1,113
Views
11
CrossRef citations to date
0
Altmetric
Review

Recent Developments in the Preservation of Raw Fresh Food by Pulsed Electric Field

, , &

References

  • Guo, C. F.; Mujumdar, A. S.; Zhang, M. New Development in Radio Frequency Heating for Fresh Food Processing: A Review. Food Eng. Rev. 2019, 11(1), 29–43. DOI: 10.1007/s12393-018-9184-z.
  • Salehi, B.; Tumer, T. B.; Ozleyen, A.; Peron, G.; Dall’Acqua, S.; Rajkovic, J.; Naz, R.; Nosheen, A.; Mudau, F. N.; Labanca, F. J.; et al. Plants of the Genus Spinacia: From Bioactive Molecules to Food and Phytopharmacological Applications. Trends Food Sci. Tech. 2019, 88, 260–273. DOI: 10.1016/j.tifs.2019.03.028.
  • Sharifi-Rad, M.; Ozcelik, B.; Altin, G.; Daskaya-Dikmen, C.; Martorell, M.; Ramirez-Alarcon, K.; Alarcon-Zapata, P.; Morais-Braga, M. F. B.; Carneiro, J. N. P.; Leal, A.;; et al. Salvia Spp. Plants-from Farm to Food Applications and Phytopharmacotherapy. Trends Food Sci. Tech. 2018, 80, 242–263. DOI: 10.1016/j.tifs.2018.08.008.
  • Santana, J. C. C.; Araújo, S. A.; Alves, W. A. L.; Belan, P. A.; Jiangang, L.; Jianchu, C.; Dong-Hong, L. Optimization of Vacuum Cooling Treatment of Postharvest Broccoli Using Response Surface Methodology Combined with Genetic Algorithm Technique. Comput. Electron. Agr. 2018, 144, 209–215. DOI: 10.1016/j.compag.2017.12.010.
  • Song, X. Y.; Guo, Z. Y.; Liu, B. L.; Jaganathan, G. K. Evaluation of Bubbling Vacuum Cooling for the Small-Size Cooked Pork. Food Bioprocess. Tech. 2018, 11, 845–852. DOI: 10.1007/s11947-018-2058-9.
  • Bilbao-Sainz, C.; Sinrod, A.; Powell-Palm, M. J.; Dao, L.; Takeoka, G.; Williams, T.; Wood, D.; Ukpai, G.; Aruda, J.; Bridges, D. F.;; et al. Preservation of Sweet Cherry by Isochoric (Constant Volume) Freezing. Innov. Food Sci. Emerg. 2019, 52, 108–115. DOI: 10.1016/j.ifset.2018.10.016.
  • Cheng, W. W.; Sun, D. W.; Pu, H. B.; Wei, Q. Y. Characterization of Myofibrils Cold Structural Deformation Degrees of Frozen Pork Using Hyperspectral Imaging Coupled with Spectral Angle Mapping Algorithm. Food Chem. 2018, 239, 1001–1008. DOI: 10.1016/j.foodchem.2017.07.011.
  • Ma, J.; Pu, H. B.; Sun, D. W.; Gao, W. H.; Qu, J. H.; Ma, K. Y. Application of Vis-NIR Hyperspectral Imaging in Classification between Fresh and Frozen-thawed Pork Longissimus Dorsi Muscles. Int. J. Refrig. 2015, 50, 10–18. DOI: 10.1016/j.ijrefrig.2014.10.024.
  • Wang, J.; Fang, X. M.; Mujumdar, A. S.; Qian, J. Y.; Zhang, Q.; Yang, X. H.; Liu, Y. H.; Gao, Z. J.; Xiao, H. W. Effect of High-humidity Hot Air Impingement Blanching (HHAIB) on Drying and Quality of Red Pepper (Capsicum Annuum L.). Food Chem. 2017, 220, 145–152. DOI: 10.1016/j.foodchem.2016.09.200.
