and Their Applications. Polym. Rev. 2018, 58, 288–325. doi: 10.1080/15583724.2017.1423326.
  • Ramos, J.; Forcada, J.; Hidalgo-Alvarez, R. Cationic Polymer Nanoparticles and Nanogels: From Synthesis to Biotechnological Applications. Chem. Rev. 2014, 114, 367–428. doi: 10.1021/cr3002643.
  • Ye, Y.; Yu, J.; Gu, Z. Versatile Protein Nanogels Prepared by in Situ Polymerization. Macromol. Chem. Phys. 2016, 217, 333–343. doi: 10.1002/macp.201500296.
  • Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel Nanoparticles in Drug Delivery. Adv. Drug Deliver. Rev. 2008, 60, 1638–1649. doi: 10.1016/j.addr.2008.08.002.
  • Kendre, P. N.; Satav, T. S. Current Trends and Concepts in the Design and Development of Nanogel Carrier Systems. Polym. Bull. 2019, 76, 1595–1617. doi: 10.1007/s00289-018-2430-y.
  • Nita, L. E.; Chiriac, A. P.; Diaconu, A.; Tudorachi, N.; Mititelu-Tartau, L. Multifunctional Nanogels with Dual Temperature and Ph Responsiveness. Int. J. Pharm. 2016, 515, 165–175. doi: 10.1016/j.ijpharm.2016.10.017.
  • Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderón, M. Stimuli-Responsive Nanogel Composites and Their Application in Nanomedicine. Chem. Soc. Rev. 2015, 44, 6161–6186. doi: 10.1039/c5cs00199d.
  • Kabanov, A. V.; Vinogradov, S. V. Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities. Angew. Chem. Int. Ed. 2009, 48, 5418–5429. doi: 10.1002/anie.200900441.
  • Asadian-Birjand, M.; Sousa-Herves, A.; Steinhilber, D.; Cuggino, J. C.; Calderon, M. Functional Nanogels for Biomedical Applications. Curr. Med. Chem. 2012, 19, 5029.
  • Gao, Y.; Xie, J.; Chen, H.; Gu, S.; Zhao, R.; Shao, J.; Jia, L. Nanotechnology-Based Intelligent Drug Design for Cancer Metastasis Treatment. Biotechnol. Adv. 2014, 32, 761–777. doi: 10.1016/j.biotechadv.2013.10.013.
  • Tahara, Y.; Akiyoshi, K. Current Advances in Self-Assembled Nanogel Delivery Systems for Immunotherapy. Adv. Drug Deliver. Rev. 2015, 95, 65–76. doi: 10.1016/j.addr.2015.10.004.
  • Sasaki, Y.; Akiyoshi, K. Nanogel Engineering for New Nanobiomaterials: From Chaperoning Engineering to Biomedical Applications. Chem. Rec. 2010, 10, 366–376. doi: 10.1002/tcr.201000008.
  • Chen, X.; Li, R.; Wong, S. H. D.; Wei, K.; Cui, M.; Chen, H.; Jiang, Y.; Yang, B.; Zhao, P.; Xu, J.;, et al. Conformational Manipulation of Scale-Up Prepared Single-Chain Polymeric Nanogels for Multiscale Regulation of Cells. Nat. Commun. 2019, 10, 2705. doi: 10.1038/s41467-019-10640-z.
  • Chen, X.; Lai, N. C.; Wei, K.; Li, R.; Cui, M.; Yang, B.; Wong, S. H. D.; Deng, Y.; Li, J.; Shuai, X.;, et al.. Biomimetic Presentation of Cryptic Ligands via Single-Chain Nanogels for Synergistic Regulation of Stem Cells. ACS Nano. 2020. doi: 10.1021/acsnano.9b08564..
  • Richtering, W.; Pich, A. The Special Behaviours of Responsive Core-Shell Nanogels. Soft Matter. 2012, 8, 11423–11430. doi: 10.1039/c2sm26424b.
  • Wang, L.; Wu, Y.; Guo, B.; Ma, P. X. Nanofiber Yarn/Hydrogel Core–Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation. ACS Nano. 2015, 9, 9167–9179. doi: 10.1021/acsnano.5b03644.
  • Wang, L.; Wu, Y.; Hu, T.; Ma, P. X.; Guo, B. Aligned Conductive Core-Shell Biomimetic Scaffolds Based on Nanofiber Yarns/Hydrogel for Enhanced 3D Neurite Outgrowth Alignment and Elongation. Acta Biomater. 2019, 96, 175–187. doi: 10.1016/j.actbio.2019.06.035.
  • Hellweg, T.; Dewhurst, C. D.; Eimer, W.; Kratz, K. Pnipam-Co-Polystyrene Core-Shell Microgels: Structure, Swelling Behavior, and Crystallization. Langmuir. 2004, 20, 4330–4335. doi: 10.1021/la0354786.
  • Liu, J.; Wang, Q.; Sun, Y.; Lin, H.; Liang, J.; Fan, Y.; Zhang, X. A Core-Shell Structured Collagen Hydrogel Microsphere with Removable Superparamagnetic Alginate Coating for Cell Coculture and Rapid Separation. Mater. Lett. 2019, 249, 49–52. doi: 10.1016/j.matlet.2019.04.059.
  • Yao, D.; Zhang, Z.; Zheng, Y.; Wang, Y.; Wang, D. Enhanced Mechanical Property of Polyacrylic Acid Composite Hydrogel by the Synergistic Role of Core-Shell Structured Sio2@Pdmaema Nano-Objects. Compos. Sci. Technol. 2019, 181, 107711. doi: 10.1016/j.compscitech.2019.107711.
  • Naseem, K.; Farooqi, Z. H.; Begum, R.; Wu, W.; Irfan, A.; Al-Sehemi, A. G. Silver Nanoparticles Engineered Polystyrene-Poly(N-Isopropylmethacrylamide-Acrylic Acid) Core Shell Hybrid Polymer Microgels for Catalytic Reduction of Congo Red. Macromol. Chem. Phys. 2018, 219, 1800211. doi: 10.1002/macp.201800211.
  • Naseem, K.; Begum, R.; Wu, W.; Usman, M.; Irfan, A.; Al-Sehemi, A. G.; Farooqi, Z. H. Adsorptive Removal of Heavy Metal Ions Using Polystyrene-Poly(N-Isopropylmethacrylamide-Acrylic Acid) Core/Shell Gel Particles: Adsorption Isotherms and Kinetic Study. J. Mol. Liq. 2019, 277, 522–531. doi: 10.1016/j.molliq.2018.12.054.
  • Ladet, S.; David, L.; Domard, A. Multi-Membrane Hydrogels. Nature. 2008, 452, 76–79.
  • O’Leary, L. E. R.; Fallas, J. A.; Bakota, E. L.; Kang, M. K.; Hartgerink, J. D. Multi-Hierarchical Self-Assembly of a Collagen Mimetic Peptide from Triple Helix to Nanofibre and Hydrogel. Nat. Chem. 2011, 3, 821–828. doi: 10.1038/nchem.1123.
  • Liu, G.; Ding, Z.; Yuan, Q.; Xie, H.; Gu, Z. Multi-Layered Hydrogels for Biomedical Applications. Front. Chem. 2018, 6, 439.
  • Martinez-Sanz, M.; Mikkelsen, D.; Flanagan, B.; Gidley, M. J.; Gilbert, E. P. Multi-Scale Model for the Hierarchical Architecture of Native Cellulose Hydrogels. Carbohydr. Polym. 2016, 147, 542–555. doi: 10.1016/j.carbpol.2016.03.098.
  • Xue, B.; Wang, W.; Qin, J.; Nijampatnam, B.; Murugesan, S.; Kozlovskaya, V.; Zhang, R.; Velu, S. E.; Kharlampieva, E. Highly Efficient Delivery of Potent Anticancer Iminoquinone Derivative by Multilayer Hydrogel Cubes. Acta Biomater. 2017, 58, 386–398. doi: 10.1016/j.actbio.2017.06.004.
  • Fischer, M.; Vahdatzadeh, M.; Konradi, R.; Friedrichs, J.; Maitz, M. F.; Freudenberg, U.; Werner, C. Multilayer Hydrogel Coatings to Combine Hemocompatibility and Antimicrobial Activity. Biomaterials. 2015, 56, 198–205. doi: 10.1016/j.biomaterials.2015.03.056.
  • Steinmetz, N. J.; Aisenbrey, E. A.; Westbrook, K. K.; Qi, H. J.; Bryant, S. J. Mechanical Loading Regulates Human Msc Differentiation in a Multi-Layer Hydrogel for Osteochondral Tissue Engineering. Acta Biomater. 2015, 21, 142–153. doi: 10.1016/j.actbio.2015.04.015.
  • Hume, S. L.; Hoyt, S. M.; Walker, J. S.; Sridhar, B. V.; Ashley, J. F.; Bowman, C. N.; Bryant, S. J. Alignment of Multi-Layered Muscle Cells within Three-Dimensional Hydrogel Macrochannels. Acta Biomater. 2012, 8, 2193–2202. doi: 10.1016/j.actbio.2012.02.001.
  • Fujie, T.; Matsutani, N.; Kinoshita, M.; Okamura, Y.; Saito, A.; Takeoka, S. Adhesive, Flexible, and Robust Polysaccharide Nanosheets Integrated for Tissue-Defect Repair. Adv. Funct. Mater. 2009, 19, 2560–2568. doi: 10.1002/adfm.200900103.
  • Chen, X.; Wu, W.; Guo, Z.; Xin, J.; Li, J. Controlled Insulin Release From Glucose-Sensitive Self-Assembled Multilayer Films Based On 21-Arm Star Polymer. Biomaterials. 2010, 32, 1759–1766. doi: 10.1016/j.biomaterials.2010.11.002.
  • Wang, H.; Zha, G.; Du, H.; Gao, L.; Li, X.; Shen, Z.; Zhu, W. Facile Fabrication of Ultrathin Antibacterial Hydrogel Films via Layer-by-Layer “Click” Chemistry. Polym. Chem. UK 2014, 5, 6489–6494. doi: 10.1039/C4PY00900B.
  • Lu, Y.; Wu, Y.; Liang, J.; Libera, M. R.; Sukhishvili, S. A. Self-Defensive Antibacterial Layer-by-Layer Hydrogel Coatings with Ph-Triggered Hydrophobicity. Biomaterials. 2015, 45, 64–71. doi: 10.1016/j.biomaterials.2014.12.048.
  • Ladet, S. G.; Tahiri, K.; Montembault, A. S.; Domard, A. J.; Corvol, M. T. M. Multi-Membrane Chitosan Hydrogels as Chondrocytic Cell Bioreactors. Biomaterials. 2011, 32, 5354–5364. doi: 10.1016/j.biomaterials.2011.04.012.
  • Nie, J.; Lu, W.; Ma, J.; Yang, L.; Wang, Z.; Qin, A.; Hu, Q. Orientation in Multi-Layer Chitosan Hydrogel: Morphology, Mechanism, and Design Principle. Sci. Rep-UK. 2015, 5, 7635. doi: 10.1038/srep07635.
  • He, M.; Zhao, Y.; Duan, J.; Wang, Z.; Chen, Y.; Zhang, L. Fast Contact of Solid–Liquid Interface Created High Strength Multi-Layered Cellulose Hydrogels with Controllable Size. ACS Appl. Mater. Inter. 2014, 6, 1872–1878. doi: 10.1021/am404855q.
  • Zarket, B. C.; Raghavan, S. R. Onion-Like Multilayered Polymer Capsules Synthesized by a Bioinspired Inside-Out Technique. Nat. Commun. 2017, 8, 193. doi: 10.1038/s41467-017-00077-7.
  • Davidson, M. D.; Ban, E.; Schoonen, A. C. M.; Lee, M.; D’Este, M.; Shenoy, V. B.; Burdick, J. A. Mechanochemical Adhesion and Plasticity in Multifiber Hydrogel Networks. Adv. Mater. 2020, 32, 1905719. doi: 10.1002/adma.201905719..
  • Laha, A.; Sharma, C. S.; Majumdar, S. Sustained Drug Release From Multi-Layered Sequentially Crosslinked Electrospun Gelatin Nanofiber Mesh. Mater. Sci. Eng C. 2017, 76, 782–786. doi: 10.1016/j.msec.2017.03.110.
  • Yang, G.; Lin, H.; Rothrauff, B. B.; Yu, S.; Tuan, R. S. Multilayered Polycaprolactone/Gelatin Fiber-Hydrogel Composite for Tendon Tissue Engineering. Acta Biomater. 2016, 35, 68–76. doi: 10.1016/j.actbio.2016.03.004.
  • Okuda, T.; Tominaga, K.; Kidoaki, S. Time-Programmed Dual Release Formulation by Multilayered Drug-Loaded Nanofiber Meshes. J. Control. Release. 2010, 143, 258–264. doi: 10.1016/j.jconrel.2009.12.029.
