721
Views
9
CrossRef citations to date
0
Altmetric
Review

Mycotoxins: Impact on Health and Strategies for Prevention and Detoxification in the Food Chain

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Placinta, C.; D’mello, J.; Macdonald, A. A Review of Worldwide Contamination of Cereal Grains and Animal Feed with Fusarium Mycotoxins. Anim. Feed Sci. Technol. 1999, 78(1–2), 21–37. DOI: 10.1016/S0377-8401(98)00278-8.
  • Shephard, G. S.; Mycotoxins Worldwide: Current Issues in Africa. In Meeting the Mycotoxin Menace; Wageningen Academic Publishers: Netherland, 2004.
  • van Egmond, H. P.; Schothorst, R. C.; Jonker, M. A.; Regulations Relating to Mycotoxins in Food. Anal. Bioanal. Chem. 2007, 389(1), 147–157. DOI: 10.1007/s00216-007-1317-9.
  • Glenn, A.; Mycotoxigenic Fusarium Species in Animal Feed. Anim. Feed Sci. Technol. 2007, 137(3–4), 213–240. DOI: 10.1016/j.anifeedsci.2007.06.003.
  • Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; Lebrihi, A. Review of Mycotoxin Reduction in Food and Feed: From Prevention in the Field to Detoxification by Adsorption or Transformation. Food Addit. Contam. 2011, 28(11), 1590–1609.
  • Bennett, J.W.; Klich, M. Mycotoxins. Clin microbiol rev. 2003, 16(3), 497-516.
  • Zain, M. E.; Impact of Mycotoxins on Humans and Animals. J. Saudi Chem. Soc. 2011, 15(2), 129–144. DOI: 10.1016/j.jscs.2010.06.006.
  • Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current Situation of Mycotoxin Contamination and Co-occurrence in Animal feed—Focus on Europe. Toxins. 2012, 4(10), 788–809.
  • Smith, M.C.; Madec, S.;  Coton, E.; Hymery, N Natural Co-occurrence of Mycotoxins in Foods and Feeds and Their in Vitro Combined Toxicological Effects. Toxins. 2016, 8(4), 94.
  • Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, Toxicology, and Exposure Assessment. Food Chem. Toxicol. 2013, 60, 218–237. DOI: 10.1016/j.fct.2013.07.047.
  • Cazzaniga, D.; Basilico, J.; Gonzalez, R.; Torres, R.; De Greef, D. Mycotoxins Inactivation by Extrusion Cooking of Corn Flour. Lett Appl. Microbiol. 2001, 33(2), 144–147.
  • Barkai-Golan, R.; Paster, N. Alternaria Mycotoxins. In Mycotoxins in Fruits and Vegetables, Elsevier, 2008; pp 185–203.
  • Hussein, H. S.; Brasel, J. M. Toxicity, Metabolism, and Impact of Mycotoxins on Humans and Animals. Toxicology. 2001, 167(2), 101–134. DOI: 10.1016/S0300-483X(01)00471-1.
  • Fink-Gremmels, J.; Malekinejad, H. Clinical Effects and Biochemical Mechanisms Associated with Exposure to the Mycoestrogen Zearalenone. Anim. Feed Sci. Technol. 2007, 137(3–4), 326–341. DOI: 10.1016/j.anifeedsci.2007.06.008.
  • Voss, K.; Smith, G.; Haschek, W. Fumonisins: Toxicokinetics, Mechanism of Action and Toxicity. Anim. Feed Sci. Technol. 2007, 137(3–4), 299–325. DOI: 10.1016/j.anifeedsci.2007.06.007.
  • D’Mello, J. P. F.; Macdonald, A. M. C. Mycotoxins. Anim. Feed Sci. Technol. 1997, 69(1–3), 155–166. DOI: 10.1016/S0377-8401(97)81630-6.
  • Wu, F.; Measuring the Economic Impacts of Fusarium Toxins in Animal Feeds. Anim. Feed Sci. Technol. 2007, 137(3–4), 363–374. DOI: 10.1016/j.anifeedsci.2007.06.010.
  • (RASFF), R.A.S.f.F.a.F. and E. Commission. Annual Reports. 2012: p. <http://ec.europa.eu/food/food/rapidalert/rasff_publications_en.htm>.
  • (EFSA), E.F.S.A. Opinion of the Scientific Panel Oncontaminants in the Food Chain Related to the Potential Increase of Consumer Health Risk by a Possible Increase of the Existing Maximum Levels for Aflatoxins in Almonds, Hazelnuts and Pistachios and Derived Products. Efsa J. 2007, 446(p), 1–127.
  • Boudra, H.; Boudra, H.; Barnouin, J.; Dragacci, S.; Morgavi, D. Aflatoxin M1 and Ochratoxin A in Raw Bulk Milk from French Dairy Herds. J. Dairy Sci. 2007, 90(7), 3197–3201.
  • Prandini, A.; Tansini, G.; Sigolo, S.; Filippi, L.; Laporta, M.; Piva, G. On the Occurrence of Aflatoxin M1 in Milk and Dairy Products. Food Chem. Toxicol. 2009, 47(5), 984–991.
  • Cullen, J. M.; Newberne, P. M. Acute Hepatotoxicity; Academic Press: San Diego, 1994.
  • Goldblatt, L.; Aflatoxin: Scientific Background, Control, and Implications; ; Elsevier: USA, 2012.
  • Fernández, A.; Belío, R.; Ramos, J. J.; Sanz, M. C.; Sáez, T. Aflatoxins and Their Metabolites in the Tissues, Faeces and Urine from Lambs Feeding on an Aflatoxin-Contaminated Diet. J. Sci. Food Agric. 1997, 74(2), 161–168.
  • Quist, C.; Howerth, E.; Fischer, J.; Wyatt, R.; Miller, D.; Nettles, V. Evaluation of Low-level Aflatoxin in the Diet of White-tailed Deer. J. Wildlife Dis. 2004, 157(2), 112–121.
  • Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, RV.; Breiman, R.; Brune, M.N.; DeCock, K.; Dilley, A.; Groopman, J.; Hell, K. Workgroup Report: Public Health Strategies for Reducing Aflatoxin Exposure in Developing Countries. Environ. Health Perspect. 2006, 114(12), 1898–1903.
  • Slamecka, J.; Capcarova, M.; Jurcik, R.; Sladecek, T.; Argente, M.J. C.; Gren, A.; Massanyi, P. Seasonal, Age And Sex Fluctuations In Aflatoxin B1 Content In The Liver And Kidney Of Brown Hares (Lepus europaeus Pall). J. Environ. Sci. Health A. 2017, 52(5), 466–470.
  • International Agency for Research on Cancer (IARC). Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. 1993, 56.
  • .International Agency for Research on Cancer (IARC). Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2002, 82, 171-345.
  • Institute of Standards and Industrial Research of Iran. Maximum validity Maycotoxins in human food. ISIRI no 5925. 1st edition, (2001) [In Persian]. http://standard.isiri.gov.ir/StandardView.aspx?Id=7524.
  • Joint FAO/WHO Expert Committee on Food Additives. Meeting on Safety Evaluation of Certain Mycotoxins in Food; World Health Organization: Geneva; 2001, 74.
  • Duarte, S.; Pena, A.; Lino, C. A Review on Ochratoxin A Occurrence and Effects of Processing of Cereal and Cereal Derived Food Products. Food Microbiol. 2010, 27(2), 187–198. DOI: 10.1016/j.fm.2009.11.016.
  • (EFSA), E.F.S.A. Opinion of the Scientific Panel on Contaminants in the Food Chain [CONTAM] Related to Ochratoxin A in Food. Efsa J. 2006, 365, 1–56.
  • Sánchez-Montero, L.; Córdoba, J.J.; Peromingo, B.; Álvarez, M.; Núñez, F. Effects of Environmental Conditions and Substrate on Growth and Ochratoxin A Production by Penicillium Verrucosum and Penicillium Nordicum: Relative Risk Assessment of OTA in Dry-cured Meat Products. Food Res. Int. 2019, 121, 604–611. DOI: 10.1016/j.foodres.2018.12.025.
  • Weidenbörner, M.; Encyclopedia of Food Mycotoxins; Springer: Germany, 2001.