  • Hou, L. X.; Zhou, X.; Wang, S. J. Numerical Analysis of Heat and Mass Transfer in Kiwifruit Slices during Combined Radio Frequency and Vacuum Drying. Int J Heat Mass Transfer. 2020, 154, 119704. DOI: 10.1016/j.ijheatmasstransfer.2020.119704.
  • Inanoglu, S.; Barbosa-Canovas, G. V.; Patel, J.; Zhu, M. J.; Sablani, S. S.; Liu, F.; Tang, Z.; Tang, J. M. Impact of High-pressure and Microwave-assisted Thermal Pasteurization on Inactivation of Listeria Innocua and Quality Attributes of Green Beans. J. Food Eng. 2021, 288, 110162. DOI: 10.1016/j.jfoodeng.2020.110162.
  • Masood, H.; Razaeimotlagh, A.; Cullen, P. J.; Trujillo, F. J. Numerical and Experimental Studies on a Novel Steinmetz Treatment Chamber for Inactivation of Escherichia Coli by Radio Frequency Electric Fields. Innov. Food Sci. Emerg. 2017, 41, 337–347. DOI: 10.1016/j.ifset.2017.04.009.
  • Zhang, B. H.; Zhang, L. H.; Cheng, T.; Guan, X. Y.; Wang, S. J. Effects of Water Activity, Temperature and Particle Size on Thermal Inactivation of Escherichia Coli ATCC 25922 in Red Pepper Powder. Food Control. 2020, 107, 106817. DOI: 10.1016/j.foodcont.2019.106817.
  • Zhou, L. Y.; Wang, S. J. Verification of Radio Frequency Heating Uniformity and Sitophilus Oryzae Control in Rough, Brown, and Milled Rice. J. Stored Prod. Res. 2016, 65, 40–47. DOI: 10.1016/j.jspr.2015.12.003.
  • Salehi, B.; Abu-Darwish, M. S.; Tarawneh, A. H.; Cabral, C.; Gadetskaya, A. V.; Salgueiro, L.; Hosseinabadi, T.; Rajabi, S.; Chanda, W.; Sharifi-Rad, M.; et al. Thymus Spp. Plants - Food Applications and Phytopharmacy Properties. Trends Food Sci. Tech. 2019, 85, 287–306. DOI: 10.1016/j.tifs.2019.01.020.
  • Liu, C. Y.; Pirozzi, A.; Ferrari, G.; Vorobiev, E.; Grimi, N. Impact of Pulsed Electric Fields on Vacuum Drying Kinetics and Physicochemical Properties of Carrot. Food Res. Int. 2020, 137, 109658. DOI: 10.1016/j.foodres.2020.109658.
  • Tylewicz, U.; Tappi, S.; Mannozzi, C.; Romani, S.; Dellarosa, N.; Laghi, L.; Ragni, L.; Rocculi, P.; Dalla Rosa, M. Effect of Pulsed Electric Field (PEF) Pre-treatment Coupled with Osmotic Dehydration on Physico-chemical Characteristics of Organic Strawberries. J. Food Eng. 2017, 213, 2–9. DOI: 10.1016/j.jfoodeng.2017.04.028.
  • Clemente, I.; Condón-Abanto, S.; Pedrós-Garrido, S.; Whyte, P.; Lyng, J. G. Efficacy of Pulsed Electric Fields and Antimicrobial Compounds Used Alone and in Combination for the Inactivation of Campylobacter Jejuni in Liquids and Raw Chicken. Food Control. 2020, 107, 106491. DOI: 10.1016/j.foodcont.2019.01.017.
  • Timmermans, R. A. H.; Nederhoff, A. L.; Nierop Groot, M. N.; van Boekel, M. A. J. S.; Mastwijk, H. C. Effect of Electrical Field Strength Applied by PEF Processing and Storage Temperature on the Outgrowth of Yeasts and Moulds Naturally Present in a Fresh Fruit Smoothie. LWT-Food Sci. Technol. 2016, 230, 21–30.