  • Liu, L.; Ghaemi, A.; Gekle, S.; Agarwal, S. One‐Component Dual Actuation: Poly(Nipam) Can Actuate to Stable 3D Forms with Reversible Size Change. Adv. Mater. 2016, 28, 9792–9796. doi: 10.1002/adma.201603677.
  • Jiang, S.; Liu, F.; Lerch, A.; Ionov, L.; Agarwal, S. Unusual and Superfast Temperature‐Triggered Actuators. Adv. Mater. 2015, 27, 4865–4870. doi: 10.1002/adma.201502133.
  • Liu, L.; Jiang, S.; Sun, Y.; Agarwal, S. Giving Direction to Motion and Surface with Ultra‐Fast Speed Using Oriented Hydrogel Fibers. Adv. Funct. Mater. 2016, 26, 1021–1027. doi: 10.1002/adfm.201503612.
  • Mora-Boza, A.; Wlodarczyk-Biegun, M. K.; Del, C. A.; Vazquez-Lasa, B.; Roman, J. S. Glycerylphytate as an Ionic Crosslinker for 3D Printing of Multi-Layered Scaffolds with Improved Shape Fidelity and Biological Features. Biomater. Sci. 2020, 8, 506–516. doi: 10.1039/c9bm01271k.
  • Liu, J.; Li, L.; Suo, H.; Yan, M.; Yin, J.; Fu, J. 3D Printing of Biomimetic Multi-Layered Gelma/Nha Scaffold for Osteochondral Defect Repair. Mater. Des. 2019, 171, 107708. doi: 10.1016/j.matdes.2019.107708.
  • Yousefi, A.; Hoque, M. E.; Prasad, R. G. S. V.; Uth, N. Current Strategies in Multiphasic Scaffold Design for Osteochondral Tissue Engineering: A Review. J. Biomed. Mater. Res. A. 2015, 103, 2460–2481. doi: 10.1002/jbm.a.35356.
  • Odent, J.; Vanderstappen, S.; Toncheva, A.; Pichon, E.; Wallin, T. J.; Wang, K.; Shepherd, R. F.; Dubois, P.; Raquez, J. Hierarchical Chemomechanical Encoding of Multi-Responsive Hydrogel Actuators via 3D Printing. J. Mater. Chem. A. 2019, 7, 15395–15403. doi: 10.1039/C9TA03547H.
  • Wu, J.; Zhang, D.; He, X.; Wang, Y.; Xiao, S.; Chen, F.; Fan, P.; Zhong, M.; Tan, J.; Yang, J. “Janus-featured” Hydrogel with Antifouling and Bacteria-Releasing Properties. Ind. Eng. Chem. Res. 2019, 58, 17792–17801. doi: 10.1021/acs.iecr.9b02984.
  • Zhang, F.; Fan, J.; Zhang, P.; Liu, M.; Meng, J.; Jiang, L.; Wang, S. A Monolithic Hydro/ Organo Macro Copolymer Actuator Synthesized Via Interfacial Copolymerization. NPG Asia Mater. 2017, 9, e380–e380. doi: 10.1038/am.2017.61.
  • Motealleh, A.; Seda Kehr, N. Janus Nanocomposite Hydrogels for Chirality-Dependent Cell Adhesion and Migration. ACS Appl. Mater. Inter. 2017, 9, 33674–33682. doi: 10.1021/acsami.7b10871.
  • Peng, X.; Liu, T.; Shang, C.; Jiao, C.; Wang, H. Mechanically Strong Janus Poly(N-Isopropylacrylamide)/Graphene Oxide Hydrogels as Thermo-Responsive Soft Robots. Chin. J. Polym. Sci. 2017, 35, 1268–1275. doi: 10.1007/s10118-017-1970-1.
  • Ghosh, S.; Schurtenberger, P. Microfluidic Production of Snowman-Shaped Janus Hydrogel Particles. Colloids Surf. A. 2019, 573, 205–210. doi: 10.1016/j.colsurfa.2019.04.034.
  • Tanaka, T.; Fillmore, D. J. Kinetics of Swelling of Gels. J. Chem. Phys. 1979, 70, 1214–1218. doi: 10.1063/1.437602.
  • Omidian, H.; Rocca, J. G.; Park, K. Advances in Superporous Hydrogels. J. Control. Release. 2005, 102, 3–12. doi: 10.1016/j.jconrel.2004.09.028.
  • Bencherif, S. A.; Sands, R. W.; Bhatta, D.; Arany, P.; Verbeke, C. S.; Edwards, D. A.; Mooney, D. J. Injectable Preformed Scaffolds with Shape-Memory Properties. Proc. Natl. Acad. Sci. USA 2012, 109, 19590–19595. doi: 10.1073/pnas.1211516109.
  • Koshy, S. T.; Ferrante, T. C.; Lewin, S. A.; Mooney, D. J. Injectable, Porous, and Cell-Responsive Gelatin Cryogels. Biomaterials. 2014, 35, 2477–2487. doi: 10.1016/j.biomaterials.2013.11.044.
  • Koshy, S. T.; Zhang, D.; Grolman, J. M.; Stafford, A. G.; Mooney, D. J. Injectable Nanocomposite Cryogels for Versatile Protein Drug Delivery. Acta Biomater. 2018, 65, 36–43. doi: 10.1016/j.actbio.2017.11.024.
  • De France, K. J.; Xu, F.; Hoare, T. Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities. Adv. Healthc. Mater. 2018, 7, 1700927. doi: 10.1002/adhm.201700927.
  • Ma, X.; Zhao, Z.; Wang, H.; Liu, Y.; Xu, Y.; Zhang, J.; Chen, B.; Li, L.; Zhao, Y. P-Glycoprotein Antibody Decorated Porous Hydrogel Particles for Capture and Release of Drug-Resistant Tumor Cells. Adv. Healthc. Mater. 2019, 8, 1900136. doi: 10.1002/adhm.201900136.
  • Yan, K.; Xu, F.; Li, S.; Li, Y.; Chen, Y.; Wang, D. Ice-Templating of Chitosan/Agarose Porous Composite Hydrogel with Adjustable Water-Sensitive Shape Memory Property and Multi-Staged Degradation Performance. Colloids Surf. B. 2020, 190, 110907. doi: 10.1016/j.colsurfb.2020.110907.
  • Pei, Y.; Guo, D.; An, Q.; Xiao, Z.; Zhai, S.; Zhai, B. Hydrogels with Diffusion-Facilitated Porous Network for Improved Adsorption Performance. Korean J. Chem. Eng. 2018, 35, 2384–2393. doi: 10.1007/s11814-018-0181-y.
  • Liu, S.; Jin, M.; Chen, Y.; Gao, H.; Shi, X.; Cheng, W.; Ren, L.; Wang, Y. High Internal Phase Emulsions Stabilised by Supramolecular Cellulose Nanocrystals and Their Application as Cell-Adhesive Macroporous Hydrogel Monoliths. J. Mater. Chem. B. 2017, 5, 2671–2678. doi: 10.1039/C7TB00145B.
  • Bailey, B. M.; Hui, V.; Fei, R.; Grunlan, M. A. Tuning Peg-Da Hydrogel Properties Via Solvent-Induced Phase Separation (Sips). J. Mater. Chem. 2011, 21, 18776–18782. doi: 10.1039/C1JM13943F.
  • Bailey, B. M.; Fei, R.; Munoz-Pinto, D.; Hahn, M. S.; Grunlan, M. A. Pdmsstar–Peg Hydrogels Prepared via Solvent-Induced Phase Separation (Sips) and Their Potential Utility as Tissue Engineering Scaffolds. Acta Biomater. 2012, 8, 4324–4333. doi: 10.1016/j.actbio.2012.07.034.
  • Lee, Y. P.; Liu, H. Y.; Lin, P. C.; Lee, Y. H.; Yu, L. R.; Hsieh, C. C.; Shih, P. J.; Shih, W. P.; Wang, I. J.; Yen, J. Y.;, et al. Facile Fabrication of Superporous and Biocompatible Hydrogel Scaffolds for Artificial Corneal Periphery. Colloids Surf. B. 2019, 175, 26–35. doi: 10.1016/j.colsurfb.2018.11.013.
  • Ji, C.; Annabi, N.; Hosseinkhani, M.; Sivaloganathan, S.; Dehghani, F. Fabrication of Poly-Dl-Lactide/Polyethylene Glycol Scaffolds Using the Gas Foaming Technique. Acta Biomater. 2012, 8, 570–578. doi: 10.1016/j.actbio.2011.09.028.
  • Dehghani, F.; Annabi, N. Engineering Porous Scaffolds Using Gas-Based Techniques. Curr. Opin. Biotechnol. 2011, 22, 661–666. doi: 10.1016/j.copbio.2011.04.005.
  • Cui, Z. K.; Kim, S.; Baljon, J. J.; Wu, B. M.; Aghaloo, T.; Lee, M. Microporous Methacrylated Glycol Chitosan-Montmorillonite Nanocomposite Hydrogel for Bone Tissue Engineering. Nat. Commun. 2019, 10, 3523. doi: 10.1038/s41467-019-11511-3.
  • Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T. Accelerated Wound Healing by Injectable Microporous Gel Scaffolds Assembled from Annealed Building Blocks. Nat. Mater. 2015, 14, 737–744. doi: 10.1038/nmat4294.
  • Truong, N. F.; Kurt, E.; Tahmizyan, N.; Lesher-Pérez, S. C.; Chen, M.; Darling, N. J.; Xi, W.; Segura, T. Microporous Annealed Particle Hydrogel Stiffness, Void Space Size, and Adhesion Properties Impact Cell Proliferation, Cell Spreading, and Gene Transfer. Acta Biomater. 2019, 94, 160–172. doi: 10.1016/j.actbio.2019.02.054.
  • Isaac, A.; Jivan, F.; Xin, S.; Hardin, J.; Luan, X.; Pandya, M.; Diekwisch, T. G. H.; Alge, D. L. Microporous Bio-Orthogonally Annealed Particle Hydrogels for Tissue Engineering and Regenerative Medicine. ACS Biomater. Sci. Eng. 2019, 5, 6395–6404. doi: 10.1021/acsbiomaterials.9b01205.
  • Hou, S.; Lake, R.; Park, S.; Edwards, S.; Jones, C.; Jeong, K. J. Injectable Macroporous Hydrogel Formed by Enzymatic Cross-Linking of Gelatin Microgels. ACS App. Bio Mater. 2018, 1, 1430–1439. doi: 10.1021/acsabm.8b00380.
  • Highley, C. B.; Rodell, C. B.; Burdick, J. A. Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels. Adv. Mater. 2015, 27, 5075–5079. doi: 10.1002/adma.201501234.
  • Nedjari, S.; Schlatter, G.; Hébraud, A. Thick Electrospun Honeycomb Scaffolds with Controlled Pore Size. Mater. Lett. 2015, 142, 180–183. doi: 10.1016/j.matlet.2014.11.118.
  • Tam, R. Y.; Fisher, S. A.; Baker, A. E. G.; Shoichet, M. S. Transparent Porous Polysaccharide Cryogels Provide Biochemically Defined, Biomimetic Matrices for Tunable 3D Cell Culture. Chem. Mater. 2016, 28, 3762–3770. doi: 10.1021/acs.chemmater.6b00627.
  • Chen, Y.; Huang, L.; Dai, X.; Tian, Q.; Yu, M.; Agheb, M.; Chan, H. N.; Poon, E.; Guo, Z.; Boheler, K. R.;, et al. Facile Formation of a Microporous Chitosan Hydrogel Based On Self-Crosslinking. J. Mater. Chem. B. 2017, 5, 9291–9299. doi: 10.1039/C7TB02736B.
  • Chen, J.; Park, H.; Park, K. Synthesis of Superporous Hydrogels: Hydrogels with Fast Swelling and Superabsorbent Properties. J. Biomed. Mater. Res. 1999, 44, 53–62.
  • El-Said, I. A.; Aboelwafa, A. A.; Khalil, R. M.; ElGazayerly, O. N. Baclofen Novel Gastroretentive Extended Release Gellan Gum Superporous Hydrogel Hybrid System: In Vitro and in Vivo Evaluation. Drug. Deliv. 2016, 23, 101–112. doi: 10.3109/10717544.2014.905654.
  • Souza, J. F.; Costa, G. P.; Luque, R.; Alves, D.; Fajardo, A. R. Polysaccharide-Based Superporous Hydrogel Embedded with Copper Nanoparticles: A Green and Versatile Catalyst for the Synthesis of 1,2,3-Triazoles. Catal. Sci. Technol. 2019, 9, 136–145. doi: 10.1039/C8CY01796D.
  • Yin, L.; Ding, J.; Zhang, J.; He, C.; Tang, C.; Yin, C. Polymer Integrity Related Absorption Mechanism of Superporous Hydrogel Containing Interpenetrating Polymer Networks for Oral Delivery of Insulin. Biomaterials. 2010, 31, 3347–3356. doi: 10.1016/j.biomaterials.2010.01.045.