  • Milićević, D.; Jurić, V.; Stefanović, S.; Jovanović, M.; Janković, S. Survey of Slaughtered Pigs for Occurrence of Ochratoxin A and Porcine Nephropathy in Serbia. Int. J. Mol. Sci. 2008, 9(11), 2169–2183.
  • Boudra, H.; Le Bars, P.; Le Bars, J. Thermostability of Ochratoxin A in Wheat under Two Moisture Conditions. Appl. Environ. Microbiol. 1995, 61(3), 1156–1158. DOI: 10.1128/AEM.61.3.1156-1158.1995.
  • Pfohl-Leszkowicz, A.; Tozlovanu, M.; Manderville, R.; Peraica, M.; Castegnaro, M.; Stefanovic, V. New Molecular and Field Evidences for the Implication of Mycotoxins but Not Aristolochic Acid in Human Nephropathy and Urinary Tract Tumor. Mol. Nutr. Food Res. 2017, 45(1), 1131–1146.
  • Fuchs, R.; Peraica, M. Ochratoxin A in Human Kidney Diseases. Food Addit. Contam. 2005, 22(s1), 53–57. DOI: 10.1080/02652030500309368.
  • Hope, J. H.; Hope, B. E. A Review of the Diagnosis and Treatment of Ochratoxin A Inhalational Exposure Associated with Human Illness and Kidney Disease Including Focal Segmental Glomerulosclerosis. J. Environ. Public Health. 2012, 2012.
  • Aroyeun, S.; Adegoke, G. Reduction of Ochratoxin A (OTA) in Spiked Cocoa Powder and Beverage Using Aqueous Extracts and Essential Oils of Aframomum Danielli. Afr. J. Biotechnol. 2007, 6(5), 612.
  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Food Additives and Contaminants: Sixty-eighth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization, 2007; Vol. 68.
  • van Egmond, H. P.; Jonker, M. Worldwide Regulations for Mycotoxins in Food and Feed in 2003; Food and Agriculture organization of the United Nations: Rome, 2004.
  • Gelderblom, W.; et al. Fumonisins–novel Mycotoxins with Cancer-promoting Activity Produced by Fusarium Moniliforme. Appl. Environ. Microbiol. 1988, 54(7), 1806–1811.
  • Afolabi, C. G.; BANDYOPADHYAY, R.; LESLIE, J. F.; EKPO, E. P. H. R. A. I. M. J. A.; et al. Effect of Sorting on Incidence and Occurrence of Fumonisins and Fusarium Verticillioides on Maize from Nigeria†. J. Food Prot. 2006, 69(8), 2019–2023.
  • Santiago, R.; et al. Genomics of Maize Resistance to Fusarium Ear Rot and Fumonisin Contamination. Toxins. 2020, 12(7), 431.
  • Solfrizzo, M.; et al. Comparison of Urinary Sphingolipids in Human Populations with High and Low Maize Consumption as a Possible Biomarker of Fumonisin Dietary Exposure. Food Addit. Contam. 2004, 21(11), 1090–1095.
  • Ferrara, M.; et al. A Loop-mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Fumonisin Producing Aspergillus Species. Food Microbiol. 2020, 90, 103469. DOI: 10.1016/j.fm.2020.103469.
  • Rheeder, J. P.; Marasas, W. F.; Vismer, H. F. Production of Fumonisin Analogs by Fusarium Species. Appl. Environ. Microbiol. 2002, 68(5), 2101–2105. DOI: 10.1128/AEM.68.5.2101-2105.2002.
  • (EFSA), E.F.S.A. Opinion of the Scientific Panel on Contaminants in Food Chain on a Request from the Commission Related to Fumonisins as Undesirable Substances in Animal Feed. Efsa J. 2005, 40(235), 1–32.
  • SCOOP. Reports on Tasks for Scientific Cooperation; Report of Experts Participating in Task 3.2. 10. October 2003: Collection of Occurrence Data of Fusarium Toxins in Food and Assessment of Dietary Intake by the Population of EU Member States, 2003.
  • Mikušová, P.; et al. Genetic Diversity, Ochratoxin A and Fumonisin Profiles of Strains of Aspergillus Section Nigri Isolated from Dried Vine Fruits. Toxins. 2020, 12(9), 592.
  • Nakagawa, H.; Hashimoto, R.; Matsuo, Y.; Sago, Y.; Yokoyama, K.; Takahashi, H.; et al. Detection and Determination of Fumonisins B1, B2, and B3 Contaminating Japanese Domestic Wine by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC–MS/MS). Curr. Microbiol. 2020, 77(10), 3057–3064.
  • Abdallah, M. F.; Krska, R.; Sulyok, M. Occurrence of Ochratoxins, Fumonisin B2, Aflatoxins (B1 and B2), and Other Secondary Fungal Metabolites in Dried Date Palm Fruits from Egypt: A Mini‐Survey. J. Food Sci. 2018, 83(2), 559–564. DOI: 10.1111/1750-3841.14046.
  • Riley, R. T.; Showker, J. L.; Lee, C. M.; Zipperer, C. E.; Mitchell, T. R.; Voss, K. A.; Zitomer, N. C.; Torres, O.; Matute, J.; Gregory, S. G.; et al. A Blood Spot Method for Detecting Fumonisin-induced Changes in Putative Sphingolipid Biomarkers in LM/Bc Mice and Humans. Food Addit. Contam. 2015, 32(6), 934–949.
  • Humpf, H.-U.; et al. Acylation of Naturally Occurring and Synthetic 1-deoxysphinganines by Ceramide Synthase Formation of N-palmitoyl-aminopentol Produces a Toxic Metabolite of Hydrolyzed Fumonisin, AP1, and a New Category of Ceramide Synthase Inhibitor. J. Biol. Chem. 1998, 273(30), 19060–19064.
  • Suarez, L.; Felkner, M.; Brender, J. D.; Canfield, M.; Zhu, H.; Hendricks, K. A.; et al. Neural Tube Defects on the Texas-Mexico Border: What we’ve Learned in the 20 Years since the Brownsville Cluster. Birth. Defects. Res. A. Clin. Mol. Teratol. 2012, 94(11), 882–892.
  • Creppy, E. E.; Update of Survey, Regulation and Toxic Effects of Mycotoxins in Europe. Toxicol. Lett. 2002, 127(1–3), 19–28. DOI: 10.1016/S0378-4274(01)00479-9.
  • Iheshiulor, O.; Esonu, B. O.; Chuwuka, O. K.; Omede, A. A.; Okoli, I. C.; Ogbuewu, I. P.; et al. Effects of Mycotoxins in Animal Nutrition: A Review. Asian. J. Res. Anim. Sci. 2010, 5(1), 19–33.
  • Meca, G.; Ritieni, A.; Mañes, J. Influence of the Heat Treatment on the Degradation of the Minor Fusarium Mycotoxin Beauvericin. Food Control. 2012, 28(1), 13–18. DOI: 10.1016/j.foodcont.2012.04.016.
  • McCormick, S. P.; et al. Trichothecenes: From Simple to Complex Mycotoxins. Toxins. 2011, 3(7), 802–814.
  • Bottalico, A.; Perrone, G. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-grain Cereals in Europe. In Mycotoxins in Plant Disease, Springer, 2002; pp 611–624.
  • Manning, B. B.; et al. Response of Channel Catfish to Diets Containing T-2 Toxin. J. Aquatic Animal Health. 2003, 15(3), 229–238.
  • Chain, E.P.o.C.i.t.F. Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of T‐2 and HT‐2 Toxin in Food and Feed. Efsa J. 2011, 9(12), 2481.
  • Xu, Y.; et al. Development of an Immunochromatographic Strip Test for the Rapid Detection of Deoxynivalenol in Wheat and Maize. Food Chem. 2010, 119(2), 834–839.
  • Dos Santos, J. S.; Souza, T. M.; Ono, E. Y. S.; Hashimoto, E. H.; Bassoi, M. C.; Miranda, M. Z. D.; Itano, E. N.; Kawamura, O.; Hirooka, E. Y.; et al. Natural Occurrence of Deoxynivalenol in Wheat from Paraná State, Brazil and Estimated Daily Intake by Wheat Products. Food Chem. 2013, 138(1), 90–95.
