1,250
Views
8
CrossRef citations to date
0
Altmetric
Review

Current Status of Loquat (Eriobotrya Japonica Lindl.): Bioactive Functions, Preservation Approaches, and Processed Products

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Lin, S.; Huang, X.; Cuevas, J.; Janick, J. Loquat: An Ancient Fruit Crop with a Promising Future. Chron. Horticult. 2007, 47(2), 1–48.
  • Li, X.; Xu, C.; Chen, K. Nutritional and Composition of Fruit Cultivars: Loquat (Eriobotrya Japonica Lindl.). In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R.; Eds.; Academic Press, Elsevier: Waltham, MA, 2016; 371–394.
  • Caballero, P.; Fernández, M. A. Loquat, Production and Market. In: First international symposium on loquat. Zaragoza, C.I.H.E.A.M., Llácer, G., Badenes, M.L., Ed.; CIHEAM-IAMZ: Valencia, Spain, 2003; pp 11–20.
  • Feng, J. J.; Liu, Q.; Wang, X. D.; Chen, J. W.; Ye, J. G. Characterization of a New Loquat Cultivar ‘Ninghaibai.’. Acta Hortic. 2007, 750(750), 117–124. DOI: 10.17660/ActaHortic.2007.750.16.
  • Gong, R. G.; Lai, J.; Yang, W.; Liao, M. A.; Wang, Z. H.; Liang, G. L. Analysis of Alterations to the Transcriptome of Loquat (Eriobotrya Japonica Lindl.) Under Low Temperature Stress via De Novo Sequencing. Genet. Mol. Res. 2015, 14(3), 9423–9436. DOI: 10.4238/2015.August.14.6.
  • Lin, S.; Sharpe, R. H.; Janick, J. Loquat: Botany and Horticulture. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, 1999; pp 234–276.
  • Zhou, C.-H.; Xu, C.-J.; Sun, C.-D.; Li, X.; Chen, K.-S. Carotenoids in White- and Red-Fleshed Loquat Fruits. J. Agric. Food Chem. 2007, 55(19), 7822–7830. DOI: 10.1021/jf071273h.
  • Hasegawa, P. N.; Faria, A. F.; Mercadante, A. Z.; Chagas, E. A.; Pio, R.; Lajolo, F. M.; Cordenunsi, B. R.; Purgatto, E. Chemical Composition of Five Loquat Cultivars Planted in Brazil. Ciência E Tecnol. Aliment. 2010, 30(2), 552–559. DOI: 10.1590/S0101-20612010000200040.
  • Zhang, W.; Zhao, X.; Sun, C.; Li, X.; Chen, K. Phenolic Composition from Different Loquat (Eriobotrya Japonica Lindl.) Cultivars Grown in China and Their Antioxidant Properties. Molecules. 2015, 20(1), 542–555. DOI: 10.3390/molecules20010542.
  • Liu, Y.; Zhang, W.; Xu, C.; Li, X. Biological Activities of Extracts from Loquat (Eriobotrya Japonica Lindl.): A Review. Int. J. Mol. Sci. 2016, 17(12), 1–15. DOI: 10.3390/ijms17121983.
  • Sagar, N. A.; Pareek, S.; Bhardwaj, R.; Vyas, N. Bioactive Compounds of Loquat (Eriobotrya Japonica (Thunb.) L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Springer International Publishing: Cham, 2020; pp 1–17.
  • Li, S.;. Bencao Gangmu - Compendium of Materia Medica; Foreign Lang Press Beijing: China, 1999.
  • Pareek, S.; Benkeblia, N.; Janick, J.; Cao, S.; Yahia, E. M. Postharvest Physiology and Technology of Loquat (Eriobotrya Japonica Lindl.) Fruit. J. Sci. Food Agric. 2014, 94(8), 1495–1504. DOI: 10.1002/jsfa.6560.
  • Tian, S.; Qin, G.; Li, B. Loquat (Eriobotrya Japonica L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits Volume 3; Yahia, E.M.; Ed., Elsevier Science: Amsterdam, 2011; 424–442.
  • Pant, S.; Chinwan, D. Value Addition of Food Products. Int. J. Eng. Sci. Res. 2014, 4(12), 946–949.
  • Geleta, N.; Labuschagne, M. T.; Viljoen, C. D. Genetic Diversity Analysis in Sorghum Germplasm as Estimated by AFLP, SSR and Morpho-agronomical Markers. Biodivers. Conserv. 2006, 15(10), 3251–3265. DOI: 10.1007/s10531-005-0313-7.
  • Chalak, L.; Noun, A.; Youssef, H.; Hamadeh, B. Diversity of Loquats (Eriobotrya Japonica Lindl.) Cultivated in Lebanon as Assessed by Morphological Traits. Sci. Hortic. 2014, 167, 135–144. DOI: 10.1016/j.scienta.2014.01.008.
  • Kaur, S.;. Evaluation of Fruit Quality Characteristics of Four Genotypes of Loquat (Eriobotrya Japonica Lindl.) Under Sub-montaneous Conditions of Punjab. Int. J. Chem. Stud. 2018, 6(4), 1908–1914.