  • Gils, P. S.; Ray, D.; Sahoo, P. K. Characteristics of Xanthan Gum-Based Biodegradable Superporous Hydrogel. Int. J. Biol. Macromol. 2009, 45, 364–371. doi: 10.1016/j.ijbiomac.2009.07.007.
  • Shi, X.; Wang, W.; Wang, A. pH-Responsive Sodium Alginate-Based Superporous Hydrogel Generated by an Anionic Surfactant Micelle Templating. Carbohyd. Polym. 2013, 94, 449–455. doi: 10.1016/j.carbpol.2013.01.019.
  • Ashraf, M. U.; Hussain, I.; Hussain, S. Z.; Hussain, M. A.; Muhammad, G.; Haseeb, M. T.; Bashir, S. A Superporous and Superabsorbent Glucuronoxylan Hydrogel from Quince (Cydonia Oblanga): Stimuli Responsive Swelling, On-Off Switching and Drug Release. Int. J. Biol. Macromol. 2017, 95, 138–144. doi: 10.1016/j.ijbiomac.2016.11.057.
  • Kopeček, J.; Yang, J. Smart Self-Assembled Hybrid Hydrogel Biomaterials. Angew. Chem. Int. Ed. 2012, 51, 7396–7417. doi: 10.1002/anie.201201040.
  • Palmese, L. L.; Thapa, R. K.; Sullivan, M. O.; Kiick, K. L. Hybrid Hydrogels for Biomedical Applications. Curr. Opin. Chem. Eng. 2019, 24, 143–157. doi: 10.1016/j.coche.2019.02.010.
  • Xu, K.; Liang, X.; Li, P.; Deng, Y.; Pei, X.; Tan, Y.; Zhai, K.; Wang, P. Tough, Stretchable Chemically Cross-Linked Hydrogel Using Core–Shell Polymer Microspheres as Cross-Linking Junctions. Polymer. 2017, 118, 58–67. doi: 10.1016/j.polymer.2017.04.055.
  • Li, Q.; Barrett, D. G.; Messersmith, P. B.; Holten-Andersen, N. Controlling Hydrogel Mechanics Via Bio-Inspired Polymer–Nanoparticle Bond Dynamics. ACS Nano. 2016, 10, 1317–1324. doi: 10.1021/acsnano.5b06692.
  • Schexnailder, P.; Schmidt, G. Nanocomposite Polymer Hydrogels. Colloid Polym. Sci. 2009, 287, 1–11. doi: 10.1007/s00396-008-1949-0.
  • Li, H.; Jiang, H.; Haraguchi, K. U. Thermoresponsive Nanocomposite Hydrogels Composed of Ternary Polymer-Clay-Silica Networks. Macromolecules. 2018, 51, 529–539. doi: 10.1021/acs.macromol.7b02305.
  • Jiang, D.; Liu, Z.; Han, J.; Wu, X. A Tough Nanocomposite Hydrogel for Antifouling Application with Quaternized Hyperbranched Pei Nanoparticles Crosslinking. RSC Adv. 2016, 6, 60530–60536. doi: 10.1039/C6RA07335B.
  • Tian, S.; Jiang, D.; Pu, J.; Sun, X.; Li, Z.; Wu, B.; Zheng, W.; Liu, W.; Liu, Z. A New Hybrid Silicone-Based Antifouling Coating with Nanocomposite Hydrogel for Durable Antifouling Properties. Chem. Eng. J. 2019, 370, 1–9. doi: 10.1016/j.cej.2019.03.185.
  • Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Adv Sci. 2015, 2, 1400010. doi: 10.1002/advs.201400010.
  • Liu, R.; Liang, S.; Tang, X.; Yan, D.; Li, X.; Yu, Z. Tough and Highly Stretchable Graphene Oxide/Polyacrylamide Nanocomposite Hydrogels. J. Mater. Chem. 2012, 22, 14160–14167. doi: 10.1039/c2jm32541a.
  • Arshad, F.; Selvaraj, M.; Zain, J.; Banat, F.; Haija, M. A. Polyethylenimine Modified Graphene Oxide Hydrogel Composite as an Efficient Adsorbent for Heavy Metal Ions. Sep. Purif. Technol. 2019, 209, 870–880. doi: 10.1016/j.seppur.2018.06.035.
  • Sheikhi, A.; Afewerki, S.; Oklu, R.; Gaharwar, A. K.; Khademhosseini, A. Effect of Ionic Strength on Shear-Thinning Nanoclay–Polymer Composite Hydrogels. Biomater Sci. UK 2018, 6, 2073–2083. doi: 10.1039/C8BM00469B.
  • Lee, M.; Aida, T.; Lee, E.; Mynar, J. L.; Okuro, K.; Yoshida, M.; Wang, Q.; Kinbara, K. High-Water-Content Mouldable Hydrogels by Mixing Clay and a Dendritic Molecular Binder. Nature. 2010, 463, 339–343. doi: 10.1038/nature08693.
  • Gao, G.; Du, G.; Sun, Y.; Fu, J. Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption. ACS Appl. Mater. Inter. 2015, 7, 5029–5037. doi: 10.1021/acsami.5b00704.
  • Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X.; Xie, R.; Chu, L. Poly(N-Isopropylacrylamide)-Clay Nanocomposite Hydrogels with Responsive Bending Property as Temperature-Controlled Manipulators. Adv. Funct. Mater. 2015, 25, 2980–2991. doi: 10.1002/adfm.201500420.
  • Feng, K.; Hung, G.; Yang, X.; Liu, M. High-Strength and Physical Cross-Linked Nanocomposite Hydrogel with Clay Nanotubes for Strain Sensor and Dye Adsorption Application. Compos. Sci. Technol. 2019, 181, 107701. doi: 10.1016/j.compscitech.2019.107701.
  • Hu, M.; Yang, Y.; Gu, X.; Hu, Y.; Du, Z.; Wang, C. Novel Nanocomposite Hydrogels Consisting of C‐Dots with Excellent Mechanical Properties. Macromol. Mater. Eng. 2015, 300, 1043–1048. doi: 10.1002/mame.201500141.
  • Cheng, C.; Zhang, C.; Wang, D. Using Hydrogel to Diversify the Adaptability and Applicability of Functional Nanoparticles: From Nanotech-Flavored Jellies to Artificial Enzymes. Langmuir. 2019, 35, 8612–8628. doi: 10.1021/acs.langmuir.9b00254.
  • Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano. 2015, 9, 4686–4697. doi: 10.1021/acsnano.5b01433.
  • Sun, X.; Sun, H.; Li, H.; Peng, H. Developing Polymer Composite Materials: Carbon Nanotubes Or Graphene?. Adv. Mater. 2013, 25, 5153–5176. doi: 10.1002/adma.201301926.
  • Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.;, et al. Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano 2017, 11, 2561–2574. doi: 10.1021/acsnano.6b05318.
  • Shin, S. R.; Bae, H.; Cha, J. M.; Mun, J. Y.; Chen, Y.; Tekin, H.; Shin, H.; Farshchi, S.; Dokmeci, M. R.; Tang, S.;, et al. Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation. ACS Nano 2012, 6, 362–372. doi: 10.1021/nn203711s.
  • Basuki, J. S.; Qie, F.; Mulet, X.; Suryadinata, R.; Vashi, A. V.; Peng, Y. Y.; Li, L.; Hao, X.; Tan, T.; Hughes, T. C. Photo-Modulated Therapeutic Protein Release from a Hydrogel Depot Using Visible Light. Angewandte Chemie. 2017, 56, 966–971. doi: 10.1002/anie.201610618.
  • Jalani, G.; Naccache, R.; Rosenzweig, D. H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for Nir Imaging and On-Demand Macromolecular Delivery. J. Am. Chem. Soc. 2016, 138, 1078–1083. doi: 10.1021/jacs.5b12357.
  • Wang, P.; Sun, J.; Lou, Z.; Fan, F.; Hu, K.; Sun, Y.; Gu, N. Assembly‐Induced Thermogenesis of Gold Nanoparticles in the Presence of Alternating Magnetic Field for Controllable Drug Release of Hydrogel. Adv. Mater. 2016, 28, 10801–10808. doi: 10.1002/adma.201603632.
  • Zhao, F.; Bae, J.; Zhou, X.; Guo, Y.; Yu, G. Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies. Adv. Mater. 2018, 30, 1801796. doi: 10.1002/adma.201801796.
  • Li, L.; Wang, Y.; Pan, L.; Shi, Y.; Cheng, W.; Shi, Y.; Yu, G. A Nanostructured Conductive Hydrogels-Based Biosensor Platform for Human Metabolite Detection. Nano Lett. 2015, 15, 1146–1151. doi: 10.1021/nl504217p.
  • Qin, H.; Zhang, T.; Li, H.; Cong, H.; Antonietti, M.; Yu, S. Dynamic Au-Thiolate Interaction Induced Rapid Self-Healing Nanocomposite Hydrogels with Remarkable Mechanical Behaviors. Chem-Us. 2017, 3, 691–705. doi: 10.1016/j.chempr.2017.07.017.
  • Zhang, K.; Yuan, W.; Wei, K.; Yang, B.; Chen, X.; Li, Z.; Zhang, Z.; Bian, L. Highly Dynamic Nanocomposite Hydrogels Self-Assembled by Metal Ion-Ligand Coordination. Small. 2019, 15, 1900242. doi: 10.1002/smll.201900242.
  • Zhang, K.; Jia, Z.; Yang, B.; Feng, Q.; Xu, X.; Yuan, W.; Li, X.; Chen, X.; Duan, L.; Wang, D.;, et al. Adaptable Hydrogels Mediate Cofactor-Assisted Activation of Biomarker-Responsive Drug Delivery via Positive Feedback for Enhanced Tissue Regeneration. Adv Sci 2018, 5, 1800875. doi: 10.1002/advs.201800875.
  • Jiang, F.; Huang, T.; He, C.; Brown, H. R.; Wang, H. Interactions Affecting the Mechanical Properties of Macromolecular Microsphere Composite Hydrogels. J. Phys. Chem. B. 2013, 117, 13679–13687. doi: 10.1021/jp4069587.
  • Zhao, J.; Jiao, K.; Yang, J.; He, C.; Wang, H. Mechanically Strong and Thermosensitive Macromolecular Microsphere Composite Poly(N-Isopropylacrylamide) Hydrogels. Polymer. 2013, 54, 1596–1602. doi: 10.1016/j.polymer.2013.01.025.
  • Sun, Y.; Liu, S.; Du, G.; Gao, G.; Fu, J. Multi-Responsive and Tough Hydrogels Based on Triblock Copolymer Micelles as Multi-Functional Macro-Crosslinkers. Chem. Commun. 2015, 51, 8512–8515. doi: 10.1039/c4cc10094h.
  • Li, P.; Xu, K.; Tan, Y.; Lu, C.; Li, Y.; Wang, H.; Liang, X.; Wang, P. The Astonishing Progress in Performance of Hydrogel Triggered by the Structure Evolution of Cross-Linking Junctions. RSC Adv. 2014, 4, 37812–37815. doi: 10.1039/C4RA07541B.
  • Li, P.; Xu, K.; Tan, Y.; Lu, C.; Li, Y.; Wang, P. A Novel Fabrication Method of Temperature-Responsive Poly(Acrylamide) Composite Hydrogel with High Mechanical Strength. Polymer. 2013, 54, 5830–5838. doi: 10.1016/j.polymer.2013.08.019.
  • Huang, T.; Xu, H. G.; Jiao, K. X.; Zhu, L. P.; Brown, H. R.; Wang, H. L.; Novel, A. Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel. Adv. Mater. 2007, 19, 1622–1626. doi: 10.1002/adma.200602533.
  • Ritchie, R. O.;. The Conflicts between Strength and Toughness. Nat. Mater. 2011, 10, 817–822. doi: 10.1038/nmat3115.
  • Zhu, H.; Zhu, S.; Jia, Z.; Parvinian, S.; Li, Y.; Vaaland, O.; Hu, L.; Li, T. Anomalous Scaling Law of Strength and Toughness of Cellulose Nanopaper. Proc. National Academy Sci. 2015, 112, 8971. doi: 10.1073/pnas.1502870112.
  • Dragan, E. S.;. Design and Applications of Interpenetrating Polymer Network Hydrogels. A Review. Chem. Eng. J. 2014, 243, 572–590. doi: 10.1016/j.cej.2014.01.065.
  • Berrebi, M.; Fabre-Francke, I.; Lavédrine, B.; Fichet, O. Development of Organic Glass Using Interpenetrating Polymer Networks with Enhanced Resistance Towards Scratches and Solvents. Eur. Polym. J. 2015, 63, 132–140. doi: 10.1016/j.eurpolymj.2014.12.010.
  • Zhang, Y.; Liu, J.; Huang, L.; Wang, Z.; Wang, L. Design and Performance of a Sericin-Alginate Interpenetrating Network Hydrogel for Cell and Drug Delivery. Sci. Rep-UK. 2015, 5, 12374. doi: 10.1038/srep12374.
  • Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. Glossary of Basic Terms in Polymer Science (Iupac Recommendations 1996). Pure Appl. Chem. 1996, 68, 2305. doi: 10.1351/pac199668122287.
  • Chikh, L.; Delhorbe, V.; Fichet, O. (Semi-)interpenetrating Polymer Networks as Fuel Cell Membranes. J. Membr. Sci. 2011, 368, 1–17. doi: 10.1016/j.memsci.2010.11.020.
  • Yue, Y.; Han, J.; Han, G.; French, A. D.; Qi, Y.; Wu, Q. Cellulose Nanofibers Reinforced Sodium Alginate-Polyvinyl Alcohol Hydrogels: Core-Shell Structure Formation and Property Characterization. Carbohyd. Polym. 2016, 147, 155–164. doi: 10.1016/j.carbpol.2016.04.005.
  • Varganici, C.; Rosu, L.; Rosu, D.; Simionescu, B. C. Miscibility Studies of Some Semi-Interpenetrating Polymer Networks Based on an Aromatic Polyurethane and Epoxy Resin. Compos. B Eng. 2013, 50, 273–278. doi: 10.1016/j.compositesb.2013.02.005.
  • Qu, C.; Li, X.; Yang, Z.; Zhang, X.; Wang, T.; Wang, Q.; Chen, S. Damping, Thermal, and Mechanical Performances of a Novel Semi-Interpenetrating Polymer Networks Based on Polyimide/Epoxy. J. Appl. Polym. Sci. 2019, 136, 48032. doi: 10.1002/app.48032.
  • Venkataramani, S.; Kannan, T.; Radhakrishnan, G. Novel Ab Crosslinked Polymer Networks Based on 1-Vinylimidazole- Terminated Polyurethane and Poly(Methyl Methacrylate). Polym. Int. 2006, 55, 1209–1214. doi: 10.1002/pi.2042.
  • Venkataramani, S.; Kannan, T.; Das, P. J.; Radhakrishnan, G. Novel Ab Crosslinked Polymer Networks from Telechelic 4-Vinylbenzyl Carbamate Terminated Polyurethanes and Different Vinyl Monomers. Polym. Adv. Technol. 2009, 20, 892–898. doi: 10.1002/pat.1326.
  • Yang, J.; Wang, N.; Chiu, H. Preparation and Characterization of Poly(Vinyl Alcohol)/Sodium Alginate Blended Membrane for Alkaline Solid Polymer Electrolytes Membrane. J. Membr. Sci. 2014, 457, 139–148. doi: 10.1016/j.memsci.2014.01.034.
  • Park, S.; Edwards, S.; Hou, S.; Boudreau, R.; Yee, R.; Jeong, K. J. A Multi-Interpenetrating Network (Ipn) Hydrogel with Gelatin and Silk Fibroin. Biomater. Sci. UK 2019, 7, 1276–1280. doi: 10.1039/C8BM01532E.
  • Dadfar, S. M. R.; Pourmahdian, S.; Tehranchi, M. M.; Dadfar, S. M. Novel Dual-Responsive Semi-Interpenetrating Polymer Network Hydrogels for Controlled Release of Anticancer Drugs. J. Biomed. Mater. Res. A. 2019, 107, 2327–2339. doi: 10.1002/jbm.a.36741.
  • Ding, C.; Zhang, M.; Ma, M.; Zheng, J.; Yang, Q.; Feng, R. Thermal and Ph Dual-Responsive Hydrogels Based on Semi-Interpenetrating Network of Poly(N-Isopropylacrylamide) and Collagen Nanofibrils. Polym. Int. 2019, 68, 1468–1477. doi: 10.1002/pi.5852.
  • Gu, Z.; Huang, K.; Luo, Y.; Zhang, L.; Kuang, T.; Chen, Z.; Liao, G. Double Network Hydrogel for Tissue Engineering, Wiley Interdisciplinary Reviews:. Nanomed. Nanobiotechnol. 2018, 10, e1520. doi: 10.1002/wnan.1520.
  • Golafshan, N.; Gharibi, H.; Kharaziha, M.; Fathi, M. A Facile One-Step Strategy for Development of a Double Network Fibrous Scaffold for Nerve Tissue Engineering. Biofabrication. 2017, 9, 025008. doi: 10.1088/1758-5090/aa68ed.
  • Gong, J. P.;. Why are Double Network Hydrogels so Tough?. Soft Matter. 2010, 6, 2583–2590. doi: 10.1039/b924290b.
  • Sun, J.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature. 2012, 489, 133–136.
  • Zhao, Y.; Xia, B. H.; Wang, L.; Wang, R. J.; Meng, D. N.; Liu, Y.; Zhou, J. W.; Lian, H. Q.; Zu, L.; Cui, X. G.;, et al. Tough and Tear‐Resistant Double‐Network Hydrogels Based on a Facile Strategy: Micellar Polymerization Followed by Solution Polymerization. Macromol. Mater. Eng. 2018, 303, 1700527. doi: 10.1002/mame.201700527.
  • Yang, Y.; Wang, X.; Yang, F.; Shen, H.; Wu, D. A Universal Soaking Strategy to Convert Composite Hydrogels into Extremely Tough and Rapidly Recoverable Double-Network Hydrogels. Adv. Mater. 2016, 28, 7178–7184. doi: 10.1002/adma.201601742.
  • Nonoyama, T.; Wada, S.; Kiyama, R.; Kitamura, N.; Mredha, M. T.; Zhang, X.; Kurokawa, T.; Nakajima, T.; Takagi, Y.; Yasuda, K.;, et al. Double-Network Hydrogels Strongly Bondable to Bones by Spontaneous Osteogenesis Penetration. Adv. Mater. 2016, 28, 6740–6745. doi: 10.1002/adma.201601030.
  • Li, Y.; Yang, L.; Zeng, Y.; Wu, Y.; Wei, Y.; Tao, L. Self-Healing Hydrogel with a Double Dynamic Network Comprising Imine and Borate Ester Linkages. Chem. Mater. 2019, 31, 315576–315583. doi: 10.1021/acs.chemmater.9b01301.
  • Feng, S.; Li, Q.; Wang, S.; Wang, B.; Hou, Y.; Zhang, T. Tunable Dual Temperature-Pressure Sensing and Parameter Self-Separating Based on Ionic Hydrogel via Multisynergistic Network Design. ACS Appl. Mater. Interfaces. 2019, 11, 21049–21057. doi: 10.1021/acsami.9b05214.
  • Zhang, H.; Qadeer, A.; Mynarcik, D.; Chen, W. Delivery of Rosiglitazone from an Injectable Triple Interpenetrating Network Hydrogel Composed of Naturally Derived Materials. Biomaterials. 2011, 32, 890–898. doi: 10.1016/j.biomaterials.2010.09.053.
  • Zhang, H.; Wang, X.; Huang, H.; Yang, B.; Wang, C.; Sun, H. Nanocomposite Interpenetrating Hydrogels with High Toughness and Good Self-Recovery. Colloid Polym. Sci. 2019, 297, 821–830. doi: 10.1007/s00396-019-04512-7.
  • Li, Z.; Shen, J.; Ma, H.; Lu, X.; Shi, M.; Li, N.; Ye, M. Preparation and Characterization of pH- and Temperature-Responsive Nanocomposite Double Network Hydrogels. Mater. Sci. Eng C 2013, 33, 1951–1957. doi: 10.1016/j.msec.2013.01.004.
  • Zhuang, Y.; Yu, F.; Chen, H.; Zheng, J.; Ma, J.; Chen, J. Alginate/ Graphene Double-Network Nanocomposite Hydrogel Beads with Low-Swelling, Enhanced Mechanical Properties, and Enhanced Adsorption Capacity. J. Mater. Chem. A. 2016, 4, 10885–10892. doi: 10.1039/C6TA02738E.
  • Yang, W.; Furukawa, H.; Gong, J. P. Highly Extensible Double-Network Gels with Self-Assembling Anisotropic Structure. Adv. Mater. 2008, 20, 4499–4503. doi: 10.1002/adma.200801396.
  • Mredha, M. T. I.; Kitamura, N.; Nonoyama, T.; Wada, S.; Goto, K.; Zhang, X.; Nakajima, T.; Kurokawa, T.; Takagi, Y.; Yasuda, K.;, et al. Anisotropic Tough Double Network Hydrogel from Fish Collagen and Its Spontaneous in Vivo Bonding to Bone. Biomaterials 2017, 132, 85–95. doi: 10.1016/j.biomaterials.2017.04.005.
  • Nakajima, T.; Furukawa, H.; Tanaka, Y.; Kurokawa, T.; Gong, J. P. Effect of Void Structure on the Toughness of Double Network Hydrogels. J. Polym. Sci. B Polym. Phys. 2011, 49, 1246–1254. doi: 10.1002/polb.22293.
  • Zhao, Y.; Chen, S.; Hu, J.; Yu, J.; Feng, G.; Yang, B.; Li, C.; Zhao, N.; Zhu, C.; Xu, J. Microgel-Enhanced Double Network Hydrogel Electrode with High Conductivity and Stability for Intrinsically Stretchable and Flexible All-Gel-State Supercapacitor. ACS Appl. Mater. Inter. 2018, 10, 19323–19330. doi: 10.1021/acsami.8b05224.
  • Hu, J.; Kurokawa, T.; Nakajima, T.; Wu, Z. L.; Liang, S. M.; Gong, J. P. Fracture Process of Microgel-Reinforced Hydrogels under Uniaxial Tension. Macromolecules. 2014, 47, 3587–3594. doi: 10.1021/ma5008545.
  • Ming, Z.; Pang, Y.; Liu, J. Switching Between Elasticity and Plasticity by Network Strength Competition. Adv. Mater. 2020, 32, 1906870. doi: 10.1002/adma.201906870.
  • Chen, S.; He, H.; Tang, G.; Wu, B.; Ma, M.; Shi, Y.; Wang, X. Topological Structure Influences On the Gel Formation Process and Mechanical Properties of L-Lysine Based Supramolecular Gels. RSC Adv. 2015, 5, 101437–101443. doi: 10.1039/C5RA17991B.
  • Bin Imran, A.; Esaki, K.; Gotoh, H.; Seki, T.; Ito, K.; Sakai, Y.; Takeoka, Y. Extremely Stretchable Thermosensitive Hydrogels by Introducing Slide-Ring Polyrotaxane Cross-Linkers and Ionic Groups into the Polymer Network. Nat. Commun. 2014, 5, 5124. doi: 10.1038/ncomms6124.
  • Noda, Y.; Hayashi, Y.; Ito, K. From Topological Gels to Slide-Ring Materials. J. Appl. Polym. Sci. 2014, 131, 40509. doi: 10.1002/app.40509.
  • Ito, K.;. Slide-Ring Materials Using Topological Supramolecular Architecture. Curr. Opin. Solid State Mater. Sci. 2010, 14, 28–34. doi: 10.1016/j.cossms.2009.08.005.
  • Steck, J.; Yang, J.; Suo, Z. Covalent Topological Adhesion. ACS Macro Lett. 2019, 8, 754–758. doi: 10.1021/acsmacrolett.9b00325.
  • Ke, H.; Yang, L. P.; Xie, M.; Chen, Z.; Yao, H.; Jiang, W. Shear-Induced Assembly of a Transient yet Highly Stretchable Hydrogel Based on Pseudopolyrotaxanes. Nat. Chem. 2019, 11, 470–477. doi: 10.1038/s41557-019-0235-8.
  • Zhao, D.; Zhu, Y.; Cheng, W.; Xu, G.; Wang, Q.; Liu, S.; Li, J.; Chen, C.; Yu, H.; Hu, L. A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter. 2020, 2, 390–403. doi: 10.1016/j.matt.2019.10.020.
  • Shibayama, M.;. Exploration of Ideal Polymer Networks. Macromol. Symp. 2017, 372, 7–13. doi: 10.1002/masy.201600122.
  • Ishikawa, A.; Sakai, T.; Fujii, K. An Ionic Liquid Gel with Ultralow Concentrations of Tetra-Arm Polymers: Gelation Kinetics and Mechanical and Ion-Conducting Properties. Polymer. 2019, 166, 38–43. doi: 10.1016/j.polymer.2019.01.044.
  • Matsunaga, T.; Asai, H.; Akagi, Y.; Sakai, T.; Chung, U.; Shibayama, M. Sans Studies On Tetra-Peg Gel Under Uniaxial Deformation. Macromolecules. 2011, 44, 1203–1210. doi: 10.1021/ma102658e.
  • Shibayama, M.; Li, X.; Sakai, T. Precision Polymer Network Science with Tetra-Peg Gels-a Decade History and Future. Colloid Polym. Sci. 2019, 297, 1–12. doi: 10.1007/s00396-018-4423-7.
  • Sakai, T.; Matsunaga, T.; Yamamoto, Y.; Ito, C.; Yoshida, R.; Suzuki, S.; Sasaki, N.; Shibayama, M.; Chung, U. Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-Like Macromonomers. Macromolecules. 2008, 41, 5379–5384. doi: 10.1021/ma800476x.