  • Willyerd, K.; Li, C.; Madden, L. V.; Bradley, C. A.; Bergstrom, G. C.; Sweets, L. E.; McMullen, M.; Ransom, J. K.; Grybauskas, A.; Osborne, L.; et al. Efficacy and Stability of Integrating Fungicide and Cultivar Resistance to Manage Fusarium Head Blight and Deoxynivalenol in Wheat. Plant Dis. 2012, 96(7), 957–967.
  • Liu, Y.; et al. Occurrence of Deoxynivalenol in Wheat, Hebei Province, China. Food Chem. 2016, 197, 1271–1274. DOI: 10.1016/j.foodchem.2015.11.047.
  • Richard, J. L.; Some Major Mycotoxins and Their mycotoxicoses—An Overview. Int. J. Food Microbiol. 2007, 119(1–2), 3–10. DOI: 10.1016/j.ijfoodmicro.2007.07.019.
  • Schwarzer, K. Harmful Effects of Mycotoxins on Animal Physiology. 17th Annual ASAIM SEA Feed Technology and Nutrition Workshop, Hue, Vietnam, 2009.
  • Rocha, O.; Ansari, K.; Doohan, F. Effects of Trichothecene Mycotoxins on Eukaryotic Cells: A Review. Food Addit. Contam. 2005, 22(4), 369–378. DOI: 10.1080/02652030500058403.
  • Fernandez, A.; et al. Effect of Aflatoxin on Performance, Hematology, and Clinical Immunology in Lambs. Can. J. Vet. Res. 2000, 64(1), 53.
  • Ramasamy, T.; Varshneya, C.; Katoch, V. Immunoprotective Effect of Seabuckthorn (Hippophae Rhamnoides) and Glucomannan on T-2 Toxin-Induced Immunodepression in Poultry. Vet. Med. Int. 2010, 2010, 1–6. DOI: 10.4061/2010/149373.
  • DiCostanzo, A.; et al. A Review of the Effects of Molds and Mycotoxins in Ruminants1, 2. Prof. Animal Sci. 1996, 12(3), 138–150.
  • Wu, Q.; et al. A Comparison of Hepatic in Vitro Metabolism of T-2 Toxin in Rats, Pigs, Chickens, and Carp. Xenobiotica. 2011, 41(10), 863–873.
  • (EFSA), E.F.S.A. Scientific Opinion on the Risks for Public Health Related to the Presence of Zearalenone in Food. Efsa J. 2011, 9(6), 2197–2124.
  • Hueza, I.; et al. Zearalenone, an Estrogenic Mycotoxin, Is an Immunotoxic Compound. Toxins. 2014, 6(3), 1080–1095.
  • Mirocha, C.; Christensen, C.; Nelson, G. F-2 (Zearalenone) Estrogenic Mycotoxin from Fusarium. Microbial Toxins. 2013, 7, 107–138.
  • Cheeke, P.; Mycotoxins in Cereal Grains and Supplements. In Natural Toxicants in Feeds, Forages and Poisonous Plants, Interstate Publishers, Inc: Danville, IL, 1998; pp 87–136.
  • Gromadzka, K.; et al. Occurrence of Estrogenic Mycotoxin–zearalenone in Aqueous Environmental Samples with Various NOM Content. Water Res. 2009, 43(4), 1051–1059.
  • Minervini, F.; et al. Investigations on Cellular Proliferation Induced by Zearalenone and Its Derivatives in Relation to the Estrogenic Parameters. Toxicol. Lett. 2005, 159(3), 272–283.
  • Ryu, D.; Hanna, M. A.; Bullerman, L. B. Stability of Zearalenone during Extrusion of Corn Grits†. J. Food Prot. 1999, 62(12), 1482–1484. DOI: 10.4315/0362-028X-62.12.1482.
  • (EFSA), E.F.S.A. Opinion of the Scientific Panel on Contaminants in the Food Chain on a Request from the Commission Related to Zearalenone as Undesirable Substance in Animal Feed. Efsa J. 2004, 89(p), 1–35.
  • Rai, A.; Das, M.; Tripathi, A. Occurrence and Toxicity of a Fusarium Mycotoxin, Zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60(16), 2710–2729. DOI: 10.1080/10408398.2019.1655388.
  • Morales, H.; et al. Patulin Accumulation in Apples during Postharvest: Effect of Controlled Atmosphere Storage and Fungicide Treatments. Food Control. 2007, 18(11), 1443–1448.
  • Sorenson, W.; Simpson, J.; Castranova, V. Toxicity of the Mycotoxin Patulin for Rat Alveolar Macrophages. Environ. Res. 1985, 38(2), 407–416. DOI: 10.1016/0013-9351(85)90102-1.
  • Ramalingam, S.; Bahuguna, A.; Kim, M. The Effects of Mycotoxin Patulin on Cells and Cellular Components. Trends Food Sci. Technol. 2018.
  • Puel, O.; Galtier, P.; Oswald, I. P. Biosynthesis and Toxicological Effects of Patulin. Toxins. 2010, 2(4), 613–631. DOI: 10.3390/toxins2040613.
  • Mahfoud, R.; Maresca, M.; Garmy, N.; Fantini, J.; et al. The Mycotoxin Patulin Alters the Barrier Function of the Intestinal Epithelium: Mechanism of Action of the Toxin and Protective Effects of Glutathione. Toxicol. Appl. Pharmacol. 2002, 181(3), 209–218.
  • SCOOP. Reports on Tasks for Scientific Cooperation. Report of Experts Participating in Task 3.2. 8. October 2002: Assessment of Dietary Intake of Patulin by the Population of EU Member States; 2002.
  • (WHO), W.H.O. 44th Report of the Joint FAO/WHO Expert Committee on Food Additives. Tech. Rep. Ser. Geneva, 1995, 859, 36.
  • Jouany, J. P.; Methods for Preventing, Decontaminating and Minimizing the Toxicity of Mycotoxins in Feeds. Anim. Feed Sci. Technol. 2007, 137(3–4), 342–362. DOI: 10.1016/j.anifeedsci.2007.06.009.
  • Afsah‐Hejri, L.; Hajeb, P.; Ehsani, R. J. Application of Ozone for Degradation of Mycotoxins in Food: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19(4), 1777–1808. DOI: 10.1111/1541-4337.12594.
  • Çelik, K.; et al. Current Development in Removal of Mycotoxins by Biological Methods and Chemical Absorbents. J Hyg Eng Des. 2013, 3, 17–20.
  • Awad, W. A.; Ghareeb, K.; Böhm, J.; Zentek, J.; et al. Decontamination and Detoxification Strategies for the Fusarium Mycotoxin Deoxynivalenol in Animal Feed and the Effectiveness of Microbial Biodegradation. Food. Addit. Contam. Part. A. 2010, 27(4), 510–520.
  • Food and Agriculture Organization (FAO). Manual on the Application of the HACCP System in Mycotoxin Prevention and Control. FAO Food and Nutrition Paper 73. FAO, Rome, Italy, 2001; Available at: http://www.fao.org/3/ay1390e.pdf, Accessed date: December 2017.
  • Bruns, H. A.; Controlling Aflatoxin and Fumonisin in Maize by Crop Management. J. Toxicol. 2003, 22(2–3), 153–173.
  • Vila-Donat, P.; et al. A Review of the Mycotoxin Adsorbing Agents, with an Emphasis on Their Multi-binding Capacity, for Animal Feed Decontamination. Food Chem. Toxicol. 2018, 114, 246–259. DOI: 10.1016/j.fct.2018.02.044.
  • Kabak, B.; Dobson, A. D.; Var, I. I. L. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46(8), 593–619. DOI: 10.1080/10408390500436185.
  • Choudhary, A. K.; Kumari, P. Management of Mycotoxin Contamination in Preharvest and Post Harvest Crops: Present Status and Future Prospects. J. Phytol. 2010.
  • Piñol, N. E.; Alternaria Spp. And Their Mycotoxins in Tomatoes. A Scientific Approach from Field to Food Industry,chapter 7: Effects of UV Radiation on Alternariol and Alternariol Monomethyl Ether Levels; Universitat de Lleida, 2016.