  • López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Electric Fields Affect Endogenous Enzyme Activities, Respiration and Biosynthesis of Phenolic Compounds in Carrots. Postharvest Biol. Tec. 2020, 168, 111284. DOI: 10.1016/j.postharvbio.2020.111284.
  • Samaranayake, C. P.; Sastry, S. K. Effect of Moderate Electric Fields on Inactivation Kinetics of Pectin Methylesterase in Tomatoes: The Roles of Electric Field Strength and Temperature. J. Food Eng. 2016, 186, 17–26. DOI: 10.1016/j.jfoodeng.2016.04.006.
  • Liu, Z. W.; Zeng, X. A.; Ngadi, M. Enhanced Extraction of Phenolic Compounds from Onion by Pulsed Electric Field (PEF). J. Food Process. Pres. 2018, 42, e13755. DOI: 10.1111/jfpp.13755.
  • Puértolas, E.; Cregenzán, O.; Luengo, E.; Álvarez, I.; Raso, J. Pulsed-electric-field-Assisted Extraction of Anthocyanins from Purple-fleshed Potato. Food Chem. 2013, 136(3–4), 1330–1336. DOI: 10.1016/j.foodchem.2012.09.080.
  • Xue, D. N.; Farid, M. M. Pulsed Electric Field Extraction of Valuable Compounds from White Button Mushroom (Agaricus Bisporus). Innov. Food Sci. Emerg. 2015, 29, 178–186. DOI: 10.1016/j.ifset.2015.03.012.
  • Ribas-Agusti, A.; Martin-Belloso, O.; Soliva-Fortuny, R.; Elez-Martinez, P. Enhancing Hydroxycinnamic Acids and Flavan-3-ol Contents by Pulsed Electric Fields without Affecting Quality Attributes of Apple. Food Res. Int. 2019, 121, 433–440. DOI: 10.1016/j.foodres.2018.11.057.
  • Soliva-Fortuny, R.; Vendrell-Pacheco, M.; Martin-Belloso, O.; Elez-Martinez, P. Effect of Pulsed Electric Fields on the Antioxidant Potential of Apples Stored at Different Temperatures. Postharvest Biol. Tec. 2017, 132, 195–201. DOI: 10.1016/j.postharvbio.2017.03.015.
  • Yu, Y. S.; Jin, T. Z.; Fan, X. T.; Wu, J. J. Biochemical Degradation and Physical Migration of Polyphenolic Compounds in Osmotic Dehydrated Blueberries with Pulsed Electric Field and Thermal Pretreatments. Food Chem. 2018, 239, 1219–1225. DOI: 10.1016/j.foodchem.2017.07.071.
  • Tylewicz, U.; Tappi, S.; Genovese, J.; Mozzon, M.; Rocculi, P. Metabolic Response of Organic Strawberries and Kiwifruit Subjected to PEF Assisted-osmotic Dehydration. Innov. Food Sci. Emerg. 2019, 56, 8.
  • Alam, M. R.; Lyng, J. G.; Frontuto, D.; Marra, F.; Cinquanta, L. Effect of Pulsed Electric Field Pretreatment on Drying Kinetics, Color, and Texture of Parsnip and Carrot. J. Food Sci. 2018, 83(8), 2159–2166. DOI: 10.1111/1750-3841.14216.
  • Leong, S. Y.; Oey, I. Effect of Pulsed Electric Field Treatment on Enzyme Kinetics and Thermostability of Endogenous Ascorbic Acid Oxidase in Carrots (Daucus Carota Cv. Nantes). Food Chem. 2014, 146, 538–547. DOI: 10.1016/j.foodchem.2013.09.096.
  • Liu, C. Y.; Grimi, N.; Lebovka, N.; Vorobiev, E. Effects of Pulsed Electric Fields Treatment on Vacuum Drying of Potato Tissue. LWT-Food Sci. Technol. 2018, 95, 289–294. DOI: 10.1016/j.lwt.2018.04.090.