  • Garen, Y.; Lamis, C.; Dani, F.; Jad, R.; Falah, A.; Georges, A. Physical and Biochemical Characterisation of Loquat Fruit (Eriobotyra Japonica Lindl.) Varieties in Southern Lebanese Areas. Int. J. Plant, Anim. Environ. Sci. 2016, 6(3), 239–256.
  • Hussain, A.; Abbasi, N. A.; Hafiz, I. A.; Akhtar, A. Morpho-physical Characteristics of Eight Loquat Genotypes Cultivated in Chakwal District, Pakistan. Pakistan J. Bot. 2009, 41(6), 2009.
  • Llacer, G.; Badenes, M.; Martinez Calvo, J. Plant Material of Loquat in Mediterranean Countries. In First International Symposium on Loquat Zaragoza: CIHEAM; Llacer, G., Badenes, M.; Eds., CIHEAM-IAMZ: Valencia, Spain, 2003; 45–52.
  • Huxley, A. J.; Griffiths, M.; Levy, M. The New Royal Horticultural Society Dictionary of Gardening; Macmillan Press: London , 1992; Vol. 2.
  • Kumar, S.; Ritu, G. P.; Critical, A. Review on Loquat (Eriobotrya Japonica Thunb/Lindl). Int. J. Pharm. Biol. Arch. 2014, 5(2), 1–7.
  • Polat, A. A.; Calıskan, O. Loquat Production in Turkey. Acta Hortic. 2007, 750(750), 49–54. DOI: 10.17660/ActaHortic.2007.750.4.
  • Zhang, H. Z.; Peng, S. A.; Cai, L. H.; Fang, D. Q. The Germplasm Resources of the Genus Eriobotrya with Special Reference on the Origin of E. Japonica Lindl. Acta Hort. Sin. 1990, 17(1), 5–12.
  • Soler, E.; Martínez-Calvo, J.; Llácer, G.; Badenes, M. Loquat in Spain: Production and Marketing. In Acta Hortic.International Society for Horticultural Science: Leuven, Belgium,750, 2007; pp 45–48.
  • Canete, M. L.; Pinillos, V.; Cuevas, J.; Hueso, J. J. Sensory Evaluation of the Main Loquat Cultivars in Spain. In Acta Hortic. 2007, 750, 159–164.
  • Janick, J.; Zhang, Z.; Lin, S. Important World Cultivars of Loquat. In Acta Hortic, International Society for Horticultural Science: Leuven, Belgium, 2015, 1092, ; pp 25–32.
  • Faria, A. F.; Hasegawa, P. N.; Chagas, E. A.; Pio, R.; Purgatto, E.; Mercadante, A. Z. Cultivar Influence on Carotenoid Composition of Loquats from Brazil. J. Food Compos. Anal. 2009, 22(3), 196–203. DOI: 10.1016/j.jfca.2008.10.014.
  • Wei, Y.; Xu, F.; Shao, X. Changes in Soluble Sugar Metabolism in Loquat Fruit during Different Cold Storage. J. Food Sci. Technol. 2017, 54(5), 1043–1051. DOI: 10.1007/s13197-017-2536-5.
  • Barreto, G. P. M.; Benassi, M. T.; Mercadante, A. Z. Bioactive Compounds from Several Tropical Fruits and Correlation by Multivariate Analysis to Free Radical Scavenger Activity. J. Braz. Chem. Soc. 2009, 20(10), 1856–1861. DOI: 10.1590/S0103-50532009001000013.
  • Xu, H.; Chen, J. Commercial Quality, Major Bioactive Compound Content and Antioxidant Capacity of 12 Cultivars of Loquat (Eriobotrya Japonica Lindl.) Fruits. J. Sci. Food Agric. 2011, 91(6), 1057–1063. DOI: 10.1002/jsfa.4282.
  • Koba, K.; Matsuoka, A.; Osada, K.; Huang, Y. Effect of Loquat (Eriobotrya Japonica) Extracts on LDL Oxidation. Food Chem. 2007, 104(1), 308–316. DOI: 10.1016/j.foodchem.2006.11.043.
  • Amorós, A.; Zapata, P.; Pretel, M. T.; Botella, M. A.; Serrano, M. Physico-Chemical and Physiological Changes during Fruit Development and Ripening of Five Loquat (Eriobotrya Japonica Lindl.) Cultivars. Food Sci. Technol. Int. 2003, 9(1), 43–51. DOI: 10.1177/1082013203009001007.
  • Cao, S.; Yang, Z.; Zheng, Y. Sugar Metabolism in Relation to Chilling Tolerance of Loquat Fruit. Food Chem. 2013, 136(1), 139–143. DOI: 10.1016/j.foodchem.2012.07.113.
  • Chen, Q. Y.; Zhou, J. Y.; Zhang, B.; Fu, X. M.; Song, X. Q.; Li, X.; Xu, C. J.; Chen, K. S. Sugar Composition Difference between White- and Red-fleshed Loquat Fruits and Its Relation with Activities of Sucrose-metabolizing Enzymes. J. Fruit. Sci. 2010, 27(4), 616–621.