  • Bhat, R.; Rai, R. V.; Karim, A. A. Mycotoxins in Food and Feed: Present Status and Future Concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9(1), 57–81.
  • Murphy, P. A.; Hendrich, S.; Landgren, C.; Bryant, C. M.; et al. Food Mycotoxins: An Update. J. Food Sci. 2006, 71(5), 51–65.
  • Stoev, S. D.; Food Safety and Increasing Hazard of Mycotoxin Occurrence in Foods and Feeds. Crit. Rev. Food Sci. Nutr. 2013, 53(9), 887–901. DOI: 10.1080/10408398.2011.571800.
  • Champeil, A.; et al. Influence of Cropping System on Fusarium Head Blight and Mycotoxin Levels in Winter Wheat. Crop Prot. 2004, 23(6), 531–537.
  • Munkvold, G. P.; CULTURAL AND GENETIC APPROACHES TO MANAGING MYCOTOXINS IN MAIZE. Annu. Rev. Phytopathol. 2003, 41(1), 99–116. DOI: 10.1146/annurev.phyto.41.052002.095510.
  • Commission, C.A. Code of Practice for the Prevention and Reduction of Mycotoxin Contamination of Cereals, Including Annexes on Ochratoxin A, Zearalenone, Fumonisins and Trichothecenes. CAC/RCP. 2003, 51–2003.
  • Paul, P.; et al. Efficacy of Triazole-based Fungicides for Fusarium Head Blight and Deoxynivalenol Control in Wheat: A Multivariate Meta-analysis. Phytopathology. 2008, 98(9), 999–1011.
  • Muri, S. D.; van der Voet, H.; Boon, P. E.; van Klaveren, J. D.; Brüschweiler, B. J.; et al. Comparison of Human Health Risks Resulting from Exposure to Fungicides and Mycotoxins via Food. Food Chem. Toxicol. 2009, 47(12), 2963–2974.
  • Schneweis, I.; Meyer, K.; Ritzmann, M.; Hoffmann, P.; Dempfle, L.; Bauer, J.; et al. Influence of Organically or Conventionally Produced Wheat on Health, Performance and Mycotoxin Residues in Tissues and Bile of Growing Pigs. Arch. Animal Nutr. 2005, 59(3), 155–163.
  • Arino, A.; et al. Natural Occurrence of Fusarium Species, Fumonisin Production by Toxigenic Strains, and Concentrations of Fumonisins B1 and B2 in Conventional and Organic Maize Grown in Spain. J. Food Prot. 2007, 70(1), 151–156.
  • Clements, M. J.; White, D. G. Identifying Sources of Resistance to Aflatoxin and Fumonisin Contamination in Corn Grain. J. Toxicol. 2004, 23(2–3), 381–396.
  • Cleveland, T. E.; Dowd, P. F.; Desjardins, A. E.; Bhatnagar, D.; Cotty, P. J.; et al. United States Department of Agriculture?Agricultural Research Service Research on Pre-harvest Prevention of Mycotoxins and Mycotoxigenic Fungi in US Crops. Pest Manage. Sci. 2003, 59(6–7), 629–642.
  • Holbrook, C. C.; Wilson, D.M.; Matheron, M.E.; Anderson, W.F. Aspergillus Colonization and Aflatoxin Contamination in Peanut Genotypes with Resistance to Other Fungal Pathogens. Plant Disease. 1997, 81(12), 1429–1431.
  • Campbell, K.; Evaluation of Corn Genotypes for Resistance to Aspergillus Ear Rot, Kernel Infection, and Aflatoxin Production. Plant Dis. 1995, 79(10), 1039. DOI: 10.1094/PD-79-1039.
  • Bai, G. H.; Plattner, R.; Desjardins, A.; Kolb, F.; McIntosh, R. Resistance to Fusarium Head Blight and Deoxynivalenol Accumulation in Wheat. Plant Breed. 2001, 120(1), 1–6.
  • Jones, R. K.;, An aflatoxin-producing, I. Factors Influencing Infection by Aspergillus Flavus in Silk-Inoculated Corn. Plant Dis. 1980, 64(9), 859. DOI: 10.1094/PD-64-859.
  • Bankole, S.; Mabekoje, O. Occurrence of Aflatoxins and Fumonisins in Preharvest Maize from South-western Nigeria. Food Addit. Contam. 2004, 21(3), 251–255. DOI: 10.1080/02652030310001639558.
  • Sarrocco, S.; Vannacci, G. Preharvest Application of Beneficial Fungi as A Strategy to Prevent Postharvest Mycotoxin Contamination: A Review. Crop Prot. 2018, 110, 160–170. DOI: 10.1016/j.cropro.2017.11.013.
  • Abbas, H.; Shier, W.; Cartwright, R. Effect of Temperature, Rainfall and Planting Date on Aflatoxin and Fumonisin Contamination in Commercial Bt and non-Bt Corn Hybrids in Arkansas. Phytoprotection. 2007, 88(2), 41–50. DOI: 10.7202/018054ar.
  • Wiatrak, P.; Wright, D. L.; Marois, J. J.; Wilson, D. Influence of Planting Date on Aflatoxin Accumulation in Bt, non-Bt, and Tropical non-Bt Hybrids. Agron. J. 2005, 97(2), 440–445.
  • Kong, Q.; Shan, S.; Liu, Q.; Wang, X.; Yu, F. Biocontrol of Aspergillus Flavus on Peanut Kernels by Use of a Strain of Marine Bacillus Megaterium. Int. J. Food Microbiol. 2010, 139(1–2), 31–35.
  • Velmourougane, K.; Bhat, R.; Gopinandhan, T. N. Coffee Berry Borer (Hypothenemus hampei)—A Vector for Toxigenic Molds and Ochratoxin A Contamination in Coffee Beans. Foodborne Pathogens Dis. 2010, 7(10), 1279–1284. DOI: 10.1089/fpd.2010.0571.
  • Dowd, P. F.; Insect Management to Facilitate Preharvest Mycotoxin Management. J. Toxicol. 2003, 22(2–3), 327–350.
  • Smith, T.; Girish, C. Prevention and Control of Animal Feed Contamination by Mycotoxins and Reduction of Their Adverse Effects in Livestock. In Animal Feed Contamination, Elsevier, Canada, 2012; pp 326–351.
  • Hammond, B.; Bhatnagar, D.; van Egmond, H.P.; Van Der Kamp, J.W.; Van Osenbruggen, W.A.; Visconti, A. The Use of GMOs as a Prevention Strategy for Mycotoxin Formation. In The Mycotoxin Factbook, Wageningen Academic Publishers, 2006; pp 199–210.
  • Bawa, A.; Anilakumar, K. Genetically Modified Foods: Safety, Risks and Public Concerns—a Review. J. Food Sci. Technol. 2013, 50(6), 1035–1046. DOI: 10.1007/s13197-012-0899-1.
  • Duvick, J.; Prospects for Reducing Fumonisin Contamination of Maize through Genetic Modification. Environ. Health Perspect. 2001, 109(Suppl 2), 337.
  • Karlovsky, P.; Biological Detoxification of the Mycotoxin Deoxynivalenol and Its Use in Genetically Engineered Crops and Feed Additives. Appl. Microbiol. Biotechnol. 2011, 91(3), 491–504. DOI: 10.1007/s00253-011-3401-5.
  • Ostry, V.; Ovesna, J.; Skarkova, J.; Pouchova, V.; Ruprich, J. A Review on Comparative Data Concerning Fusarium Mycotoxins in Bt Maize and non-Bt Isogenic Maize. Mycotoxin Res. 2010, 26(3), 141–145.
  • European Commision, GMO Authorization, Community Register of GM Food and Feed. https://ec.europa.eu/food/plant/gmo/legislation_en.
  • Yang, Y. T.; Chen, B. Governing GMOs in the USA: Science, Law and Public Health. J. Sci. Food Agric. 2016, 96(6), 1851–1855. DOI: 10.1002/jsfa.7523.
  • Driehuis, F.; Elferink, S. O. The Impact of the Quality of Silage on Animal Health and Food Safety: A Review. Vet. Q. 2000, 22(4), 212–216. DOI: 10.1080/01652176.2000.9695061.