  • Pataro, G.; Carullo, D.; Bakar-Siddique, M. A.; Falcone, M.; Donsì, F.; Ferrari, G. Improved Extractability of Carotenoids from Tomato Peels as Side Benefits of PEF Treatment of Tomato Fruit for More Energy-efficient Steam-assisted Peeling. J. Food Eng. 2018, 233, 65–73. DOI: 10.1016/j.jfoodeng.2018.03.029.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. A. Applied and Emerging Methods for Meat Tenderization: A Comparative Perspective. Compr. Rev. Food Sci. F. 2018a, 17(4), 841–859.
  • Kantono, K.; Hamid, N.; Oey, I.; Wang, S.; Xu, Y.; Ma, Q. L.; Faridnia, F.; Farouk, M. Physicochemical and Sensory Properties of Beef Muscles after Pulsed Electric Field Processing. Food Res. Int. 2019, 121, 1–11. DOI: 10.1016/j.foodres.2019.03.020.
  • McDonnell, C. K.; Allen, P.; Chardonnereau, F. S.; Arimi, J. M.; Lyng, J. G. The Use of Pulsed Electric Fields for Accelerating the Salting of Pork. LWT-Food Sci. Technol. 2014, 59(2), 1054–1060. DOI: 10.1016/j.lwt.2014.05.053.
  • Li, J. H.; Shi, J. Y.; Huang, X. W.; Zou, X. B.; Li, Z. H.; Zhang, D.; Zhang, W.; Xu, Y. W. Effects of Pulsed Electric Field on Freeze-thaw Quality of Atlantic Salmon. Innov. Food Sci. Emerg. 2020, 65, 102454. DOI: 10.1016/j.ifset.2020.102454.
  • Luo, Q.; Hamid, N.; Oey, I.; Leong, S. Y.; Kantono, K.; Alfaro, A.; Lu, J. Physicochemical Changes in New Zealand Abalone (Haliotis Iris) with Pulsed Electric Field (PEF) Processing and Heat Treatments. LWT-Food Sci. Technol. 2019, 115, 108438. DOI: 10.1016/j.lwt.2019.108438.
  • Yan, L. G.; He, L.; Xi, J. High Intensity Pulsed Electric Field as an Innovative Technique for Extraction of Bioactive Compounds-A Review. Crit. Rev. Food Sci. 2017, 57(13), 2877–2888. DOI: 10.1080/10408398.2015.1077193.
  • Giteru, S. G.; Oey, I.; Ali, A. M. Feasibility of Using Pulsed Electric Fields to Modify Biomacromolecules: A Review. Trends Food Sci. Tech. 2018, 72, 91–113. DOI: 10.1016/j.tifs.2017.12.009.
  • Gomez, B.; Munekata, P. E. S.; Gavahian, M.; Barba, F. J.; Marti-Quijal, F. J.; Bolumar, T.; Campagnol, P. C. B.; Tomasevic, I.; Lorenzo, J. M. Application of Pulsed Electric Fields in Meat and Fish Processing Industries: An Overview. Food Res. Int. 2019, 123, 95–105. DOI: 10.1016/j.foodres.2019.04.047.
  • Xi, J.; Li, Z. M.; Fan, Y. Recent Advances in Continuous Extraction of Bioactive Ingredients from Food-processing Wastes by Pulsed Electric Fields. Crit. Rev. Food Sci. 2020, 6, 1–13.
  • Vorobiev, E.; Lebovka, N. Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy; Springer: Cham, 2020. DOI: 10.1007/978-3-030-40917-3.
  • Valič, B.; Golzio, M.; Pavlin, M.; Schatz, A.; Faurie, C.; Gabriel, B.; Teissié, J.; Rols, M. P.; Miklav, D. B. Effect of Electric Field Induced Transmembrane Potential on Spheroidal Cells: Theory and Experiment. Eur Biophys J Biophy. 2003, 32(6), 519–528. DOI: 10.1007/s00249-003-0296-9.