  • Bu, Y.; Zhang, L.; Sun, G.; Sun, F.; Liu, J.; Yang, F.; Tang, P.; Wu, D. Tetra-Peg Based Hydrogel Sealants for in Vivo Visceral Hemostasis. Adv. Mater. 2019, 31, 1901580. doi: 10.1002/adma.201901580.
  • Li, X.; Nakagawa, S.; Tsuji, Y.; Watanabe, N.; Shibayama, M. Polymer Gel with a Flexible and Highly Ordered Three-Dimensional Network Synthesized via Bond Percolation. Sci. Adv. 2019, 5, eaax8647. doi: 10.1126/sciadv.aax8647.
  • Lu, Y.; Mao, L.; Hou, Z.; Miao, S.; Gao, Y. Development of Emulsion Gels for the Delivery of Functional Food Ingredients: From Structure to Functionality. Food Eng. Rev. 2019, 11, 245–258. doi: 10.1007/s12393-019-09194-z.
  • Farjami, T.; Madadlou, A. An Overview on Preparation of Emulsion-Filled Gels and Emulsion Particulate Gels. Trends Food Sci. Tech. 2019, 86, 85–94. doi: 10.1016/j.tifs.2019.02.043.
  • Torres, O.; Murray, B.; Sarkar, A. Emulsion Microgel Particles: Novel Encapsulation Strategy for Lipophilic Molecules. Trends Food Sci. Tech. 2016, 55, 98–108. doi: 10.1016/j.tifs.2016.07.006.
  • Zhu, Y.; Chen, X.; McClements, D. J.; Zou, L.; Liu, W. pH-, Ion- and Temperature-Dependent Emulsion Gels: Fabricated by Addition of Whey Protein to Gliadin-Nanoparticle Coated Lipid Droplets. Food Hydrocolloid. 2018, 77, 870–878. doi: 10.1016/j.foodhyd.2017.11.032.
  • Su, J.; Guo, Q.; Chen, Y.; Dong, W.; Mao, L.; Gao, Y.; Yuan, F. Characterization and Formation Mechanism of Lutein Pickering Emulsion Gels Stabilized by β-Lactoglobulin-Gum Arabic Composite Colloidal Nanoparticles. Food Hydrocolloid. 2020, 98, 105276. doi: 10.1016/j.foodhyd.2019.105276.
  • Koç, H.; Drake, M.; Vinyard, C. J.; Essick, G.; van de Velde, F.; Foegeding, E. A. Emulsion Filled Polysaccharide Gels: Filler Particle Effects on Material Properties, Oral Processing, and Sensory Texture. Food Hydrocolloid. 2019, 94, 311–325. doi: 10.1016/j.foodhyd.2019.03.018.
  • Jiang, Y.; Liu, L.; Wang, B.; Yang, X.; Chen, Z.; Zhong, Y.; Zhang, L.; Mao, Z.; Xu, H.; Sui, X. Polysaccharide-Based Edible Emulsion Gel Stabilized by Regenerated Cellulose. Food Hydrocolloid. 2019, 91, 232–237. doi: 10.1016/j.foodhyd.2019.01.028.
  • Soltani, S.; Madadlou, A. Gelation Characteristics of the Sugar Beet Pectin Solution Charged with Fish Oil-Loaded Zein Nanoparticles. Food Hydrocolloid. 2015, 43, 664–669. doi: 10.1016/j.foodhyd.2014.07.030.
  • Wang, M.; Wang, M.; Zhang, S.; Chen, J. Pickering Gel Emulsion Stabilized by Enzyme Immobilized Polymeric Nanoparticles: A Robust and Recyclable Biocatalyst System for Biphasic Catalysis. React. Chem. Eng. 2019, 4, 1459–1465. doi: 10.1039/C9RE00158A.
  • Xu, Y.; Liu, T.; Tang, C. Novel Pickering High Internal Phase Emulsion Gels Stabilized Solely by Soy β-Conglycinin. Food Hydrocolloid. 2019, 88, 21–30. doi: 10.1016/j.foodhyd.2018.09.031.
  • Liu, W.; Gao, H.; McClements, D. J.; Zhou, L.; Wu, J.; Zou, L. Stability, Rheology, and β-Carotene Bioaccessibility of High Internal Phase Emulsion Gels. Food Hydrocolloid. 2019, 88, 210–217. doi: 10.1016/j.foodhyd.2018.10.012.
  • Partanen, R.; Forssell, P.; Mackie, A.; Blomberg, E. Interfacial Cross-Linking of β-Casein Changes the Structure of the Adsorbed Layer. Food Hydrocolloid. 2013, 32, 271–277. doi: 10.1016/j.foodhyd.2013.01.009.
  • Phoon, P. Y.; Paul, L. N.; Burgner, N. J. W.; San Martin-Gonzalez, M. F.; Narsimhan, G. Effect of Cross-Linking of Interfacial Sodium Caseinate by Natural Processing on the Oxidative Stability of Oil-in-Water (O/W) Emulsions. J. Agr. Food Chem. 2014, 62, 2822–2829. doi: 10.1021/jf403285z.
  • Dai, L.; Sun, C.; Wei, Y.; Mao, L.; Gao, Y. Characterization of Pickering Emulsion Gels Stabilized by Zein/Gum Arabic Complex Colloidal Nanoparticles. Food Hydrocolloid. 2018, 74, 239–248. doi: 10.1016/j.foodhyd.2017.07.040.
  • Setiowati, A. D.; Saeedi, S.; Wijaya, W.; Van der Meeren, P. Improved Heat Stability of Whey Protein Isolate Stabilized Emulsions Via Dry Heat Treatment of Wpi and Low Methoxyl Pectin: Effect of Pectin Concentration, pH, and Ionic Strength. Food Hydrocolloid. 2017, 63, 716–726. doi: 10.1016/j.foodhyd.2016.10.025.
  • Tavernier, I.; Patel, A. R.; Van der Meeren, P.; Dewettinck, K. Emulsion-Templated Liquid Oil Structuring with Soy Protein and Soy Protein: Κ-carrageenan Complexes. Food Hydrocolloid. 2017, 65, 107–120. doi: 10.1016/j.foodhyd.2016.11.008.
  • Morales, R.; Martinez, M. J.; Pilosof, A. M. R. Caseinglycomacropeptide and Polysorbate Interactions Allow the Design of Smart Gelled Emulsions. Food Hydrocolloid. 2019, 93, 198–205. doi: 10.1016/j.foodhyd.2019.02.030.
  • Mantelet, M.; Panouillé, M.; Boué, F.; Bosc, V.; Restagno, F.; Souchon, I.; Mathieu, V. Impact of Sol-Gel Transition on the Ultrasonic Properties of Complex Model Foods: Application to Agar/Gelatin Gels and Emulsion Filled Gels. Food Hydrocolloid. 2019, 87, 506–518. doi: 10.1016/j.foodhyd.2018.08.021.
  • Feng, L.; Jia, X.; Zhu, Q.; Liu, Y.; Li, J.; Yin, L. Investigation of the Mechanical, Rheological and Microstructural Properties of Sugar Beet Pectin/Soy Protein Isolate-Based Emulsion-Filled Gels. Food Hydrocolloid. 2019, 89, 813–820. doi: 10.1016/j.foodhyd.2018.11.039.
  • Xi, Z.; Liu, W.; McClements, D. J.; Zou, L. Rheological, Structural, and Microstructural Properties of Ethanol Induced Cold-Set Whey Protein Emulsion Gels: Effect of Oil Content. Food Chem. 2019, 291, 22–29. doi: 10.1016/j.foodchem.2019.04.011.
  • Mao, L.; Roos, Y. H.; Miao, S. Study on the Rheological Properties and Volatile Release of Cold-Set Emulsion-Filled Protein Gels. J. Agr. Food Chem. 2014, 62, 11420–11428. doi: 10.1021/jf503931y.
  • Geremias-Andrade, I. M.; Souki, N. P. D. B.; Moraes, I. C. F.; Pinho, S. C. Rheological and Mechanical Characterization of Curcumin-Loaded Emulsion-Filled Gels Produced with Whey Protein Isolate and Xanthan Gum. LWT. 2017, 86, 166–173. doi: 10.1016/j.lwt.2017.07.063.
  • Lu, Y.; Mao, L.; Cui, M.; Yuan, F.; Gao, Y. Effect of the Solid Fat Content on Properties of Emulsion Gels and Stability of β-Carotene. J. Agr. Food Chem. 2019, 67, 6466–6475. doi: 10.1021/acs.jafc.9b01156.
  • Dickinson, E.;. Emulsion Gels: The Structuring of Soft Solids with Protein-Stabilized Oil Droplets. Food Hydrocolloid. 2012, 28, 224–241. doi: 10.1016/j.foodhyd.2011.12.017.
  • Zhuang, X.; Jiang, X.; Zhou, H.; Han, M.; Liu, Y.; Bai, Y.; Xu, X.; Zhou, G. The Effect of Insoluble Dietary Fiber on Myofibrillar Protein Emulsion Gels: Oil Particle Size and Protein Network Microstructure. LWT. 2019, 101, 534–542. doi: 10.1016/j.lwt.2018.11.065.
  • Hou, J. J.; Guo, J.; Wang, J. M.; Yang, X. Q. Effect of Interfacial Composition and Crumbliness on Aroma Release in Soy Protein/Sugar Beet Pectin Mixed Emulsion Gels. J. Sci. Food Agr. 2016, 96, 4449–4456. doi: 10.1002/jsfa.7656.
  • Wu, Y.; Wang, L.; Guo, B.; Ma, P. X. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. ACS Nano. 2017, 11, 5646–5659. doi: 10.1021/acsnano.7b01062.
  • Zhao, Y.; Alsaid, Y.; Yao, B.; Zhang, Y.; Zhang, B.; Bhuskute, N.; Wu, S.; He, X. Wood‐Inspired Morphologically Tunable Aligned Hydrogel for High‐Performance Flexible All‐Solid‐State Supercapacitors. Adv. Funct. Mater. 2020, 30, 1909133. doi: 10.1002/adfm.201909133.
  • Nie, J.; Pei, B.; Wang, Z.; Hu, Q. Construction of Ordered Structure in Polysaccharide Hydrogel: A Review. Carbohyd. Polym. 2019, 205, 225–235. doi: 10.1016/j.carbpol.2018.10.033.
  • Zhang, Z.; Yao, S.; Xie, S.; Wang, X.; Chang, F.; Luo, J.; Wang, J.; Fu, J. Effect of Hierarchically Aligned Fibrin Hydrogel in Regeneration of Spinal Cord Injury Demonstrated by Tractography: A Pilot Study. Sci. Rep-UK. 2017, 7, 40017. doi: 10.1038/srep40017.
  • Wu, Z. L.; Gong, J. P. Hydrogels with Self-Assembling Ordered Structures and Their Functions. NPG Asia Mater. 2011, 3, 57–64. doi: 10.1038/asiamat.2010.200.
  • Sano, K.; Ishida, Y.; Aida, T. Synthesis of Anisotropic Hydrogels and Their Applications. Angew. Chem. Int. Ed. 2018, 57, 2532–2543. doi: 10.1002/anie.201708196.
  • Zhao, Z.; Fang, R.; Rong, Q.; Liu, M. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures. Adv. Mater. 2017, 29, 1703045. doi: 10.1002/adma.201703045..
  • Ye, D.; Yang, P.; Lei, X.; Zhang, D.; Li, L.; Chang, C.; Sun, P.; Zhang, L. Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-Aggregation Forces for Cardiomyocytes Unidirectional Growth. Chem. Mater. 2018, 30, 5175–5183. doi: 10.1021/acs.chemmater.8b01799..
  • Hu, K.; Sun, J.; Guo, Z.; Wang, P.; Chen, Q.; Ma, M.; Gu, N. A Novel Magnetic Hydrogel with Aligned Magnetic Colloidal Assemblies Showing Controllable Enhancement of Magnetothermal Effect in the Presence of Alternating Magnetic Field. Adv. Mater. 2015, 27, 2507–2514. doi: 10.1002/adma.201405757.
  • Liu, M.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An Anisotropic Hydrogel with Electrostatic Repulsion between Cofacially Aligned Nanosheets. Nature. 2015, 517, 68–72. doi: 10.1038/nature14060.
  • Omidinia-Anarkoli, A.; Boesveld, S.; Tuvshindorj, U.; Rose, J. C.; Haraszti, T.; De Laporte, L. An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells. Small. 2017, 13, 1702207. doi: 10.1002/smll.201702207..
  • Antman-Passig, M.; Shefi, O. Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration. Nano Lett. 2016, 16, 2567–2573. doi: 10.1021/acs.nanolett.6b00131.
  • Le Ferrand, H.; Bolisetty, S.; Demirörs, A. F.; Libanori, R.; Studart, A. R.; Mezzenga, R. Magnetic Assembly of Transparent and Conducting Graphene-Based Functional Composites. Nat. Commun. 2016, 7, 12078. doi: 10.1038/ncomms12078.