  • Ding, Z.; Tian, S.; Wang, Y.; Li, B.; Chan, Z.; Han, J.; Xu, Y. Physiological Response of Loquat Fruit to Different Storage Conditions and Its Storability. Postharvest Biol. Technol. 2006, 41(2), 143–150. DOI: 10.1016/j.postharvbio.2006.03.012.
  • Chen, F. X.; Liu, X. H.; Chen, L. S. Developmental Changes in Pulp Organic Acid Concentration and Activities of Acid-metabolising Enzymes during the Fruit Development of Two Loquat (Eriobotrya Japonica Lindl.) Cultivars Differing in Fruit Acidity. Food Chem. 2009, 114(2), 657–664. DOI: 10.1016/j.foodchem.2008.10.003.
  • Lopes, M. M. A.; Sanches, A. G.; Souza, K. O.; Silva, E. O. Loquat/Nispero— Eriobotrya Japonica Lindl. In Exotic Fruits; Rodrigues, S., Silva, E.O., Brito, E.S.; Eds., Academic Press, Elsevier: Waltham, MA, 2018; 285–292.
  • Liang, Z. Z.; Aquino, R.; Feo, V.; Simone, F.; Pizza, C. Polyhydroxylated Triterpenes from Eriobotrya Japonica. Planta Med. 1990, 56(3), 330–332. DOI: 10.1055/s-2006-960973.
  • Ju, J. H.; Zhou, L.; Lin, G.; Liu, D.; Wang, L. W.; Yang, J. S. Studies on Constituents of Triterpene Acids from Eriobotrya Japonica and Their Anti-inflammatory and Antitussive Effects. Chinese Pharm. J. 2003, 38(10), 752-760.
  • Godoy, H. T.; Amaya, D. B. Carotenoid Composition and Vitamin A Value of Brazilian Loquat (Eriobotrya Japonica Lindl.). Arch. Latinoam. Nutr. 1995, 45(4), 336-339.
  • Pande, G.; Akoh, C. C. Organic Acids, Antioxidant Capacity, Phenolic Content and Lipid Characterisation of Georgia-grown Underutilized Fruit Crops. Food Chem. 2010, 120(4), 1067–1075. DOI: 10.1016/j.foodchem.2009.11.054.
  • Kader, A. A.;. Quality and Its Maintenance in Relation to the Postharvest Physiology of Strawberry. In The Strawberry into the 21st Century; Dale, A., Luby, J.J., Eds.; OR: Portland, 1991; pp 145–151.
  • Durgac, C.; Polat, A.; Kamiloglu, O. Determining Performances of Some Loquat (Eriobotrya Japonica) Cultivars under Mediterranean Coastal Conditions in Hatay, Turkey. New Zeal. J. Crop Hortic. Sci. 2010, 34(3), 225–230. DOI: 10.1080/01140671.2006.9514411.
  • Curi, P. N.; Nogueira, P. V.; Almeida, A. B.; Cavalho, C. S.; Pio, R.; Pasqual, M.; Souza, V. R. Processing Potential of Jellies from Subtropical Loquat Cultivars. Food Sci. Technol. 2017, 37(1), 70–75. DOI: 10.1590/1678-457x.07216.
  • Gentile, C.; Reig, C.; Corona, O.; Todaro, A.; Mazzaglia, A.; Perrone, A.; Gianguzzi, G.; Agusti, M.; Farina, V. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya Japonica Lindl.) Fruits Grown in Mediterranean Area. Plant Foods Hum. Nutr. 2016, 71(3), 330–338. DOI: 10.1007/s11130-016-0564-3.
  • Cañete, M. L.; Hueso, J. J.; Pinillos, V.; Cuevas, J. Ripening Degree at Harvest Affects Bruising Susceptibility and Fruit Sensorial Traits of Loquat (Eriobotrya japonicaLindl.). Sci. Hortic. 2015, 187, 102–107. DOI: 10.1016/j.scienta.2015.03.008.
  • Besada, C.; Salvador, A.; Sdiri, S.; Gil, R.; Granell, A. A Combination of Physiological and Chemometrics Analyses Reveals the Main Associations between Quality and Ripening Traits and Volatiles in Two Loquat Cultivars. Metabolomics. 2013, 9(2), 324–336. DOI: 10.1007/s11306-012-0447-z.
  • Tian, S.; Li, B.; Ding, Z. Physiological Properties and Storage Technologies of Loquat Fruit. Fresh Prod. 2007, 1(1), 76–81.
  • Schreiner, M.; Huyskens-keil, S. Phytochemicals in Fruit and Vegetables: Health Promotion and Postharvest Elicitors. Crit. Rev. Plant Sci. 2006, 25(3), 267–278. DOI: 10.1080/07352680600671661.
  • Oz, A. T.; Kafkas, E. Phytochemicals in Fruits and Vegetables. In Superfood and Functional Food - an Overview of Their Processing and Utilization; Waisundara, V.Y.; Ed., IntechOpen Limited: London, 2017; 175–184.
  • Shafi, S.; Tabassum, N. Antihyperglycemic and Lipid Lowering Activities of Ethanolic Extract of Eriobotrya Japonica Seeds in Alloxan Induced Diabetic Rats. Eur. Sci. J. 2013, 9, 21.