  • Carvalho, R. J.; Souza, G. T.; Pagán, E.; García-Gonzalo, D.; Magnani, M.; Pagán, R. Nanoemulsions of Mentha Piperita L. Essential Oil in Combination with Mild Heat, Pulsed Electric Fields (PEF) and High Hydrostatic Pressure (HHP) as an Alternative to Inactivate Escherichia Coli O157: H7 in Fruit Juices. Innov. Food Sci. Emerg. 2018, 48, 219–227. DOI: 10.1016/j.ifset.2018.07.004.
  • Mendes-Oliveira, G.; Jin, T. Z.; Campanella, O. H. Modeling the Inactivation of Escherichia Coli O157: H7and Salmonella Typhimurium in Juices by Pulsed Electric Fields: The Role of the Energy Density. J. Food Eng. 2020, 282, 110001. DOI: 10.1016/j.jfoodeng.2020.110001.
  • Li, Z. M.; Fan, Y.; Xi, J. Recent Advances in High Voltage Electric Discharge Extraction of Bioactive Ingredients from Plant Materials. Food Chem. 2019, 277, 246–260. DOI: 10.1016/j.foodchem.2018.10.119.
  • Maza, M. A.; Martínez, J. M.; Delsob, C.; Camargo, A.; Raso, J.; Álvarez, I. PEF-Dependency on Polyphenol Extraction during Maceration/Fermentation of Grenache Grapes. Innov. Food Sci. Emerg. 2020, 60, 102303. DOI: 10.1016/j.ifset.2020.102303.
  • Redondo, D.; Venturini, M. E.; Luengo, E.; Raso, J.; Arias, E. Pulsed Electric Fields as a Green Technology for the Extraction of Bioactive Compounds from Thinned Peach By-products. Innov. Food Sci. Emerg. 2018, 45, 335–343. DOI: 10.1016/j.ifset.2017.12.004.
  • Wang, Q.; Li, Y.; Sun, D. W.; Zhu, Z. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications. Crit. Rev. Food Sci. 2018, 58(13), 2285–2298. DOI: 10.1080/10408398.2018.1434609.
  • Vegiri, A. Dynamic Response of Liquid Water to an External Static Electric Field at T=250 K. J. Mol. Liq. 2004, 112(1–2), 107–116. DOI: 10.1016/j.molliq.2003.12.004.
  • Dalvi-Isfahan, M.; Hamdami, N.; Xanthakis, E.; Le-Bail, A. Review on the Control of Ice Nucleation by Ultrasound Waves, Electric and Magnetic Fields. J. Food Eng. 2017, 195, 222–234. DOI: 10.1016/j.jfoodeng.2016.10.001.
  • Chaplin, M. Water Structure and Science. http://www1.lsbu.ac.uk/water/, 2015.
  • Han, Z.; Cai, M. J.; Cheng, J. H.; Sun, D. W. Effects of Electric Fields and Electromagnetic Wave on Food Protein Structure and Functionality: A Review. Trends Food Sci. Tech. 2018, 75, 1–9. DOI: 10.1016/j.tifs.2018.02.017.
  • Terefe, N. S.; Buckow, R.; Versteeg, C. Quality-related Enzymes in Plant-based Products: Effects of Novel Food Processing Technologies Part 2: Pulsed Electric Field Processing. Crit. Rev. Food Sci. 2015, 55(1), 1–15. DOI: 10.1080/10408398.2012.701253.
  • Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The Principles of High Voltage Electric Field and Its Application in Food Processing: A Review. Food Res. Int. 2016, 89, 48–62. DOI: 10.1016/j.foodres.2016.09.002.
  • Thamkaew, G.; Galindo, G. F. Influence of Pulsed and Moderate Electric Field Protocols on the Reversible Permeabilization and Drying of Thai Basil Leaves. Innov. Food Sci. Emerg. 2020, 64, 102430. DOI: 10.1016/j.ifset.2020.102430.