  • Ramón-Azcón, J.; Ahadian, S.; Estili, M.; Liang, X.; Ostrovidov, S.; Kaji, H.; Shiku, H.; Ramalingam, M.; Nakajima, K.; Sakka, Y.;, et al. Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Adv. Mater. 2013, 25, 4028–4034. doi: 10.1002/adma.201301300.
  • Ahadian, S.; Ramón-Azcón, J.; Estili, M.; Liang, X.; Ostrovidov, S.; Shiku, H.; Ramalingam, M.; Nakajima, K.; Sakka, Y.; Bae, H.;, et al. Hybrid Hydrogels Containing Vertically Aligned Carbon Nanotubes with Anisotropic Electrical Conductivity for Muscle Myofiber Fabrication. Sci. Rep-UK 2014, 4, 4271. doi: 10.1038/srep04271.
  • Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; Jin, H.; Parker, K. K.; Langer, R.; Kohane, D. S. Nanowired Three-Dimensional Cardiac Patches. Nat. Nanotechnol. 2011, 6, 720–725. doi: 10.1038/nnano.2011.160.
  • You, J. O.; Rafat, M.; Ye, G. J.; Auguste, D. T. Nanoengineering the Heart: Conductive Scaffolds Enhance Connexin 43 Expression. Nano Lett. 2011, 11, 3643. doi: 10.1021/nl201514a.
  • Morales, D.; Bharti, B.; Dickey, M. D.; Velev, O. D. Bending of Responsive Hydrogel Sheets Guided by Field-Assembled Microparticle Endoskeleton Structures. Small. 2016, 12, 2283–2290. doi: 10.1002/smll.201600037.
  • Lu, Q.; Bai, S.; Ding, Z.; Guo, H.; Shao, Z.; Zhu, H.; Kaplan, D. L. Hydrogel Assembly with Hierarchical Alignment by Balancing Electrostatic Forces. Adv. Mater. Interfaces. 2016, 3, 1500687. doi: 10.1002/admi.201500687.
  • Murata, K.; Haraguchi, K. Optical Anisotropy in Polymer–Clay Nanocomposite Hydrogel and Its Change on Uniaxial Deformation. J. Mater. Chem. 2007, 17, 3385. doi: 10.1039/b707570g.
  • Wu, Z. L.; Sawada, D.; Kurokawa, T.; Kakugo, A.; Yang, W.; Furukawa, H.; Gong, J. P. Strain-Induced Molecular Reorientation and Birefringence Reversion of a Robust, Anisotropic Double-Network Hydrogel. Macromolecules. 2011, 44, 3542–3547. doi: 10.1021/ma200123u.
  • Wang, B.; Torres-Rendon, J. G.; Yu, J.; Zhang, Y.; Walther, A. Aligned Bioinspired Cellulose Nanocrystal-Based Nanocomposites with Synergetic Mechanical Properties and Improved Hygromechanical Performance. ACS Appl. Mater. Inter. 2015, 7, 4595–4607. doi: 10.1021/am507726t.
  • Millon, L. E.; Mohammadi, H.; Wan, W. K. Anisotropic Polyvinyl Alcohol Hydrogel for Cardiovascular Applications. J. Biomed. Mater. Res. Part B. Appl. Biomater. 2006, 79, 305–311. doi: 10.1002/jbm.b.30543.
  • Lin, P.; Zhang, T.; Wang, X.; Yu, B.; Zhou, F. Freezing Molecular Orientation under Stretch for High Mechanical Strength but Anisotropic Hydrogels. Small. 2016, 12, 4386–4392. doi: 10.1002/smll.201601893.
  • Downes, R.; Wang, S.; Haldane, D.; Moench, A.; Liang, R. Strain-Induced Alignment Mechanisms of Carbon Nanotube Networks. Adv. Eng. Mater. 2015, 17, 349–358. doi: 10.1002/adem.201400045.
  • Shikinaka, K.; Koizumi, Y.; Shigehara, K. Mechanical/ Optical Behaviors of Imogolite Hydrogels Depending On their Compositions and Oriented Structures. J. Appl. Polym. Sci. 2015, 132, 41691. doi: 10.1002/app.41691.
  • Chen, G.; Chen, L.; Wang, W.; Hong, F. F.; Zhu, M. Manufacture of a Novel Anisotropic Bacterial Nanocellulose Hydrogel Membrane by Using a Rotary Drum Bioreactor. Carbohyd. Polym. 2019, 211, 281–288. doi: 10.1016/j.carbpol.2019.01.072.
  • Lin, S.; Liu, J.; Liu, X.; Zhao, X. Muscle-Like Fatigue-Resistant Hydrogels by Mechanical Training. Proc. National Academy Sci. 2019, 116, 10244. doi: 10.1073/pnas.1903019116.
  • Si, Y.; Wang, L.; Wang, X.; Tang, N.; Yu, J.; Ding, B. Ultrahigh-Water-Content, Superelastic, and Shape-Memory Nanofiber-Assembled Hydrogels Exhibiting Pressure-Responsive Conductivity. Adv. Mater. 2017, 29, 1700339. doi: 10.1002/adma.201700339.
  • Bai, H.; Polini, A.; Delattre, B.; Tomsia, A. P. Thermoresponsive Composite Hydrogels with Aligned Macroporous Structure by Ice-Templated Assembly. Chem. Mater. 2013, 25, 4551–4556. doi: 10.1021/cm4025827.
  • Chau, M.; De France, K. J.; Kopera, B.; Machado, V. R.; Rosenfeldt, S.; Reyes, L.; Chan, K. J. W.; Förster, S.; Cranston, E. D.; Hoare, T.;, et al. Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties. Chem. Mater 2016, 28, 3406–3415. doi: 10.1021/acs.chemmater.6b00792.
  • Liu, T.; Huang, M.; Li, X.; Wang, C.; Gui, C.; Yu, Z. Highly Compressible Anisotropic Graphene Aerogels Fabricated by Directional Freezing for Efficient Absorption of Organic Liquids. Carbon. 2016, 100, 456–464. doi: 10.1016/j.carbon.2016.01.038.
  • Zeng, X.; Ye, L.; Yu, S.; Sun, R.; Xu, J.; Wong, C. Facile Preparation of Superelastic and Ultralow Dielectric Boron Nitride Nanosheet Aerogels via Freeze-Casting Process. Chem. Mater. 2015, 27, 5849–5855. doi: 10.1021/acs.chemmater.5b00505.
  • Choi, S.; Kim, J. Designed Fabrication of Super-Stiff, Anisotropic Hybrid Hydrogels via Linear Remodeling of Polymer Networks and Subsequent Crosslinking. J. Mater. Chem. B. 2015, 3, 1479–1483. doi: 10.1039/C4TB01852D.
  • Wu, Z. L.; Kurokawa, T.; Sawada, D.; Hu, J.; Furukawa, H.; Gong, J. P. Anisotropic Hydrogel from Complexation-Driven Reorientation of Semirigid Polyanion at Ca2+ Diffusion Flux Front. Macromolecules. 2011, 44, 3535–3541. doi: 10.1021/ma2001228.
  • Wu, Z. L.; Takahashi, R.; Sawada, D.; Arifuzzaman, M.; Nakajima, T.; Kurokawa, T.; Hu, J.; Gong, J. P. In Situ Observation of Ca2+ Diffusion-Induced Superstructure Formation of a Rigid Polyanion. Macromolecules. 2014, 47, 7208–7214. doi: 10.1021/ma501699d.
  • Sano, K.; Igarashi, N.; Arazoe, Y. O.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T. Internal Structure and Mechanical Property of an Anisotropic Hydrogel with Electrostatic Repulsion between Nanosheets. Polymer. 2019, 177, 43–48. doi: 10.1016/j.polymer.2019.05.064.
  • Zhang, S.; Greenfield, M. A.; Mata, A.; Palmer, L. C.; Bitton, R.; Mantei, J. R.; Aparicio, C.; de la Cruz, M. O.; Stupp, S. I. A Self-Assembly Pathway to Aligned Monodomain Gels. Nat. Mater. 2010, 9, 594–601. doi: 10.1038/nmat2778.
  • Wu, Z. L.; Kurokawa, T.; Liang, S.; Furukawa, H.; Gong, J. P. Hydrogels with Cylindrically Symmetric Structure at Macroscopic Scale by Self-Assembly of Semi-Rigid Polyion Complex. J. Am. Chem. Soc. 2010, 132, 10064–10069. doi: 10.1021/ja101969k.
  • Zhou, J.; Du, X.; Gao, Y.; Shi, J.; Xu, B. Aromatic-Aromatic Interactions Enhance Interfiber Contacts for Enzymatic Formation of a Spontaneously Aligned Supramolecular Hydrogel. J. Am. Chem. Soc. 2014, 136, 2970–2973. doi: 10.1021/ja4127399.
  • Ohtsuka, Y.; Seki, T.; Takeoka, Y. Thermally Tunable Hydrogels Displaying Angle-Independent Structural Colors. Angew. Chem. Int. Ed. 2015, 54, 15368–15373. doi: 10.1002/anie.201507503.
  • Griffete, N.; Frederich, H.; Maître, A.; Ravaine, S.; Chehimi, M. M.; Mangeney, C. Inverse Opals of Molecularly Imprinted Hydrogels for the Detection of Bisphenol a and pH Sensing. Langmuir. 2012, 28, 1005–1012. doi: 10.1021/la202840y.
  • Prince, E.; Alizadehgiashi, M.; Campbell, M.; Khuu, N.; Albulescu, A.; De France, K.; Ratkov, D.; Li, Y.; Hoare, T.; Kumacheva, E. Patterning of Structurally Anisotropic Composite Hydrogel Sheets. Biomacromolecules. 2018, 19, 1276–1284. doi: 10.1021/acs.biomac.8b00100.
  • Le, X.; Lu, W.; Zhang, J.; Chen, T. Recent Progress in Biomimetic Anisotropic Hydrogel Actuators. Adv Sci. 2019, 6, 1801584. doi: 10.1002/advs.201801584.
  • Barclay, T. G.; Day, C. M.; Petrovsky, N.; Garg, S. Review of Polysaccharide Particle-Based Functional Drug Delivery. Carbohyd. Polym. 2019, 221, 94–112. doi: 10.1016/j.carbpol.2019.05.067.
  • Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; van Buul, A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; Hoogenboom, R.;, et al. Responsive Biomimetic Networks From Polyisocyanopeptide Hydrogels. Nature 2013, 493, 651–655. doi: 10.1038/nature11839.
  • Doyle, A. D.; Carvajal, N.; Jin, A.; Matsumoto, K.; Yamada, K. M. Local 3D Matrix Microenvironment Regulates Cell Migration through Spatiotemporal Dynamics of Contractility-Dependent Adhesions. Nat. Commun. 2015, 6, 8720. doi: 10.1038/ncomms9720.
  • Ahmad, S.; Ahmad, M.; Manzoor, K.; Purwar, R.; Ikram, S. A Review On Latest Innovations in Natural Gums Based Hydrogels: Preparations & Applications. Int. J. Biol. Macromol. 2019, 136, 870–890. doi: 10.1016/j.ijbiomac.2019.06.113.
  • Boido, M.; Ghibaudi, M.; Gentile, P.; Favaro, E.; Fusaro, R.; Tonda-Turo, C. Chitosan-Based Hydrogel to Support the Paracrine Activity of Mesenchymal Stem Cells in Spinal Cord Injury Treatment. Sci. Rep-UK. 2019, 9, 6402. doi: 10.1038/s41598-019-42848-w.
  • Liu, J.; Tan, Y.; Zhang, H.; Zhang, Y.; Xu, P.; Chen, J.; Poh, Y.; Tang, K.; Wang, N.; Huang, B. Soft Fibrin Gels Promote Selection and Growth of Tumorigenic Cells. Nat. Mater. 2012, 11, 734–741. doi: 10.1038/nmat3361.
  • Charoen, K. M.; Fallica, B.; Colson, Y. L.; Zaman, M. H.; Grinstaff, M. W. Embedded Multicellular Spheroids as a Biomimetic 3D Cancer Model for Evaluating Drug and Drug-Device Combinations. Biomaterials. 2013, 35, 2264–2271. doi: 10.1016/j.biomaterials.2013.11.038.
  • Jeong, S.; Lee, J.; Shin, Y.; Chung, S.; Kuh, H. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Plos One. 2016, 11, e0159013–e0159013. doi: 10.1371/journal.pone.0159013.
  • Truong, H. H.; de Sonneville, J.; Ghotra, V. P. S.; Xiong, J.; Price, L.; Hogendoorn, P. C. W.; Spaink, H. H.; van de Water, B.; Danen, E. H. J. Automated Microinjection of Cell-Polymer Suspensions in 3D Ecm Scaffolds for High-Throughput Quantitative Cancer Invasion Screens. Biomaterials. 2011, 33, 181–188. doi: 10.1016/j.biomaterials.2011.09.049.