  • Goulas, V.; Minas, I. S.; Kourdoulas, P. M.; Vicente, A. R.; Manganaris, G. A. Phytochemical Content, Antioxidants and Cell Wall Metabolism of Two Loquat (Eriobotrya Japonica) Cultivars under Different Storage Regimes. Food Chem. 2014, 155, 227–234. DOI: 10.1016/j.foodchem.2014.01.054.
  • Ahumada, J.; Fuentealba, C.; Olaeta, J. A.; Undurraga, P.; Pedreschi, R.; Shetty, K.; Chirinos, R.; Campos, D.; Ranilla, L. G. Bioactive Compounds of Loquat (Eriobotrya Japonica Lindl.) Cv. Golden Nugget and Analysis of in Vitro Functionality for Hyperglycemia Management. Cienc. E Investig. Agrar. 2017, 44(3), 272–284.
  • Fu, X.; Kong, W.; Peng, G.; Zhou, J.; Azam, M.; Xu, C.; Grierson, D.; Chen, K. Plastid Structure and Carotenogenic Gene Expression in Red- and White-fleshed Loquat (Eriobotrya Japonica) Fruits. J. Exp. Bot. 2012, 63(1), 341–354. DOI: 10.1093/jxb/err284.
  • Swanson, B. G.;. Tannins and Polyphenols. In Encyclopaedia of Food Science, Food Technology and Nutrition; Academic Press: Waltham, MA, 1996; pp 4513–4517.
  • Ferreres, F.; Gomes, D.; Valentão, P.; Gonçalves, R.; Pio, R.; Chagas, E. A.; Seabra, R. M.; Andrade, P. B. Improved Loquat (Eriobotrya Japonica Lindl.) Cultivars: Variation of Phenolics and Antioxidative Potential. Food Chem. 2009, 114(3), 1019–1027. DOI: 10.1016/j.foodchem.2008.10.065.
  • Ding, C.; Chachin, K.; Ueda, Y.; Imahori, Y.; Wang, C. Y. Metabolism of Phenolic Compounds during Loquat Fruit Development. J. Agric. Food Chem. 2001, 49(6), 2883–2888. DOI: 10.1021/jf0101253.
  • Kumar, V.; Kushwaha, R.; Goyal, A.; Tanwar, B.; Kaur, J. Process Optimization for the Preparation of Antioxidant Rich Ginger Candy Using Beetroot Pomace Extract. Food Chem. 2018, 245, 168–177. DOI: 10.1016/j.foodchem.2017.10.089.
  • Lee, S.; Park, M.; Kim, E.; Cho, Y.; Cho, H. Antioxidant Activities and Phenolic Contents of the Extracts in Different Loquat (Eriobotrya Japonica) Cultivars. Acta Hortic. 2014, 1125, 389–394.
  • Xu, H.; Li, X.; Chen, J. Comparison of Phenolic Compound Contents and Antioxidant Capacities of Loquat (Eriobotrya Japonica Lindl.). Fruits. Food Sci. Biotechnol. 2014, 23(6), 2013–2020. DOI: 10.1007/s10068-014-0274-2.
  • Ercisli, S.; Gozlekci, S.; Sengul, M.; Hegedus, A.; Tepe, S. Some Physicochemical Characteristics, Bioactive Content and Antioxidant Capacity of Loquat (Eriobotrya Japonica (Thunb.) Lindl.) Fruits from Turkey. Sci. Hortic. 2012, 148, 185–189. DOI: 10.1016/j.scienta.2012.10.001.
  • Ding, C.; Chachin, K.; Hamauzu, Y.; Ueda, Y.; Imahori, Y. Effects of Storage Temperatures on Physiology and Quality of Loquat Fruit. Postharvest Biol. Technol. 1998, 14(3), 309–315. DOI: 10.1016/S0925-5214(98)00053-2.
  • Breitmaier, E.;. Terpenes: Importance, General Structure, and Biosynthesis. In Terpenes: Flavours, Fragrances, Pharmaca, Pheromones; Breitmaier, E., Ed.; Wiley-VCH: Weinheim, 2006; pp 1–9.
  • Perveen, S.;. Introductory Chapter: Terpenes and Terpenoids. In Terpenes and Terpenoids; Perveen, S., Ed.; IntechOpen Limited: London, 2018; pp 1–12.
  • Tan, H.; Sonam, T.; Shimizu, K. The Potential of Triterpenoids from Loquat Leaves (Eriobotrya Japonica) for Prevention and Treatment of Skin Disorder. Int. J. Mol. Sci. 2017, 18, 1–12.
  • Banno, N.; Akihisa, T.; Tokuda, H.; Yasukawa, K.; Taguchi, Y.; Akazawa, H.; Ukiya, M.; Kimura, Y.; Suzuki, T.; Nishino, H. Anti-inflammatory and Antitumor-Promoting Effects of the Triterpene Acids from the Leaves of Eriobotrya Japonica. Biol. Pharm. Bull. 2005, 28(10), 1995–1999. DOI: 10.1248/bpb.28.1995.