  • Schrödter, R.; Influence of Harvest and Storage Conditions on Trichothecenes Levels in Various Cereals. Toxicol. Lett. 2004, 153(1), 47–49. DOI: 10.1016/j.toxlet.2004.04.043.
  • Peraica, M.; Domijan, A.M.; Jurjević, Ž.; Cvjetković, B. Prevention of Exposure to Mycotoxins from Food and Feed. Arhiv Za Higijenu Rada I Toksikologiju. 2002, 53(3), 229–237.
  • Lanyasunya, T.; Wamae., L. W.; Musa., H. H.; Olowofeso, O.; Lokwaleput, I. K. The Risk of Mycotoxins Contamination of Dairy Feed and Milk on Smallholder Dairy Farms in Kenya. Pak. J. Nutr. 2005, 4(3), 162–169.
  • Luo, Y.; Liu, X.; Li, J. Updating Techniques on Controlling mycotoxins-A Review. Food Control. 2018, 89, 123–132. DOI: 10.1016/j.foodcont.2018.01.016.
  • Fleurat-Lessard, F.; Integrated Management of the Risks of Stored Grain Spoilage by seedborne Fungi and Contamination by Storage Mould Mycotoxins – An Update. J. Stored Prod. Res. 2017, 71, 22–40. DOI: 10.1016/j.jspr.2016.10.002.
  • Magan, N.; Hope, R.; Cairns, V.; Aldred, D. Post-harvest Fungal Ecology: Impact of Fungal Growth and Mycotoxin Accumulation in Stored Grain. In Epidemiology of Mycotoxin Producing Fungi, Netherlands, Springer: 2003; pp 723–730.
  • Magan, N.; Aldred, D. Post-harvest Control Strategies: Minimizing Mycotoxins in the Food Chain. Int. J. Food Microbiol. 2007, 119(1–2), 131–139. DOI: 10.1016/j.ijfoodmicro.2007.07.034.
  • Moake, M.M.; Padilla‐Zakour, O.I.; Worobo, R.W. Comprehensive review of patulin control methods in foods. Compr. Rev. Food Sci. Food Saf. 2005, 4(1), 8–21.
  • Visconti, A.; Haidukowski, E.M.; Pascale, M. Reduction of Deoxynivalenol during Durum Wheat Processing and Spaghetti Cooking. Toxicol. Lett. 2004, 153(1), 181–189.
  • Bullerman, L. B.; Bianchini, A. Stability of Mycotoxins during Food Processing. Int. J. Food Microbiol. 2007, 119(1–2), 140–146. DOI: 10.1016/j.ijfoodmicro.2007.07.035.
  • Beretta, B.; Gaiaschi, A.; Galli, C. L.; Restani, P. Patulin in Apple-based Foods: Occurrence and Safety Evaluation. Food Addit. Contam. 2000, 17(5), 399–406.
  • Fandohan, P.; Zoumenou, D.; Hounhouigan, D.; Marasas, W.; Wingfield, M.; Hell, K. Fate of Aflatoxins and Fumonisins during the Processing of Maize into Food Products in Benin. Int. J. Food Microbiol. 2005, 98(3), 249–259.
  • Wolf-Hall, C. E.; Hanna, M. A.; Bullerman, L. B. Stability of Deoxynivalenol in Heat-Treated Foods†. J. Food Prot. 1999, 62(8), 962–964. DOI: 10.4315/0362-028X-62.8.962.
  • Deng, L.-Z.;, Tao, Y.; Mujumdar, A.S.; Pan, Z.; Chen, C.; Yang, X.H.; Liu, Z.L.; Wang, H.; Xiao, H.W. Recent Advances in Non-thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-moisture Foods. Trends Food Sci. Technol. 2020, 106. DOI: 10.1016/j.tifs.2020.10.012.
  • Ameer Sumbal, G.; Hussain Shar, Z.; Hussain Sherazi, S.T.; Nizamani, S.M.; Mahesar, S.A. Decontamination of Poultry Feed from Ochratoxin A by UV and Sunlight Radiations. J. Sci. Food Agric. 2016, 96(8), 2668–2673.
  • Diffey, B. L.; Sources and Measurement of Ultraviolet Radiation. Methods. 2002, 28(1), 4–13. DOI: 10.1016/S1046-2023(02)00204-9.
  • Tikekar, R. V.; Anantheswaran, R. C.; LaBorde, L. F. Patulin Degradation in a Model Apple Juice System and in Apple Juice during Ultraviolet Processing. J. Food Process. Preserv. 2014, 38(3), 924–934. DOI: 10.1111/jfpp.12047.
  • Bhat, R.; Sridhar, K. R.; Velmourougane, K. Microbial Quality Evaluation of Velvet Bean Seeds (Mucuna Pruriens L. DC.) Exposed to Ionizing Radiation. Tropical Subtropical Agroecosyst. 2007, 7(1), 29–40.
  • Tripathi, S.; Mishra, H. Enzymatic Coupled with UV Degradation of Aflatoxin B1 in Red Chili Powder. J. Food Qual. 2010, 33, 186–203. DOI: 10.1111/j.1745-4557.2010.00334.x.
  • Boudergue, C.; Burel, C.; Dragacci, S.; Favrot, M.; Fremy, J.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H. Review of Mycotoxin-detoxifying Agents Used as Feed Additives: Mode of Action, Efficacy and Feed/food Safety; Scientific report submitted to EFSA. Reference number of the call for proposal: CFP, 2009, EFSA/FEEDAP/2009/01, 192.
  • Di Gregorio, M. C.; Neeff, D.V.d.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.d.P.; Albuquerque, R.d.; Azevedo, A.C.d.; Oliveira, C.A.F. Mineral Adsorbents for Prevention of Mycotoxins in Animal Feeds. Toxin Rev. 2014, 33(3), 125–135.
  • Mine Kurtbay, H.; Bekçi, Z.; Merdivan, M.; Yurdakoç, K. Reduction of Ochratoxin A Levels in Red Wine by Bentonite, Modified Bentonites, and Chitosan. J. Agric. Food Chem. 2008, 56(7), 2541–2545.
  • Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin Detoxication of Animal Feed by Different Adsorbents. Toxicol. Lett. 2001, 122(2), 179–188.
  • Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent Advances on the Use of Adsorbent Materials for Detoxification of Fusarium Mycotoxins. Food Addit. Contam. 2005, 22(4), 379–388. DOI: 10.1080/02652030500058312.
  • Wang, L.; Ding, J.; Zhang, J.; Lin, M.; Zhao, G. Montmorillonite as a Kind of Mycotoxin Absorbent: Effects on Performance and Serum Biochemical Indices of Lactating Dairy Cows. Chin.J. Animal Nutr. 2013, 25(7), 1595–1602.
  • Harper, A. F.; Estienne, M.J.; Meldrum, J.B.; Harrell, R.J.; Diaz, D.E. Assessment of a Hydrated Sodium Calcium Aluminosilicate Agent and Antioxidant Blend for Mitigation of Aflatoxin-induced Physiological Alterations in Pigs. J. Swine Health Prod. 2010, 18(6), 282–289.
  • Neeff, D.; Ledoux, D.; Rottinghaus, G.; Bermudez, A.; Dakovic, A.; Murarolli, R.; Oliveira, C.A.F. In Vitro and in Vivo Efficacy of a Hydrated Sodium Calcium Aluminosilicate to Bind and Reduce Aflatoxin Residues in Tissues of Broiler Chicks Fed Aflatoxin B1. Poultr. Sci. 2013, 92(1), 131–137.
  • Phillips, T.; Afriyie-Gyawu, E.; Williams, J.; Huebner, H.; Ankrah, N.-A.; Ofori-Adjei, D.; Jolly, P.; Johnson, N.; Taylor, J.; Marroquin-Cardona, A.; et al. Reducing Human Exposure to Aflatoxin through the Use of Clay: A Review. Food. Addit. Contam. Part. A. 2008, 25(2), 134–145.
  • Kolosova, A.; Stroka, J. Substances for Reduction of the Contamination of Feed by Mycotoxins: A Review. World Mycotoxin J. 2011, 4(3), 225–256. DOI: 10.3920/WMJ2011.1288.