  • Szot, C. S.; Buchanan, C. F.; Freeman, J. W.; Rylander, M. N. 3D in Vitro Bioengineered Tumors Based on Collagen I Hydrogels. Biomaterials. 2011, 32, 7905–7912. doi: 10.1016/j.biomaterials.2011.07.001.
  • Benton, G.; Arnaoutova, I.; George, J.; Kleinman, H. K.; Koblinski, J. Matrigel: From Discovery and Ecm Mimicry to Assays and Models for Cancer Research. Adv. Drug Deliver. Rev. 2014, 79–80, 3–18. doi: 10.1016/j.addr.2014.06.005.
  • Chaudhuri, O.; Koshy, S. T.; Branco Da Cunha, C.; Shin, J.; Verbeke, C. S.; Allison, K. H.; Mooney, D. J. Extracellular Matrix Stiffness and Composition Jointly Regulate the Induction of Malignant Phenotypes in Mammary Epithelium. Nat. Mater. 2014, 13, 970–978. doi: 10.1038/nmat4009.
  • Mredha, M. T. I.; Zhang, X.; Nonoyama, T.; Nakajima, T.; Kurokawa, T.; Takagi, Y.; Gong, J. P. Swim Bladder Collagen Forms Hydrogel with Macroscopic Superstructure by Diffusion Induced Fast Gelation. J. Mater. Chem. B. 2015, 3, 7658–7666. doi: 10.1039/c5tb00877h.
  • Wang, L.; Zhang, L.; Qiu, S.; Liu, C.; Zhang, P.; Yin, L.; Chen, F. Rheological Properties and Structural Characteristics of Arabinoxylan Hydrogels Prepared from Three Wheat Bran Sources. J. Cereal Sci. 2019, 88, 79–86. doi: 10.1016/j.jcs.2019.05.003.
  • Li, W.; Liu, L.; Tian, H.; Luo, X.; Liu, S. Encapsulation of Lactobacillus Plantarum in Cellulose Based Microgel with Controlled Release Behavior and Increased Long-Term Storage Stability. Carbohyd. Polym. 2019, 223, 115065. doi: 10.1016/j.carbpol.2019.115065.
  • Qu, B.; Luo, Y. Chitosan-Based Hydrogel Beads: Preparations, Modifications and Applications in Food and Agriculture Sectors – A Review. Int. J. Biol. Macromol. 2020, 152, 437–448. doi: 10.1016/j.ijbiomac.2020.02.240.
  • Li, Y.; Ma, Y.; Jiao, X.; Li, T.; Lv, Z.; Yang, C. J.; Zhang, X.; Wen, Y. Control of Capillary Behavior through Target-Responsive Hydrogel Permeability Alteration for Sensitive Visual Quantitative Detection. Nat. Commun. 2019, 10, 1036. doi: 10.1038/s41467-019-08952-1.
  • Xiang, B.; He, K.; Zhu, R.; Liu, Z.; Zeng, S.; Huang, Y.; Nie, Z.; Yao, S. Self-Assembled DNA Hydrogel Based On Enzymatically Polymerized Dna for Protein Encapsulation and Enzyme/Dnazyme Hybrid Cascade Reaction. ACS Appl. Mater. Inter. 2016, 8, 22801–22807. doi: 10.1021/acsami.6b03572.
  • Deshpande, S. R.; Hammink, R.; Das, R. K.; Nelissen, F. H. T.; Blank, K. G.; Rowan, A. E.; Heus, H. A. DNA-Responsive Polyisocyanopeptide Hydrogels with Stress-Stiffening Capacity. Adv. Funct. Mater. 2016, 26, 9075–9082. doi: 10.1002/adfm.201602461.
  • Yao, C.; Tang, H.; Wu, W.; Tang, J.; Guo, W.; Luo, D.; Yang, D. Double Rolling Circle Amplification Generates Physically Cross-Linked Dna Network for Stem Cell Fishing. J. Am. Chem. Soc. 2020, 142, 3422–3429. doi: 10.1021/jacs.9b11001.
  • Gómez-Mascaraque, G.; Martínez-Sanz, L.; Fabra, M.; López-Rubio, M. J. A. Development of Gelatin-Coated Ι-carrageenan Hydrogel Capsules by Electric Field-Aided Extrusion. Impact of Phenolic Compounds on Their Performance. Food Hydrocolloid. 2019, 90, 523–533. doi: 10.1016/j.foodhyd.2018.12.017.
  • Gómez-Mascaraque, L. G.; Soler, C.; Lopez-Rubio, A. Stability and Bioaccessibility of Egcg within Edible Micro-Hydrogels. Chitosan Vs. Gelatin, a Comparative Study. Food Hydrocolloid. 2016, 61, 128–138. doi: 10.1016/j.foodhyd.2016.05.009.
  • Huang, J.; Wang, Q.; Chu, L.; Xia, Q. Liposome-Chitosan Hydrogel Bead Delivery System for the Encapsulation of Linseed Oil and Quercetin: Preparation and in Vitro Characterization Studies. LWT. 2020, 117, 108615. doi: 10.1016/j.lwt.2019.108615.
  • Zhang, Z.; Zhang, R.; McClements, D. J. Encapsulation of β-Carotene in Alginate-Based Hydrogel Beads: Impact on Physicochemical Stability and Bioaccessibility. Food Hydrocolloid. 2016, 61, 1–10. doi: 10.1016/j.foodhyd.2016.04.036.
  • Facin, B. R.; Moret, B.; Baretta, D.; Belfiore, L. A.; Paulino, A. T. Immobilization and Controlled Release of β-Galactosidase from Chitosan-Grafted Hydrogels. Food Chem. 2015, 179, 44–51. doi: 10.1016/j.foodchem.2015.01.088.
  • Lim, S.; Jung, G. A.; Muckom, R. J.; Glover, D. J.; Clark, D. S. Engineering Bioorthogonal Protein–Polymer Hybrid Hydrogel as a Functional Protein Immobilization Platform. Chem. Commun. 2019, 55, 806–809. doi: 10.1039/C8CC08720B.
  • Sun, H.; Yang, H.; Huang, W.; Zhang, S. Immobilization of Laccase in a Sponge-Like Hydrogel for Enhanced Durability in Enzymatic Degradation of Dye Pollutants. J. Colloid Interfaces Sci. 2015, 450, 353–360. doi: 10.1016/j.jcis.2015.03.037.
  • Wei, Z.; Volkova, E.; Blatchley, M. R.; Gerecht, S. Hydrogel Vehicles for Sequential Delivery of Protein Drugs to Promote Vascular Regeneration. Adv. Drug Deliver. Rev. 2019, 149–150, 95–106. doi: 10.1016/j.addr.2019.08.005.
  • McClements, D. J.;. Recent Progress in Hydrogel Delivery Systems for Improving Nutraceutical Bioavailability. Food Hydrocolloid. 2017, 68, 238–245. doi: 10.1016/j.foodhyd.2016.05.037.
  • McClements, D. J.;. Designing Biopolymer Microgels to Encapsulate, Protect and Deliver Bioactive Components: Physicochemical Aspects. Adv. Colloid Interface. 2017, 240, 31–59. doi: 10.1016/j.cis.2016.12.005.
  • Joye, I. J.; Davidov-Pardo, G.; McClements, D. J. Nanotechnology for Increased Micronutrient Bioavailability. Trends Food Sci. Tech. 2014, 40, 168–182. doi: 10.1016/j.tifs.2014.08.006.
  • Nile, S. H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nano-Micro. Lett. 2020, 12, 45. doi: 10.1007/s40820-020-0383-9.
  • McClements, D. J.;. The Future of Food Colloids: Next-Generation Nanoparticle Delivery Systems. Curr. Opin. Colloid Interface Sci. 2017, 28, 7–14. doi: 10.1016/j.cocis.2016.12.002.
  • Lim, H.; Ho, K.; Surjit Singh, C. K.; Ooi, C.; Tey, B.; Chan, E. Pickering Emulsion Hydrogel as a Promising Food Delivery System: Synergistic Effects of Chitosan Pickering Emulsifier and Alginate Matrix on Hydrogel Stability and Emulsion Delivery. Food Hydrocolloid. 2020, 103, 105659. doi: 10.1016/j.foodhyd.2020.105659.
  • Cooper, R. C.; Yang, H. Hydrogel-Based Ocular Drug Delivery Systems: Emerging Fabrication Strategies, Applications, and Bench-to-Bedside Manufacturing Considerations. J. Control. Release. 2019, 306, 29–39. doi: 10.1016/j.jconrel.2019.05.034.
  • Zhu, K.; Yu, D.; Chen, X.; Song, G. Preparation, Characterization and Controlled-Release Property of Fe3+ Cross-Linked Hydrogels Based on Peach Gum Polysaccharide. Food Hydrocolloid. 2019, 87, 260–269. doi: 10.1016/j.foodhyd.2018.08.019.
  • Hu, X.; Wang, Y.; Zhang, L.; Xu, M. Construction of Self-Assembled Polyelectrolyte Complex Hydrogel Based on Oppositely Charged Polysaccharides for Sustained Delivery of Green Tea Polyphenols. Food Chem. 2020, 306, 125632. doi: 10.1016/j.foodchem.2019.125632.
  • Mahinroosta, M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. doi: 10.1016/j.mtchem.2018.02.004.
  • Shewan, H. M.; Stokes, J. R. Review of Techniques to Manufacture Micro-Hydrogel Particles for the Food Industry and Their Applications. J. Food Eng. 2013, 119, 781–792. doi: 10.1016/j.jfoodeng.2013.06.046.
  • Wu, B.; Degner, B.; McClements, D. J. Soft Matter Strategies for Controlling Food Texture: Formation of Hydrogel Particles by Biopolymer Complex Coacervation. J. Phys. Condens. Mater. 2014, 26, 464104. doi: 10.1088/0953-8984/26/46/464104.
  • Chung, C.; Degner, B.; Decker, E. A.; McClements, D. J. Oil-Filled Hydrogel Particles for Reduced-Fat Food Applications: Fabrication, Characterization, and Properties. Innov. Food Sci. Emerg. 2013, 20, 324–334. doi: 10.1016/j.ifset.2013.08.006.
  • Thompson, B. R.; Horozov, T. S.; Stoyanov, S. D.; Paunov, V. N. Structuring and Calorie Control of Bakery Products by Templating Batter with Ultra Melt-Resistant Food-Grade Hydrogel Beads. Food Funct. 2017, 8, 2967–2973. doi: 10.1039/C7FO00867H.
  • Santos, M. D.; Ozaki, M. M.; Ribeiro, W. O.; Paglarini, C. D. S.; Vidal, V. A. S.; Campagnol, P. C. B.; Pollonio, M. A. R. Emulsion Gels Based on Pork Skin and Dietary Fibers as Animal Fat Replacers in Meat Emulsions: An Adding Value Strategy to Byproducts. LWT. 2020, 120, 108895. doi: 10.1016/j.lwt.2019.108895.
  • Lucas-González, R.; Roldán-Verdu, A.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J. A.; Viuda-Martos, M. Assessment of Emulsion Gels Formulated with Chestnut (Castanea Sativa M.) Flour and Chia (Salvia Hispanica L) Oil as Partial Fat Replacers in Pork Burger Formulation. J. Sci. Food Agr. 2020, 100, 1265–1273. doi: 10.1002/jsfa.10138.
  • Yang, X.; Gong, T.; Lu, Y.; Li, A.; Sun, L.; Guo, Y. Compatibility of Sodium Alginate and Konjac Glucomannan and Their Applications in Fabricating Low-Fat Mayonnaise-Like Emulsion Gels. Carbohyd. Polym. 2020, 229, 115468. doi: 10.1016/j.carbpol.2019.115468.
  • Heck, R. T.; Saldaña, E.; Lorenzo, J. M.; Correa, L. P.; Fagundes, M. B.; Cichoski, A. J.; de Menezes, C. R.; Wagner, R.; Campagnol, P. C. B. Hydrogelled Emulsion From Chia and Linseed Oils: A Promising Strategy to Produce Low-Fat Burgers with a Healthier Lipid Profile. Meat Sci. 2019, 156, 174–182. doi: 10.1016/j.meatsci.2019.05.034.
  • Bandyopadhyay, S.; Saha, N.; Brodnjak, U. V.; Saha, P. Bacterial Cellulose Based Greener Packaging Material: A Bioadhesive Polymeric Film. Mater. Res. Express. 2018, 5, 115405. doi: 10.1088/2053-1591/aadb01.
  • Batista, R. A.; Espitia, P. J. P.; Quintans, J. D. S. S.; Freitas, M. M.; Cerqueira, M. Â.; Teixeira, J. A.; Cardoso, J. C. Hydrogel as an Alternative Structure for Food Packaging Systems. Carbohyd. Polym. 2019, 205, 106–116. doi: 10.1016/j.carbpol.2018.10.006.