  • Frohlich, O.; Schreier, P. Volatile Constituents of Loquat (Eriobotrya Japonica Lindl.) Fruit. J. Food Sci. 1990, 55(1), 176–180. DOI: 10.1111/j.1365-2621.1990.tb06046.x.
  • Shih, C.; Ciou, J.; Lin, C.; Wu, J.; Ho, H. Cell Suspension Culture of Eriobotrya Japonica Regulates the Diabetic and Hyperlipidemic Signs of High-Fat-Fed Mice. Molecules. 2013, 18(3), 2726–2753. DOI: 10.3390/molecules18032726.
  • Taniguchi, S.; Imayoshi, Y.; Kobayashi, E.; Takamatsu, Y.; Ito, H.; Hatano, T.; Sakagami, H.; Tokuda, H.; Nishino, H.; Sugita, D.;; et al. Production of Bioactive Triterpenes by Eriobotrya Japonica calli. Phytochemistry. 2002, 59(3), 315–323.
  • Seo, D. Y.; Lee, S. R.; Heo, J. W.; No, M.; Rhee, B. D.; Ko, K. S.; Kwal, H.; Han, J. Ursolic Acid in Health and Disease. Korean J. Physiol. Pharmacol. 2018, 22(3), 235–248. DOI: 10.4196/kjpp.2018.22.3.235.
  • Ayeleso, T. B.; Matumba, M. G.; Mukwevho, E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules. 2017, 22(11), 1–16. DOI: 10.3390/molecules22111915.
  • Jiang, X.; Li, T.; Liu, R. H. 2α-Hydroxyursolic Acid Inhibited Cell Proliferation and Induced Apoptosis in MDA-MB-231 Human Breast Cancer Cells through p38/MAPK Signal Transduction Pathway. J. Agric. Food Chem. 2016, 64(8), 1806–1816. DOI: 10.1021/acs.jafc.5b04852.
  • Lozano-mena, G.; Sánchez-gonzález, M.; Juan, M. E.; Planas, J. M. Maslinic Acid, A Natural Phytoalexin-Type Triterpene from Olives — A Promising Nutraceutical? Molecules. 2014, 19(8), 11538–11559. DOI: 10.3390/molecules190811538.
  • Wu, J.; Kuo, Y.; Lin, C.; Ho, H.; Shih, C. Tormentic Acid, a Major Component of Suspension Cells of Eriobotrya Japonica, Suppresses High-Fat Diet-Induced Diabetes and Hyperlipidemia by Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation. J. Agric. Food Chem. 2014, 62(44), 10717–10726. DOI: 10.1021/jf503334d.
  • Xiang-yu, Z.; Wei, L. I.; Jian, W.; Ning, L. I.; Mao-sheng, C.; Kazuo, K. Protein Tyrosine Phosphatase 1B Inhibitory Activities of Ursane-type Triterpenes from Chinese Raspberry, Fruits Of. Rubus Chingii. Chin. J. Nat. Med. 2019, 17(1), 15–21.
  • Choi, H. S.; Kim, S.; Kim, J.; Deng, H.; Yun, B.; Lee, D.-S. Triterpene Acid (3-o-p-coumaroyltormentic Acid) Isolated from Aronia Extracts Inhibits Breast Cancer Stem Cell Formation through Downregulation of c-Myc Protein. Int. J. Mol. Sci. 2018, 19(9), 1–16. DOI: 10.3390/ijms19092528.
  • Yu, Z.; Gao, H.; Zhang, Z.; He, Z.; He, Q.; Jia, L.-R.; Zeng, W.-C. Inhibitory Effects of Ligustrum Robustum (Rxob.) Blume Extract on α-amylase and α-glucosidase. J. Funct. Foods. 2015, 19, 204–213. DOI: 10.1016/j.jff.2015.09.048.
  • Kumar, D.; Ghosh, R.; Pal, B. C. α-Glucosidase Inhibitory Terpenoids from Potentilla Fulgens and Their Quantitative Estimation by Validated HPLC Method. J. Funct. Foods. 2013, 5(3), 1135–1141.
  • Olatunde, O. Z.; Yang, Y.; Yong, J.; Lu, C. The Progress of Chemical Constituents Isolated from the Root of Actinidia Chinensis Planch and Their Biological Activities. J. Biomed. Res. Rev. 2019, 2(2), 12–21.
  • Pádua, T. A.; Abreu, B.; Costa, T.; Nakamura, M. J.; Valente, L.; Henriques, M.; Siana, A. C.; Rosas, E. C. Anti-inflammatory Effects of Methyl Ursolate Obtained from a Chemically Derived Crude Extract of Apple Peels: Potential Use in Rheumatoid Arthritis. Arch. Pharm. Res. 2014, 37(11), 1487–1495.
  • Chowdhury, S. S.; Islam, M. N.; Jung, H. A.; Choi, J. S. In Vitro Antidiabetic Potential of the Fruits of Crataegus Pinnatifida. Res. Pharm. Sci. 2014, 9(1), 11–22.