  • Dellarosa, N.; Ragni, L.; Laghi, L.; Tylewicz, U.; Rosa, M. D. Time Domain Nuclear Magnetic Resonance to Monitor Mass Transfer Mechanisms in Apple Tissue Promoted by Osmotic Dehydration Combined with Pulsed Electric Fields. Innov. Food Sci. Emerg. 2016, 37, 345–351. DOI: 10.1016/j.ifset.2016.01.009.
  • Traffano-Schiffo, M. V.; Tylewicz, U.; Castro-Giraldez, M.; Fito, P. J.; Ragni, L.; Dalla-Rosa, M. Effect of Pulsed Electric Fields Pre-treatment on Mass Transport during the Osmotic Dehydration of Organic Kiwifruit. Innov. Food Sci. Emerg. 2016, 38, 243–251. DOI: 10.1016/j.ifset.2016.10.011.
  • Dermesonlouoglou, E.; Chalkia, A.; Dimopoulos, G.; Taoukis, P. Combined Effect of Pulsed Electric Field and Osmotic Dehydration Pre-treatments on Mass Transfer and Quality of Air Dried Goji Berry. Innov. Food Sci. Emerg. 2018, 49, 106–115. DOI: 10.1016/j.ifset.2018.08.003.
  • Fauster, T.; Giancaterino, M.; Pittia, P.; Jaeger, H. Effect of Pulsed Electric Field Pretreatment on Shrinkage, Rehydration Capacity and Texture of Freeze-dried Plant Materials. LWT-Food Sci. Technol. 2020, 121, 108937. DOI: 10.1016/j.lwt.2019.108937.
  • Lammerskitten, A.; Mykhailyk, V.; Wiktor, A.; Toepfl, S.; Nowacka, M.; Bialik, M.; Czyżewski, J.; Witrowa-Rajchert, D.; Parniakov, O. Impact of Pulsed Electric Fields on Physical Properties of Freeze-dried Apple Tissue. Innov. Food Sci. Emerg. 2019, 57, 102211. DOI: 10.1016/j.ifset.2019.102211.
  • Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Cell Disintegration of Apple Peels Induced by Pulsed Electric Field and Efficiency of Bio-compound Extraction. Food Bioprod. Process. 2020, 122, 13–21. DOI: 10.1016/j.fbp.2020.03.004.
  • Sotelo, K. A. G.; Hamid, N.; Oey, I.; Pook, C.; Gutierrez-Maddox, N.; Ma, Q. L.; Leong, S. Y.; Lu, J. Red Cherries (Prunus Avium Var. Stella) Processed by Pulsed Electric Field - Physical, Chemical and Microbiological Analyses. Food Chem. 2018, 240, 926–934. DOI: 10.1016/j.foodchem.2017.08.017.
  • Jin, T. Z.; Yu, Y. S.; Gurtler, J. B. Effects of Pulsed Electric Field Processing on Microbial Survival, Quality Change and Nutritional Characteristics of Blueberries. LWT-Food Sci. Technol. 2017, 77, 517–524. DOI: 10.1016/j.lwt.2016.12.009.
  • López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Enhancing Phenolic Content in Carrots by Pulsed Electric Fields during Posttreatment Time: Effects on Cell Viability and Quality Attributes. Innov. Food Sci. Emerg. 2020, 59, 102252. DOI: 10.1016/j.ifset.2019.102252.
  • Gonzalez-Casado, S.; Martin-Belloso, O.; Elez-Martinez, P.; Soliva-Fortuny, R. Enhancing the Carotenoid Content of Tomato Fruit with Pulsed Electric Field Treatments: Effects on Respiratory Activity and Quality Attributes. Postharvest Biol. Tec. 2018a, 137, 113–118. DOI: 10.1016/j.postharvbio.2017.11.017.
  • Gonzalez-Casado, S.; Martin-Belloso, O.; Elez-Martinez, P.; Soliva-Fortuny, R. Induced Accumulation of Individual Carotenoids and Quality Changes in Tomato Fruits Treated with Pulsed Electric Fields and Stored at Different Post-treatments Temperatures. Postharvest Biol. Tec. 2018b, 146, 117–123. DOI: 10.1016/j.postharvbio.2018.08.013.
  • Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of Lycopene from Industrially Derived Tomato Processing Byproducts by Pulsed Electric Fields-assisted Extraction. Innov. Food Sci. Emerg. 2020, 63, 102369. DOI: 10.1016/j.ifset.2020.102369.
  • Alirezalu, K.; Munekata, P. E. S.; Parniakov, O.; Barba, F. J.; Witt, J.; Toepfl, S.; Wiktor, A.; Lorenzo, J. M. Pulsed Electric Field and Mild Heating for Milk Processing: A Review on Recent Advances. J. Sci. Food Agr. 2020, 100(1), 16–24.
  • Bhattacharjee, C.; Saxena, V. K.; Dutta, S. Novel Thermal and Non-thermal Processing of Watermelon Juice. Trends Food Sci. Tech. 2019, 93, 234–243. DOI: 10.1016/j.tifs.2019.09.015.
  • Wyk, S. V.; Farid, M. M.; Silva, F. V. M. SO2, High Pressure Processing and Pulsed Electric Field Treatments of Red Wine: Effect on Sensory, Brettanomyces Inactivation and Other Quality Parameters during One Year Storage. Innov. Food Sci. Emerg. 2018, 48, 204–211. DOI: 10.1016/j.ifset.2018.06.016.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. A. Calpain Activity, Myofibrillar Protein Profile, and Physicochemical Properties of Beef Semimembranosus and Biceps Femoris from Culled Dairy Cows during Aging. J. Food Process. Pres. 2018b, 42(12), 10. DOI: 10.1111/jfpp.13835.
  • Lang, Y. M.; Sha, K.; Zhang, R.; Xie, P.; Luo, X.; Sun, B. Z.; Li, H. P.; Zhang, L.; Zhang, S. S.; Liu, X. Effect of Electrical Stimulation and Hot Boning on the Eating Quality of Gannan Yak Longissimus Lumborum. Meat Sci. 2016, 112, 3–8. DOI: 10.1016/j.meatsci.2015.10.011.
  • Chian, F. M.; Kaur, L.; Oey, I.; Astruc, T.; Hodgkinson, S.; Boland, M. Effect of Pulsed Electric Fields (PEF) on the Ultrastructure and in Vitro Protein Digestibility of Bovine Longissimus Thoracis. LWT-Food Sci. Technol. 2019, 13, 253–259. DOI: 10.1016/j.lwt.2019.01.005.
  • Mungure, T. E.; Farouk, M. M.; John Birch, E.; Carne, A.; Staincliffe, M.; Stewart, I.; Bekhit, A. E. A. Effect of PEF Treatment on Meat Quality Attributes, Ultrastructure and Metabolite Profiles of Wet and Dry Aged Venison Longissimus Dorsi Muscle. Innov. Food Sci. Emerg. 2020, 65, 102457. DOI: 10.1016/j.ifset.2020.102457.
  • Khan, A. A.; Randhawa, M. A.; Carne, A.; Ahmed, I. A. M.; Barr, D.; Reid, M.; Bekhit, A. E. A. Quality and Nutritional Minerals in Chicken Breast Muscle Treated with Low and High Pulsed Electric Fields. Food Bioprocess. Tech. 2018, 11(1), 122–131. DOI: 10.1007/s11947-017-1997-x.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. A. Pulsed Electric Field Operates Enzymatically by Causing Early Activation of Calpains in Beef during Ageing. Meat Sci. 2019, 153, 144–151. DOI: 10.1016/j.meatsci.2019.03.018.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Mungure, T. E.; Jayawardena, S. R.; Bekhit, A. E. A. Effect of Pulsed Electric Field on Calpain Activity and Proteolysis of Venison. Innov. Food Sci. Emerg. 2019, 52, 131–135. DOI: 10.1016/j.ifset.2018.11.006.