  • Magnoli, A.; Monge, M.; Miazzo, R.; Cavaglieri, L.; Magnoli, C.; Merkis, C.; Cristofolini, A.L.; Dalcero, A.M.; Chiacchiera, S.M. Effect of Low Levels of Aflatoxin B1 on Performance, Biochemical Parameters, and Aflatoxin B1 in Broiler Liver Tissues in the Presence of Monensin and Sodium Bentonite. Poultr. Sci. 2011, 90(1), 48–58.
  • Kong, C.; Shin, S. Y.; Kim, B. G. Evaluation of Mycotoxin Sequestering Agents for Aflatoxin and Deoxynivalenol: An in Vitro Approach. SpringerPlus. 2014, 3(1), 346. DOI: 10.1186/2193-1801-3-346.
  • Thieu, N. Q.; Ogle, B.; Pettersson, H. Efficacy of Bentonite Clay in Ameliorating Aflatoxicosis in Piglets Fed Aflatoxin Contaminated Diets. Trop. Anim. Health Prod. 2008, 40(8), 649–656. DOI: 10.1007/s11250-008-9144-3.
  • Miazzo, R.; Peralta, M. F.; Magnoli, C.; Salvano, M.; Ferrero, S.; Chiacchiera, S. M.; Carvalho, E. C. Q.; Rosa, C. A. R.; Dalcero, A. Efficacy of Sodium Bentonite as a Detoxifier of Broiler Feed Contaminated with Aflatoxin and Fumonisin. Poultr. Sci. 2005, 84(1), 1–8.
  • Chain, E.P.o.C.i.t.F. Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of Alternaria Toxins in Feed and Food. Efsa J. 2011, 9(10), 2407. doi:10.2903/j.efsa.2011.2407.
  • Magnoli, A.; Texeira, M.; Rosa, C. A. R.; Miazzo, R. D.; Cavaglieri, L. R.; Magnoli, C. E.; Dalcero, A. M.; Chiacchiera, S. M. Sodium Bentonite and Monensin under Chronic Aflatoxicosis in Broiler Chickens. Poultr. Sci. 2011, 90(2), 352–357.
  • Pasha, T.; Farooq, M.; Khattak, F.; Jabbar, M.; Khan, A. Effectiveness of Sodium Bentonite and Two Commercial Products as Aflatoxin Absorbents in Diets for Broiler Chickens. Anim. Feed Sci. Technol. 2007, 132(1–2), 103–110.
  • Shi, Y.; Xu, Z. R.; Feng, J. L.; Xia, M. S.; Hu, C. H. Effects of Modified Montmorillonite Nanocomposite on Growing/finishing Pigs during Aflatoxicosis. Asian-australas. J. Anim. Sci. 2005, 18(9), 1305–1309.
  • Daković, A.; Kragović, M.; Rottinghaus, G.E.; Sekulić, Ž.; Milićević, S.; Milonjić, S.K.; Zarić, S. Influence of Natural Zeolitic Tuff and Organozeolites Surface Charge on Sorption of Ionizable Fumonisin B1. Colloids Surf. B. 2010, 76(1), 272–278.
  • Baglieri, A.; Reyneri, A.; Gennari, M.; Nègre, M. Organically Modified Clays as Binders of Fumonisins in Feedstocks. J. Environ. Sci. Health Part B. 2013, 48(9), 776–783.
  • Spotti, M.; Fracchiolla, M.; Arioli, F.; Caloni, F.; Pompa, G. Aflatoxin B 1 Binding to Sorbents in Bovine Ruminal Fluid. Vet. Res. Commun. 2005, 29(6), 507–515.
  • Dvorska, J.; Surai, P. Effects of T-2 Toxin, Zeolite and Mycosorb on Antioxidant Systems of Growing Quail. Asian-Australas. J. Anim. Sci. 2001, 14(12), 1752–1757. DOI: 10.5713/ajas.2001.1752.
  • Nones, J.; Nones, J.; Riella, H.G.; Poli, A.; Trentin, A.G.; Kuhnen, N.C. Thermal Treatment of Bentonite Reduces Aflatoxin B1 Adsorption and Affects Stem Cell Death. Mater. Sci. Eng C. 2015, 55, 530–537. DOI: 10.1016/j.msec.2015.05.069.
  • Mézes, M.; Balogh, K.; Tóth, K. Preventive and Therapeutic Methods against the Toxic Effects of mycotoxins — A Review. Acta Veterinaria Hungarica. 2010, 58(1), 1–17. DOI: 10.1556/avet.58.2010.1.1.
  • Solfrizzo, M.; Visconti, A.; Avantaggiato, G.; Torres, A.; Chulze, S. In Vitro and in Vivo Studies to Assess the Effectiveness of Cholestyramine as a Binding Agent for Fumonisins. Mycopathologia. 2001, 151(3), 147–153.
  • Avantaggiato, G.; Greco, D.; Damascelli, A.; Solfrizzo, M.; Visconti, A. Assessment of Multi-mycotoxin Adsorption Efficacy of Grape Pomace. J. Agric. Food Chem. 2014, 62(2), 497–507.
  • Sabater-Vilar, M.; Malekinejad, H.; Selman, M.; Van der Doelen, M.; Fink-Gremmels, J. In Vitro Assessment of Adsorbents Aiming to Prevent Deoxynivalenol and Zearalenone Mycotoxicoses. Mycopathologia. 2007, 163(2), 81.
  • Diaz, D. E.; Hagler, W.M.; Blackwelder, J.T.; Eve, J.A.; Hopkins, B.A.; Anderson, K.L.; Jones, F.T.; Whitlow, L.W. Aflatoxin Binders II: Reduction of Aflatoxin M1 in Milk by Sequestering Agents of Cows Consuming Aflatoxin in Feed. Mycopathologia. 2004, 157(2), 233–241.
  • Döll, S.; Dänicke, S.; Valenta, H.; Flachowsky, G. In Vitro Studies on the Evaluation of Mycotoxin Detoxifying Agents for Their Efficacy on Deoxynivalenol and Zearalenone. Arch. Animal Nutr. 2004, 58(4), 311–324.
  • Fricke, R. F.; Jorge, J. Assessment of Efficacy of Activated Charcoal for Treatment of Acute T-2 Toxin POISONING1. J. Toxicol. 1990, 28(4), 421–431.
  • Vekiru, E.; Fruhauf, S.; Sahin, M.; Ottner, F.; Schatzmayr, G.; Krska, R. Investigation of Various Adsorbents for Their Ability to Bind Aflatoxin B1. Mycotoxin Res. 2007, 23(1), 27–33.
  • Aoudia, N.; Callu, P.; Grosjean, F.; Larondelle, Y. Effectiveness of Mycotoxin Sequestration Activity of Micronized Wheat Fibres on Distribution of Ochratoxin A in Plasma, Liver and Kidney of Piglets Fed A Naturally Contaminated Diet. Food Chem. Toxicol. 2009, 47(7), 1485–1489.
  • Gutzwiller, A.; Czeglédi, L.; Stoll, P.; Bruckner, L. Effects of Fusarium Toxins on Growth, Humoral Immune Response and Internal Organs in Weaner Pigs, and the Efficacy of Apple Pomace as an Antidote. J. Animal Physiol. Animal Nutr. 2007, 91(9–10), 432–438.
  • Santos, R. R.; Vermeulen, S.; Haritova, A.; Fink-Gremmels, J. Isotherm Modeling of Organic Activated Bentonite and Humic Acid Polymer Used as Mycotoxin Adsorbents. Food Addit. Contam. 2011, 28(11), 1578–1589.
  • Papaioannou, D.; Katsoulos, P. D.; Panousis, N.; Karatzias, H. The Role of Natural and Synthetic Zeolites as Feed Additives on the Prevention And/or the Treatment of Certain Farm Animal Diseases: A Review. Microporous Mesoporous Mater. 2005, 84(1–3), 161–170.
  • Feng, J.; Shan, M.; Du, H.; Han, X.; Xu, Z. In Vitro Adsorption of Zearalenone by Cetyltrimethyl Ammonium Bromide-modified Montmorillonite Nanocomposites. Microporous Mesoporous Mater. 2008, 113(1–3), 99–105.