  • Hu, J.; Zhao, J.; Chen, W.; Lin, S.; Zhang, J.; Hong, Z. Hepatoprotection of 1β-hydroxyeuscaphic Acid – The Major Constituent from Rubus Aleaefolius against CCl4-induced Injury in Hepatocytes Cells. Pharm. Biol. 2013, 51(6), 686–690. DOI: 10.3109/13880209.2012.762406.
  • Maurya, A.; Srivastava, S. K. Preparative-scale Separation of Anticancer Triterpenes from Eucalyptus Hybrid by Centrifugal Partition Chromatography. Sep. Sci. Technol. 2011, 46(7), 1189–1194. DOI: 10.1080/01496395.2010.545793.
  • Fulda, S.;. Betulinic Acid for Cancer Treatment and Prevention. Int. J. Mol. Sci. 2008, 9(6), 1096–1107. DOI: 10.3390/ijms9061096.
  • Kim, M.; Lee, J.; Seong, A.; Lee, Y.; Kim, Y.; Baek, H.; Jun, Y.; Jin, W.; Yoon, H. Neuroprotective Effects of Eriobotrya Japonica against β-amyloid-induced Oxidative Stress and Memory Impairment. Food Chem. Toxicol. 2011, 49(4), 780–784. DOI: 10.1016/j.fct.2010.11.043.
  • Chang, C.; Huang, S.; Lin, S.; Amagaya, S.; Ho, H.; Hou, W. C.; Wu, J.; Shie, P.; Huang, G. Anti-inflammatory Activities of Tormentic Acid from Suspension Cells of Eriobotrya Japonica Ex Vivo and in Vivo. Food Chem. 2011, 127(3), 1131–1137. DOI: 10.1016/j.foodchem.2011.01.114.
  • Nishioka, Y.; Yoshioka, S.; Kyotani, S.; Kyotani, S.; Kyotani, S.; Kyotani, S.; Kyotani, S.; Kyotani, S. Effects of Extract Derived from Eriobotrya Japonica on Liver Function Improvement in Rats. Biol. Pharm. Bull. 2002, 25(8), 1053–1057. DOI: 10.1248/bpb.25.1053.
  • You, M.; Kim, M.; Jeong, K.; Kim, E.; Kim, Y.; Kim, H. Loquat (Eriobotrya Japonica) Leaf Extract Inhibits the Growth of MDA-MB-231 Tumors in Nude Mouse Xenografts and Invasion of MDA-MB-231 Cells. Nutr. Res. Pract. 2016, 10(2), 139–147. DOI: 10.4162/nrp.2016.10.2.139.
  • Lü, H.; Lee, R. P.; Jianjun, H.; Chen, J.; Go, V. W.; Li, Z.; Lu, Q. A New HPLC–UV Method for the Quantification of Terpenoids and Antioxidant Activity of Commercial Loquat Leaf Tea and Preparation. J. Food Meas. Charact. 2020, 14(2), 1085–1091. DOI: 10.1007/s11694-019-00358-3.
  • Joshi, V. K.; Panesar, P. S.; Rana, V. S.; Kaur, S. Science and Technology of Fruit Wines: An Overview. In Science and Technology of Fruit Wine Production.Academic Press, Elsevier: Waltham, MA, 2017; pp 1–72.
  • Wu, H.; Cao, C.; Zhou, C. Determination of Amygdalin in the Fruit of Eriobotrya Japonica Lindl by High Performance Liquid Chromatography. Biomed. Res. 2017, 28(20), 9028–9032.
  • He, X. Y.; Wu, L. J.; Wang, W. X.; Xie, P. J.; Chen, Y. H.; Wang, F. Amygdalin - A Pharmacological and Toxicological Review. J. Ethnopharmacol. 2020, 254, 112717. DOI: 10.1016/j.jep.2020.112717.
  • Kawahito, Y.; Kondo, M.; Machmudah, S.; Sibano, K.; Sasaki, M.; Goto, M. Supercritical CO2 Extraction of Biological Active Compounds from Loquat Seed. Sep. Purif. Technol. 2008, 61(2), 130–135. DOI: 10.1016/j.seppur.2007.09.022.
  • Barbi, R. C. T.; Teixeira, G. L.; Hornung, P. S.; Avila, S.; Hoffmann-ribani, R. Eriobotrya Japonica Seed as a New Source of Starch: Assessment of Phenolic Compounds, Antioxidant Activity, Thermal, Rheological and Morphological Properties. Food Hydrocoll. 2018, 77, 646–658. DOI: 10.1016/j.foodhyd.2017.11.006.
  • Song, Z.; Xu, X. Advanced Research on Anti-tumor Effects of Amygdalin. J. Cancer Res. Ther. 2014, 10, 3–7. DOI: 10.4103/0973-1482.139743.
  • Hamada, A.; Yoshioka, S.; Takuma, D.; Yokota, J.; Cui, T.; Kusunose, M.; Miyamura, M.; Kyotani, S.; Nishioka, Y. The Effect of Eriobotrya Japonica Seed Extract on Oxidative Stress in Adriamycin-Induced Nephropathy in Rats. Biol. Pharm. Bull. 2004, 27(12), 1961–1964. DOI: 10.1248/bpb.27.1961.