  • de Azeredo, H. M. C.;. Antimicrobial Nanostructures in Food Packaging. Trends Food Sci. Tech. 2013, 30, 56–69. doi: 10.1016/j.tifs.2012.11.006.
  • Benito-Peña, E.; González-Vallejo, V.; Rico-Yuste, A.; Barbosa-Pereira, L.; Cruz, J. M.; Bilbao, A.; Alvarez-Lorenzo, C.; Moreno-Bondi, M. C. Molecularly Imprinted Hydrogels as Functional Active Packaging Materials. Food Chem. 2016, 190, 487–494. doi: 10.1016/j.foodchem.2015.05.128.
  • Wang, L.; Rhim, J. Preparation and Application of Agar/Alginate/Collagen Ternary Blend Functional Food Packaging Films. Int. J. Biol. Macromol. 2015, 80, 460–468. doi: 10.1016/j.ijbiomac.2015.07.007.
  • Oun, A. A.; Rhim, J. Carrageenan-Based Hydrogels and Films: Effect of ZnO and Cuo Nanoparticles on the Physical, Mechanical, and Antimicrobial Properties. Food Hydrocolloid. 2017, 67, 45–53. doi: 10.1016/j.foodhyd.2016.12.040.
  • Tyliszczak, B.; Drabczyk, A.; Kudłacik-Kramarczyk, S.; Bialik-Wąs, K.; Kijkowska, R.; Sobczak-Kupiec, A. Preparation and Cytotoxicity of Chitosan-Based Hydrogels Modified with Silver Nanoparticles. Colloids Surf. B. 2017, 160, 325–330. doi: 10.1016/j.colsurfb.2017.09.044.
  • Baek, S.; Kim, D.; Jeon, S. L.; Seo, J. Preparation and Characterization of pH-Responsive Poly(N,N-Dimethyl Acrylamide-Co-Methacryloyl Sulfadimethoxine) Hydrogels for Application as Food Freshness Indicators. React. Funct. Polym. 2017, 120, 57–65. doi: 10.1016/j.reactfunctpolym.2017.09.003.
  • Zhao, M.; Li, S.; Zhou, L.; Shen, Q.; Zhu, H.; Zhu, X. Prognostic Values of Excision Repair Cross-Complementing Genes mRNA Expression in Ovarian Cancer Patients. Life Sci. 2018, 194, 34–39. doi: 10.1016/j.lfs.2017.12.018.
  • Devezeaux De Lavergne, M.; Strijbosch, V. M. G.; Van den Broek, A. W. M.; Van de Velde, F.; Stieger, M. Uncoupling the Impact of Fracture Properties and Composition on Sensory Perception of Emulsion-Filled Gels. J. Texture Stud. 2016, 47, 92–111. doi: 10.1111/jtxs.12164.
  • Devezeaux, D. L. M.; van de Velde, F.; Stieger, M. Bolus Matters: The Influence of Food Oral Breakdown on Dynamic Texture Perception. Food Funct. 2017, 8, 464–480. doi: 10.1039/c6fo01005a.
  • Sala, G.; de Wijk, R. A.; van de Velde, F.; van Aken, G. A. Matrix Properties Affect the Sensory Perception of Emulsion-Filled Gels. Food Hydrocolloid. 2008, 22, 353–363. doi: 10.1016/j.foodhyd.2006.12.009.
  • Liu, K.; Stieger, M.; van der Linden, E.; van de Velde, F. Fat Droplet Characteristics Affect Rheological, Tribological and Sensory Properties of Food Gels. Food Hydrocolloid. 2015, 44, 244–259. doi: 10.1016/j.foodhyd.2014.09.034.
  • Guo, Q.; Ye, A.; Lad, M.; Dalgleish, D.; Singh, H. The Breakdown Properties of Heat-Set Whey Protein Emulsion Gels in the Human Mouth. Food Hydrocolloid. 2013, 33, 215–224. doi: 10.1016/j.foodhyd.2013.03.008.
  • Thompson, B. R.; Horozov, T. S.; Stoyanov, S. D.; Paunov, V. N. An Ultra Melt-Resistant Hydrogel From Food Grade Carbohydrates. RSC Adv. 2017, 7, 45535–45544. doi: 10.1039/c7ra08590g.
  • Dickinson, E.;. Microgels — An Alternative Colloidal Ingredient for Stabilization of Food Emulsions. Trends Food Sci. Tech. 2015, 43, 178–188. doi: 10.1016/j.tifs.2015.02.006.
  • Gonçalves, J. O.; Santos, J. P.; Rios, E. C.; Crispim, M. M.; Dotto, G. L.; Pinto, L. A. A. Development of Chitosan Based Hybrid Hydrogels for Dyes Removal from Aqueous Binary System. J. Mol. Liq. 2017, 225, 265–270. doi: 10.1016/j.molliq.2016.11.067.
  • Gonçalves, J. O.; Da Silva, K. A.; Rios, E. C.; Crispim, M. M.; Dotto, G. L.; de Almeida Pinto, L. A. Single and Binary Adsorption of Food Dyes on Chitosan/Activated Carbon Hydrogels. Chem. Eng. Technol. 2019, 42, 454–464. doi: 10.1002/ceat.201800367.
  • He, J.; Ni, F.; Cui, A.; Chen, X.; Deng, S.; Shen, F.; Huang, C.; Yang, G.; Song, C.; Zhang, J.;, et al. New Insight into Adsorption and Co-Adsorption of Arsenic and Tetracycline Using a Y-Immobilized Graphene Oxide-Alginate Hydrogel: Adsorption Behaviours and Mechanisms. Sci. Total Environ. 2020, 701, 134363. doi: 10.1016/j.scitotenv.2019.134363.
  • Guo, X.; Xu, D.; Yuan, H.; Luo, Q.; Tang, S.; Liu, L.; Wu, Y. A Novel Fluorescent Nanocellulosic Hydrogel Based on Carbon Dots for Efficient Adsorption and Sensitive Sensing in Heavy Metals. J. Mater. Chem. A. 2019, 7, 27081–27088. doi: 10.1039/C9TA11502A.
  • Gonçalves, J. O.; Da Silva, K. A.; Rios, E. C.; Crispim, M. M.; Dotto, G. L.; de Almeida Pinto, L. A. Chitosan Hydrogel Scaffold Modified with Carbon Nanotubes and Its Application for Food Dyes Removal in Single and Binary Aqueous Systems. Int. J. Biol. Macromol. 2020, 142, 85–93. doi: 10.1016/j.ijbiomac.2019.09.074.
  • Zhang, W.; Song, J.; He, Q.; Wang, H.; Lyu, W.; Feng, H.; Xiong, W.; Guo, W.; Wu, J.; Chen, L. Novel Pectin Based Composite Hydrogel Derived from Grapefruit Peel for Enhanced Cu(Ii) Removal. J. Hazard. Mater. 2020, 384, 121445. doi: 10.1016/j.jhazmat.2019.121445.
  • Wang, B.; Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y. S.; Chen, J.;, et al.. Alginate-Based Composites for Environmental Applications: A Critical Review. Crit. Rev. Environ. Sci. Tech.. 2019, 49, 318–356. doi:10.1080/10643389.2018.1547621.
  • Hu, Z. H.; Omer, A. M.; Ouyang, X. K.; Yu, D. Fabrication of Carboxylated Cellulose Nanocrystal/Sodium Alginate Hydrogel Beads for Adsorption of Pb(Ii) from Aqueous Solution. Int. J. Biol. Macromol. 2018, 108, 149–157. doi: 10.1016/j.ijbiomac.2017.11.171.
  • Zhang, W.; Wang, H.; Hu, X.; Feng, H.; Xiong, W.; Guo, W.; Zhou, J.; Mosa, A.; Peng, Y. Multicavity Triethylenetetramine-Chitosan/ Alginate Composite Beads for Enhanced Cr(Vi) Removal. J. Clean. Prod. 2019, 231, 733–745. doi: 10.1016/j.jclepro.2019.05.219.
  • Yin, J.; Sun, W.; Song, X.; Ji, H.; Yang, Y.; Sun, S.; Zhao, W.; Zhao, C. Precipitated Droplets in-Situ Cross-Linking Polymerization Towards Hydrogel Beads for Ultrahigh Removal of Positively Charged Toxins. Sep. Purif. Technol. 2020, 238, 116497. doi: 10.1016/j.seppur.2019.116497.
  • Balkız, G.; Pingo, E.; Kahya, N.; Kaygusuz, H.; Bedia Erim, F. Graphene Oxide/Alginate Quasi-Cryogels for Removal of Methylene Blue. Water, Air, Soil Pollut. 2018, 229, 1–9. doi: 10.1007/s11270-018-3790-5.
  • Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. Enhanced Adsorption Removal of Antibiotics from Aqueous Solutions by Modified Alginate/Graphene Double Network Porous Hydrogel. J. Colloid Interfaces Sci. 2017, 507, 250–259. doi: 10.1016/j.jcis.2017.07.033.
  • Sun, Y.; Zhou, T.; Li, W.; Yu, F.; Ma, J. Amino-Functionalized Alginate/ Graphene Double-Network Hydrogel Beads for Emerging Contaminant Removal from Aqueous Solution. Chemosphere. 2020, 241, 125110. doi: 10.1016/j.chemosphere.2019.125110.
  • Hao, L.; Wang, W.; Shen, X.; Wang, S.; Li, Q.; An, F.; Wu, S. A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A. J. Agr. Food Chem. 2020, 68, 369–375. doi: 10.1021/acs.jafc.9b06021.
  • Zhao, M.; Wang, P.; Guo, Y.; Wang, L.; Luo, F.; Qiu, B.; Guo, L.; Su, X.; Lin, Z.; Chen, G. Detection of Aflatoxin B1 in Food Samples Based On Target-Responsive Aptamer-Cross-Linked Hydrogel Using a Handheld pH Meter as Readout. Talanta. 2018, 176, 34–39. doi: 10.1016/j.talanta.2017.08.006.
  • Ma, Y.; Mao, Y.; Huang, D.; He, Z.; Yan, J.; Tian, T.; Shi, Y.; Song, Y.; Li, X.; Zhu, Z.;, et al. Portable Visual Quantitative Detection of Aflatoxin B1 Using a Target-Responsive Hydrogel and a Distance-Readout Microfluidic Chip. Lab Chip 2016, 16, 3097–3104. doi: 10.1039/C6LC00474A.
  • Wang, Y.; Xie, T.; Yang, J.; Lei, M.; Fan, J.; Meng, Z.; Xue, M.; Qiu, L.; Qi, F.; Wang, Z. Fast Screening of Antibiotics in Milk Using a Molecularly Imprinted Two-Dimensional Photonic Crystal Hydrogel Sensor. Anal. Chim. Acta. 2019, 1070, 97–103. doi: 10.1016/j.aca.2019.04.031.
  • Zhan, Y.; Zeng, Y.; Li, L.; Luo, F.; Qiu, B.; Lin, Z.; Guo, L. Ratiometric Fluorescent Hydrogel Test Kit for On-Spot Visual Detection of Nitrite. ACS Sens. 2019, 4, 1252–1260. doi: 10.1021/acssensors.9b00125.
  • Nam, J.; Jung, I.; Kim, B.; Lee, S.; Kim, S.; Lee, K.; Shin, D. A Colorimetric Hydrogel Biosensor for Rapid Detection of Nitrite Ions. Sens. Actuators B Chem. 2018, 270, 112–118. doi: 10.1016/j.snb.2018.04.171.
  • Gong, Z.; Wang, C.; Pu, S.; Wang, C.; Cheng, F.; Wang, Y.; Fan, M. Rapid and Direct Detection of Illicit Dyes on Tainted Fruit Peel Using a PVA Hydrogel Surface Enhanced Raman Scattering Substrate. Anal. Methods. UK 2016, 8, 4816–4820. doi: 10.1039/C6AY00233A.
  • Liu, R.; Huang, Y.; Ma, Y.; Jia, S.; Gao, M.; Li, J.; Zhang, H.; Xu, D.; Wu, M.; Chen, Y.;, et al. Design and Synthesis of Target-Responsive Aptamer-Cross-Linked Hydrogel for Visual Quantitative Detection of Ochratoxin A. ACS Appl. Mater. Inter. 2015, 7, 6982–6990. doi: 10.1021/acsami.5b01120.
  • Geng, Z.; Zhang, H.; Xiong, Q.; Zhang, Y.; Zhao, H.; Wang, G. A. Fluorescent Chitosan Hydrogel Detection Platform for the Sensitive and Selective Determination of Trace Mercury(Ii) in Water. J. Mater. Chem. A. 2015, 3, 19455–19460. doi: 10.1039/C5TA05610A.
  • Huang, Y.; Wang, D.; Liu, W.; Zheng, L.; Wang, Y.; Liu, X.; Fan, M.; Gong, Z. Rapid Screening of Rhodamine B in Food by Hydrogel Solid-Phase Extraction Coupled with Direct Fluorescence Detection. Food Chem. 2020, 316, 126378. doi: 10.1016/j.foodchem.2020.126378.