  • Magro, M.; Moritz, D. E.; Bonaiuto, E.; Baratella, D.; Terzo, M.; Jakubec, P.; Malina, O.; Čépe, K.; Aragao, G. M. F. D.; Zboril, R.; et al. Citrinin Mycotoxin Recognition and Removal by Naked Magnetic Nanoparticles. Food Chem. 2016, 203, 505–512. DOI: 10.1016/j.foodchem.2016.01.147.
  • Zahoor, M.; Ali Khan, F. Aflatoxin B1 Detoxification by Magnetic Carbon Nanostructures Prepared from Maize Straw. Desalin. Water Treat. 2016, 57(25), 11893–11903. DOI: 10.1080/19443994.2015.1046147.
  • Luo, Y.; Zhou, Z.; Yue, T. Synthesis and Characterization of Nontoxic Chitosan-coated Fe3O4 Particles for Patulin Adsorption in a juice-pH Simulation Aqueous. Food Chem. 2017, 221, 317–323. DOI: 10.1016/j.foodchem.2016.09.008.
  • Zhao, Z.; Liu, N.; Yang, L.; Wang, J.; Song, S.; Nie, D.; Yang X.; Hou, J.; Wu, A. Cross-linked Chitosan Polymers as Generic Adsorbents for Simultaneous Adsorption of Multiple Mycotoxins. Food Control. 2015, 57, 362–369. DOI: 10.1016/j.foodcont.2015.05.014.
  • Amezqueta, S.; GONZÁLEZ-PEÑAS, E.; LIZARRAGA, T.; MURILLO-ARBIZU, M.; de CERAIN, A. L. A Simple Chemical Method Reduces Ochratoxin A in Contaminated Cocoa Shells. J. Food Prot. 2008, 71(7), 1422–1426.
  • Zaki, M. M.; El-Midany, S.; Shaheen, H.; Rizzi, L. Mycotoxins in Animals: Occurrence, Effects, Prevention and Management. J. Toxicol. Environ. Health Sci. 2012, 4(1), 13–28.
  • Asokapandian, S.; Periasamy, S.; Swamy, G. J. Ozone for Fruit Juice Preservation. In Fruit Juices, Elsevier, 2018; pp 511–527.
  • Pandiselvam, R.; Subhashini, S.; Banuu Priya, E.; Kothakota, A.; Ramesh, S.; Shahir, S. Ozone Based Food Preservation: A Promising Green Technology for Enhanced Food Safety. Ozone: Sci. Eng. 2019, 41(1), 17–34.
  • Torres, A. M.; Palacios, S. A.; Yerkovich, N.; Palazzini, J. M.; Battilani, P.; Leslie, J. F.; Logrieco, A. F.; Chulze, S. N. Fusarium Head Blight and Mycotoxins in Wheat: Prevention and Control Strategies across the Food Chain. World Mycotoxin J. 2019, 12(4), 333–355.
  • Trombete, F.; Porto, Y.; Freitas‐Silva, O.; Pereira, R.; Direito, G.; Saldanha, T.; Fraga, M.E. Efficacy of Ozone Treatment on Mycotoxins and Fungal Reduction in Artificially Contaminated Soft Wheat Grains. J. Food Process. Preserv. 2017, 41(3), e12927.
  • Reinholds, I.; Juodeikiene, G.; Bartkiene, E.; Zadeike, D.; Bartkevics, V.; Krungleviciute, V.; Cernauskas, D.; Cižeikiene, D. Evaluation of Ozonation as a Method for Mycotoxins Degradation in Malting Wheat Grains. World Mycotoxin J. 2016, 9(3), 409–417.
  • Young, J. C.; Zhu, H.; Zhou, T. Degradation of Trichothecene Mycotoxins by Aqueous Ozone. Food Chem. Toxicol. 2006, 44(3), 417–424. DOI: 10.1016/j.fct.2005.08.015.
  • Pascari, X.; Ramos, A. J.; Marín, S.; Sanchís, V. Mycotoxins and Beer. Impact of Beer Production Process on Mycotoxin Contamination. A Review. Food Res. Int. 2018, 103, 121–129. DOI: 10.1016/j.foodres.2017.07.038.
  • McDonough, M. X.; Campabadal, C.A.; Mason, L.J.; Maier, D.E.; Denvir, A.; Woloshuk, C. Ozone Application in a Modified Screw Conveyor to Treat Grain for Insect Pests, Fungal Contaminants, and Mycotoxins. J. Stored Prod. Res. 2011, 47(3), 249–254.
  • Porto, Y. D.; Trombete, F. M.; Freitas-Silva, O.; de Castro, I. M.; Direito, G. M.; Ascheri, J. L. R. Gaseous Ozonation to Reduce Aflatoxins Levels and Microbial Contamination in Corn Grits. Microorganisms. 2019, 7(8), 220.
  • Bajpai, V. K.; Baek, K.-H.; Kang, S. C. Control of Salmonella in Foods by Using Essential Oils: A Review. Food Res. Int. 2012, 45(2), 722–734. DOI: 10.1016/j.foodres.2011.04.052.
  • Roby, M. H. H.; Sarhan, M.A.; Selim, K.H.; Khalel, K.I. Evaluation of Antioxidant Activity, Total Phenols and Phenolic Compounds in Thyme (Thymus Vulgaris L.), Sage (Salvia Officinalis L.), And Marjoram (Origanum Majorana L.) Extracts. Ind. Crops Prod. 2013, 43, 827–831. DOI: 10.1016/j.indcrop.2012.08.029.
  • Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative Evaluation of 11 Essential Oils of Different Origin as Functional Antioxidants, Antiradicals and Antimicrobials in Foods. Food Chem. 2005, 91(4), 621–632.
  • Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of Antifungal and Anti-aflatoxigenic Properties of Essential Oil Derived from Turmeric (Curcuma Longa L.) On Aspergillus Flavus. Food Chem. 2017, 220, 1–8. DOI: 10.1016/j.foodchem.2016.09.179.
  • Kumar, K. N.; Venkataramana, M.; Allen, J. A.; Chandranayaka, S.; Murali, H. S.; Batra, H. V. Role of Curcuma Longa L. Essential Oil in Controlling the Growth and Zearalenone Production of Fusarium Graminearum. Lebensm Wiss Technol. 2016, 69, 522–528. DOI: 10.1016/j.lwt.2016.02.005.
  • Kedia, A.; Dwivedy, A.K.; Jha D.K.; Dubey, N.K. Efficacy of Mentha Spicata Essential Oil in Suppression of Aspergillus Flavus and Aflatoxin Contamination in Chickpea with Particular Emphasis to Mode of Antifungal Action. Protoplasma. 2016, 253(3), 647–653.
  • Perczak, A.; Juś, K.; Marchwińska, K.; Gwiazdowska, D.; Waśkiewicz, A.; Goliński, P. Degradation of Zearalenone by Essential Oils under in Vitro Conditions. Front. Microbiol. 2016, 7, 1224. DOI: 10.3389/fmicb.2016.01224.
  • Ozcakmak, S.; Gul, O.; Dervisoglu, M.; Yilmaz, A.; Sagdic, O.; Arici, M. Comparison of the Effect of Some Essential Oils on the Growth of Penicillium Verrucosum and Its Ochratoxin a Production. J. Food Process. Preserv. 2017, 41(1), e13006.
  • Tian, J.; Ban, X.; Zeng, H.; He, J.; Huang, B.; Wang, Y. Chemical Composition and Antifungal Activity of Essential Oil from Cicuta Virosa L. Var. Latisecta Celak. Int. J. Food Microbiol. 2011, 145(2–3), 464–470.
  • Niderkorn, V.; Morgavi, D. P.; Pujos, E.; Tissandier, A.; Boudra, H. Screening of Fermentative Bacteria for Their Ability to Bind and Biotransform Deoxynivalenol, Zearalenone and Fumonisins in an in Vitro Simulated Corn Silage Model. Food Addit. Contam. 2007, 24(4), 406–415.
  • Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins. 2017, 9(4), 111.
  • Li, P.; Su, R.; Yin, R.; Lai, D.; Wang, M.; Liu, Y.; Zhou, L. Detoxification of Mycotoxins through Biotransformation. Toxins. 2020, 12(2), 121.