  • Zhou, C.; Sun, C.; Chen, K.; Li, X. Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya Japonica Lindl. Int. J. Mol. Sci. 2011, 12(5), 2935–2945. DOI: 10.3390/ijms12052935.
  • Delfanian, M.; Kenari, R. E.; Sahari, M. A. Antioxidative Effect of Loquat (Eriobotrya Japonica Lindl.) Fruit Skin Extract in Soybean Oil. Food Sci. Nutr. 2014, 3(1), 74–80. DOI: 10.1002/fsn3.193.
  • Chen, J.; Li, W. L.; Wu, J. L.; Ren, B. R.; Zhang, H. Q. Hypoglycemic Effects of a Sesquiterpene Glycoside Isolated from Leaves of Loquat (Eriobotrya Japonica (Thunb.) Lindl.). Phytomedicine. 2008, 15(1–2), 98–102. DOI: 10.1016/j.phymed.2006.12.014.
  • Shafi, S.; Tabassum, N. Antidiabetic and Hypolipidemic Activities of Ethanolic Extract of Eriobotrya Japonica Fruits in Alloxan Induced Diabetic Rats. Int. J. Pharm. Chem. Biol. Sci. 2013, 3(2), 398–405.
  • Anaka, K. T.; Ishizono, S. N.; Akino, N. M.; Amaru, S. T.; Erai, O. T.; Keda, I. I. Hypoglycemic Activity of Eriobotrya Japonica Seeds in Type 2 Diabetic Rats and Mice. Biosci. Biotechnol. Biochem. 2008, 72(3), 686–693. DOI: 10.1271/bbb.70411.
  • Tamaya, K.; Matsui, T.; Toshima, A.; Noguchi, M.; Ju, Q.; Miyata, Y.; Tanaka, K.; Tanaka, K. Suppression of Blood Glucose Level by a New Fermented Tea Obtained by Tea-rolling Processing of Loquat (Eriobotrya Japonica) and Green Tea Leaves in Disaccharide-loaded Sprague-Dawley Rats. J. Sci. Food Agric. 2010, 90(5), 779–783. DOI: 10.1002/jsfa.3883.
  • Tanaka, K.; Tamaru, S.; Nishizono, S.; Miyata, Y.; Tamaya, K.; Matsui, T.; Tanaka, T.; Echizen, Y.; Ikeda, I. Hypotriacylglycerolemic and Antiobesity Properties of a New Fermented Tea Product Obtained by Tea-Rolling Processing of Third-Crop Green Tea (Camellia Sinensis) Leaves and Loquat (Eriobotrya Japonica) Leaves. Biosci. Biotechnol. Biochem. 2014, 74(8), 1606–1612. DOI: 10.1271/bbb.100197.
  • Zar, P.; Yano, S.; Sakao, K.; Hashimoto, F.; Nakano, T.; Fujii, M.; Hou, X. In Vitro Anticancer Activity of Loquat Tea by Inducing Apoptosis in Human Leukemia Cells. Biosci. Biotechnol. Biochem. 2014, 78(10), 37–41. DOI: 10.1080/09168451.2014.936352.
  • Cha, D. S.; Shin, T. Y.; Eun, J. S.; Kim, D. K.; Jeon, H. Anti-metastatic Properties of the Leaves of Eriobotrya Japonica. Arch. Pharm. Res. 2011, 34(3), 425–436. DOI: 10.1007/s12272-011-0310-1.
  • Yoshioka, S.; Hamada, A.; Jobu, K.; Yokota, J.; Onogawa, M.; Kyotani, S.; Miyamura, M.; Saibara, T.; Onishi, S.; Nishioka, Y. Effects of Eriobotrya Japonica Seed Extract on Oxidative Stress in Rats with Non-alcoholic Steatohepatitis. J. Pharm. Pharmacol. 2010, 62(2), 241–246. DOI: 10.1211/jpp.62.02.0012.
  • Bae, D.; You, Y.; Yoon, H. G.; Kim, K.; Lee, Y. H.; Kim, Y.; Baek, H.; Kim, S.; Lee, J.; Jun, W. Protective Effects of Loquat (Eriobotrya Japonica) Leaves against Ethanol-induced Toxicity in HepG2 Cells Transfected with CYP2E1. Food Sci. Biotechnol. 2010, 19(4), 1093–1096. DOI: 10.1007/s10068-010-0154-3.
  • Tan, H.; Furuta, S.; Nagata, T.; Ohnuki, K.; Akasaka, T.; Shirouchi, B.; Sato, M.; Kondo, R.; Shimizu, K. Inhibitory Effects of the Leaves of Loquat (Eriobotrya Japonica) on Bone Mineral Density Loss in Ovariectomized Mice and Osteoclast Differentiation. J. Agric. Food Chem. 2014, 62(4), 836–841. DOI: 10.1021/jf402735u.
  • Kashiwada, Y.; Wang, H. K.; Nagao, T.; Kitanaka, S.; Yasuda, I.; Fujioka, T.; Yamagishi, T.; Cosentino, L. M.; Kozuka, M.; Okabe, H.;; et al. Anti-AIDS Agents. 30. Anti-HIV Activity of Oleanolic Acid, Pomolic Acid, and Structurally Related Triterpenoids. J. Nat. Prod. 1998, 61(9), 1090–1095.