  • Khan, A. A.; Randhawa, M. A.; Carne, A.; Ahmed, I. A. M.; Barr, D.; Reid, M.; Bekhit, A. E. A. Effect of Low and High Pulsed Electric Field on the Quality and Nutritional Minerals in Cold Boned Beef M-longissimus Et Lumborum. Innov. Food Sci. Emerg. 2017, 41, 135–143.
  • Faridnia, F.; Ma, Q. L.; Bremer, P. J.; Burritt, D. J.; Hamid, N.; Oey, I. Effect of Freezing as Pre-treatment Prior to Pulsed Electric Field Processing on Quality Traits of Beef Muscles. Innov. Food Sci. Emerg. 2015, 29, 31–40. DOI: 10.1016/j.ifset.2014.09.007.
  • Khan, A. A.; Randhawa, M. A.; Carne, A.; Ahmed, I. A. M.; Al-Juhaimi, F. Y.; Barr, D.; Reid, M.; Bekhit, A. E. A. Effect of Low and High Pulsed Electric Field Processing on Macro and Micro Minerals in Beef and Chicken. Innov. Food Sci. Emerg. 2018, 45, 273–279. DOI: 10.1016/j.ifset.2017.11.012.
  • Arroyo, C.; Lascorz, D.; O’Dowd, L.; Noci, F.; Arimi, J.; Lyng, J. G. Effect of Pulsed Electric Field Treatments at Various Stages during Conditioning on Quality Attributes of Beef Longissimus Thoracis Et Lumborum Muscle. Meat Sci. 2015, 99, 52–59. DOI: 10.1016/j.meatsci.2014.08.004.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. A. The Application of Pulsed Electric Field as a Sodium Reducing Strategy for Meat Products. Food Chem. 2020, 306, 125622. DOI: 10.1016/j.foodchem.2019.125622.
  • O’Dowd, L. P.; Arimi, J. M.; Noci, F.; Cronin, D. A.; Lyng, J. G. An Assessment of the Effect of Pulsed Electrical Fields on Tenderness and Selected Quality Attributes of Post Rigour Beef Muscle. Meat Sci. 2013, 93(2), 303–309. DOI: 10.1016/j.meatsci.2012.09.010.
  • Franco, D.; Munekata, P. E. S.; Agregán, R.; Bermúdez, R.; López-Pedrouso, M.; Pateiro, M.; Lorenzo, J. M. Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants. 2020, 9, 90. DOI: 10.3390/antiox9020090.
  • Gulzar, S.; Benjakul, S. Impact of Pulsed Electric Field Pretreatment on Yield and Quality of Lipid Extracted from Cephalothorax of Pacific White Shrimp (Litopenaeus Vannamei) by Ultrasound-assisted Process. Int. J. Food Sci. Tech. 2020, 55, 619–630. DOI: 10.1111/ijfs.14316.
  • He, G.; Yin, Y. G.; Yan, X. X.; Yu, Q. Y. Optimisation Extraction of Chondroitin Sulfate from Fish Bone by High Intensity Pulsed Electric Fields. Food Chem. 2014, 164, 205–210.
  • Ahmad Shiekh, K.; Benjakul, S. Melanosis and Quality Changes during Refrigerated Storage of Pacific White Shrimp Treated with Chamuang (Garcinia Cowa Roxb.) Leaf Extract with the Aid of Pulsed Electric Field. Food Chem. 2019, 309, 125516. DOI: 10.1016/j.foodchem.2019.125516.
  • Semenoglou, I.; Dimopoulos, G.; Tsironi, T.; Taoukis, P. Mathematical Modelling of the Effect of Solution Concentration and the Combined Application of Pulsed Electric Fields on Mass Transfer during Osmotic Dehydration of Sea Bass Fillets. Food Bioprod. Process. 2020, 121, 186–192. DOI: 10.1016/j.fbp.2020.02.007.
  • Chotphruethipong, L.; Aluko, R. E.; Benjakul, S. Enhanced Asian Sea Bass Skin Defatting Using Porcine Lipase with the Aid of Pulsed Electric Field Pretreatment and Vacuum Impregnation. Process Biochem. 2019, 86, 58–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.