  • Wielogórska, E.; MacDonald, S.; Elliott, C. A Review of the Efficacy of Mycotoxin Detoxifying Agents Used in Feed in Light of Changing Global Environment and Legislation. World Mycotoxin J. 2016, 9(3), 419–433.
  • Ringot, D.; Lerzy, B.; Chaplain, K.; Bonhoure, J.P.; Auclair, E.; Larondelle, Y. In Vitro Biosorption of Ochratoxin A on the Yeast Industry By-products: Comparison of Isotherm Models. Bioresour. Technol. 2007, 98(9), 1812–1821.
  • Pfohl-Leszkowicz, A.; Hadjeba-Medjdoub, K.; Ballet, N.; Schrickx, J.; Fink-Gremmels, J. Assessment and Characterisation of Yeast-based Products Intended to Mitigate Ochratoxin Exposure Using in Vitro and in Vivo Models. Food Addit. Contam. 2015, 32(4), 604–616.
  • Bueno, D. J.; Casale, C.H.; Pizzolitto, R.P.; Salvano, M.A.; Oliver, G. Physical Adsorption of Aflatoxin B1 by Lactic Acid Bacteria and Saccharomyces Cerevisiae: A Theoretical Model. J. Food Prot. 2007, 70(9), 2148–2154.
  • Yiannikouris, A.; FRANCois, J.; Poughon, L.; Dussap, C.G.; Bertin, G.; Jeminet, G.; Jouany, J.P. Alkali Extraction of β-D-glucans from Saccharomyces Cerevisiae Cell Wall and Study of Their Adsorptive Properties toward Zearalenone. J. Agric. Food Chem. 2004, 52(11), 3666–3673.
  • Yiannikouris, A.; Poughon, L.; Cameleyre, X.; Dussap, C.G.; François, J.; Bertin, G.; Jouany, J.P. A Novel Technique to Evaluate Interactions between Saccharomyces Cerevisiae Cell Wall and Mycotoxins: Application to Zearalenone. Biotechnol. Lett. 2003, 25(10), 783–789.
  • Armando, M. R.; Galvagno, M.A.; Dogi, CA.; Cerrutti, P.; Dalcero, A.M.; Cavaglieri, L.R. Statistical Optimization of Culture Conditions for Biomass Production of Probiotic Gut-borne Saccharomyces Cerevisiae Strain Able to Reduce Fumonisin B1. J. Appl. Microbiol. 2018, 89(5), 1338–1346.
  • Cavret, S.; Laurent, N.; Videmann, B.; Mazallon, M.; Lecoeur, S. Assessment of Deoxynivalenol (DON) Adsorbents and Characterisation of Their Efficacy Using Complementary in Vitro Tests. Food Addit. Contam. 2010, 27(1), 43–53.
  • Aravind, K.; Patil, V. S.; Devegowda, G.; Umakantha, B.; Ganpule, S. P. Efficacy of Esterified Glucomannan to Counteract Mycotoxicosis in Naturally Contaminated Feed on Performance and Serum Biochemical and Hematological Parameters in Broilers. Poultr. Sci. 2003, 82(4), 571–576.
  • Mohaghegh, A.; Chamani, M.; Shivazad, M.; Sadeghi, A.A.; Afzali, N. Effect of Esterified Glucomannan on Broilers Exposed to Natural Mycotoxin-contaminated Diets. J. Appl. Animal Res. 2017, 45(1), 285–291.
  • Raymond, S.; Smith, T.; Swamy, H. Effects of Feeding a Blend of Grains Naturally Contaminated with Fusarium Mycotoxins on Feed Intake, Serum Chemistry, and Hematology of Horses, and the Efficacy of a Polymeric Glucomannan Mycotoxin Adsorbent. J. Anim. Sci. 2003, 81(9), 2123–2130. DOI: 10.2527/2003.8192123x.
  • Swamy, H.; Smith, T.; MacDonald, E.; Boermans, H.; Squires, E. Effects of Feeding a Blend of Grains Naturally Contaminated with Fusarium Mycotoxins on Swine Performance, Brain Regional Neurochemistry, and Serum Chemistry and the Efficacy of a Polymeric Glucomannan Mycotoxin Adsorbent. J. Anim. Sci. 2002, 80(12), 3257–3267.
  • Moss, M.; Long, M.; Long, M. T. Fate of Patulin in the Presence of the Yeast Saccharomyces Cerevisiae. Food Addit. Contam. 2002, 19(4), 387–399. DOI: 10.1080/02652030110091163.
  • Hua, S. S. T.; Beck, J.J.; Sarreal, S.B.L.; Gee, W. The Major Volatile Compound 2-phenylethanol from the Biocontrol Yeast, Pichia Anomala, Inhibits Growth and Expression of Aflatoxin Biosynthetic Genes of Aspergillus Flavus. Mycotoxin Res. 2014, 30(2), 71–78.
  • Cao, J.; Zhang, H.; Yang, Q.; Ren, R. Efficacy of Pichia Caribbica in Controlling Blue Mold Rot and Patulin Degradation in Apples. Int. J. Food Microbiol. 2013, 162(2), 167–173.
  • Molnar, O.; Schatzmayr, G.; Fuchs, E.; Prillinger, H. Trichosporon Mycotoxinivorans Sp. Nov., A New Yeast Species Useful in Biological Detoxification of Various Mycotoxins. Syst. Appl. Microbiol. 2005, 22(4), 661–671.
  • Peivasteh-Roudsari, L.; Pirhadi, M.; Karami, H.; Tajdar-oranj, B.; Molaee-Aghaee, E.; Sadighara, P. Probiotics and Food Safety: An Evidence-based Review. J. Food Safety Hygiene. 2019, 5(1), 50-50.
  • Ghanbari, R.; Molaee Aghaee, E.; Rezaie, S.; Jahed Khaniki, G.; Alimohammadi, M.; Soleimani, M.; Noorbakhsh, F. The Inhibitory Effect of Lactic Acid Bacteria on Aflatoxin Production and Expression of aflR Gene in Aspergillus Parasiticus. J. Food Saf. 2018, 38(1), e12413.
  • Fazeli, M. R.; HAJIMOHAMMADALI, M.; MOSHKANI, A.; SAMADI, N.; JAMALIFAR, H.; KHOSHAYAND, M. R.; VAGHARI, E.; POURAGAHI, S. Aflatoxin B1 Binding Capacity of Autochthonous Strains of Lactic Acid Bacteria. J. Food Prot. 2009, 72(1), 189–192.
  • Haskard, C.; Binnion, C.; Ahokas, J. Factors Affecting the Sequestration of Aflatoxin by Lactobacillusrhamnosus Strain GG. Chem.-Biol. Interact. 2000, 128(1), 39–49. DOI: 10.1016/S0009-2797(00)00186-1.
  • Haskard, C. A.; Binnion, C.; Ahokas, J. Surface Binding of Aflatoxin B1 by Lactic Acid Bacteria. Appl. Environ. Microbiol. 2001, 67(7), 3086–3091.
  • Dalié, D.; Deschamps, A.; Richard-Forget, F. Lactic Acid bacteria – Potential for Control of Mould Growth and Mycotoxins: A Review. Food Control. 2010, 76(1), 370–380. DOI: 10.1016/j.foodcont.2009.07.011.
  • Hatab, S.; Yue, T.; Mohamad, O. Removal of Patulin from Apple Juice Using Inactivated Lactic Acid Bacteria. J. Appl. Microbiol. 2012, 112(5), 892–899. DOI: 10.1111/j.1365-2672.2012.05279.x.
  • Petchkongkaew, A.; Taillandier, P.; Gasaluck, P.; Lebrihi, A. Isolation of Bacillus Spp. From Thai Fermented Soybean (Thua‐nao): Screening for Aflatoxin B1 and Ochratoxin A Detoxification. J. Appl. Microbiol. 2008, 104(5), 1495–1502.
  • Cho, K.; Kang, J.; Cho, W.; Lee, C.; Ha, J.; Song, K.B. In Vitro Degradation of Zearalenone by Bacillus Subtilis. Biotechnol. Lett. 2010, 32(12), 1921–1924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.