  • Hong, Y.; Lin, B.; Ca, H.; Lin, S. Chemical Constituent and Antimicrobial Activity of Essential Oil from Fragrant Loquat and Common Loquat. Appl. Mech. Mater. 2012, 138–139, 974–980.
  • Awwad, A. M.; Salem, N. M.; Abdeen, A. O. Biosynthesis of Silver Nanoparticles Using Loquat Leaf Extract and Its Antibacterial Activity. Adv. Mater. Lett. 2013, 4(5), 339–342. DOI: 10.5185/amlett.2012.11453.
  • Gariglio, N.; Juan, M.; Castillo, A.; Almela, V.; Agustõ, M. Histological and Physiological Study of Purple Spot of Loquat Fruit. Sci. Hortic. 2002, 92(3–4), 255–263. DOI: 10.1016/S0304-4238(01)00295-3.
  • Thompson, A. K.;. Hypobaric Storage. In Fruit and Vegetable Storage. Springer Briefs in Food, Health, and Nutrition; A. K. Thompson, Ed.; Springer: Cham, 2016; pp 37–92.
  • Rui, H.; Cao, S.; Shang, H.; Jin, P.; Wang, K.; Zheng, Y. Effects of Heat Treatment on Internal Browning and Membrane Fatty Acid in Loquat Fruit in Response to Chilling Stress. J. Sci. Food Agric. 2010, 90(9), 1557–1561. DOI: 10.1002/jsfa.3993.
  • Erkmen, O.; Bozoglu, T. F. Food Preservation by Low Temperatures. In Food Microbiology: Principles into Practice; Erkmen, O., Bozoglu, T.F., Eds.; John Wiley & Sons: Oxford, 2016; pp 34–43.
  • Cao, S. F.; Zheng, Y. H.; Yang, Z. F.; Li, N.; Ma, S. J.; Tang, S. S.; Zhang, J. H. Effects of Storage Temperature on Antioxidant Composition and Antioxidant Activity of Loquat Fruit. In Acta Hortic; X.M. Huang, J. Janick, Eds.; International Society for Horticultural Science: Belgium,750, 2007; pp 471–476.
  • Olaeta, J. A.; Undurraga, P. L.; Barahona, L.; Feito, X. Y. Effect of Packaging Material and Cold Storage Period on Quality of Loquat cv.‘Golden Nugget.’. Acta Hortic. 2007, 750(750), 477–482. DOI: 10.17660/ActaHortic.2007.750.76.
  • Cai, C.; Xu, C.; Shan, L.; Li, X.; Zhou, C.; Zhang, W.; Ferguson, I.; Chen, K. Low Temperature Conditioning Reduces Postharvest Chilling Injury in Loquat Fruit. Postharvest Biol. Technol. 2006, 41(3), 252–259. DOI: 10.1016/j.postharvbio.2006.04.015.
  • Jin, P.; Zhang, Y.; Shan, T.; Huang, Y.; Xu, J.; Zheng, Y. Low-Temperature Conditioning Alleviates Chilling Injury in Loquat Fruit and Regulates Glycine Betaine Content and Energy Status. J. Agric. Food Chem. 2015, 63(14), 3654–3659. DOI: 10.1021/acs.jafc.5b00605.
  • Fellows, P. J.;. Controlled- or Modified- Atmosphere Storage and Packaging. In Food Processing Technology; Fellows, P.J., Ed.; CRC Press: Boca Raton, FL, 2000; pp 406–416.
  • Ding, C.; Chachin, K.; Ueda, Y.; Imahori, Y.; Wang, C. Y. Modified Atmosphere Packaging Maintains Postharvest Quality of Loquat Fruit. Postharvest Biol. Technol. 2002, 24(3), 341–348. DOI: 10.1016/S0925-5214(01)00148-X.
  • Amoros, A.; Pretel, M. T.; Zapata, P. J.; Botella, M. A.; Romojaro, F.; Serrano, M. Use of Modified Atmosphere Packaging with Microperforated Polypropylene Films to Maintain Postharvest Loquat Fruit Quality. Food Sci. Technol. Int. 2015, 14(1), 95–103. DOI: 10.1177/1082013208089985.
  • Oz, A. T.; Ulukanli, Z. Effects of 1-methylcylopropene (1-MCP) and Modified Atmosphere Packing (MAP) on Postharvest Browning and Microbial Growth of Loquat Fruit. J. Appl. Bot. Food Qual. 2011, 84, 125–133.
  • Cai, J.; Chen, T.; Zhang, Z.; Li, B.; Qin, G.; Tian, S. Metabolic Dynamics during Loquat Fruit Ripening and Postharvest Technologies. Front. Plant Sci. 2019, 10, 1–12. DOI: 10.3389/fpls.2019.00619.
  • Ding, C.; Chachin, K.; Ueda, Y.; Imahori, Y.; Kurooka, H. Effects of High CO2 Concentration on Browning Injury and Phenolic Metabolism in Loquat Fruits. J. Japanese Soc. Hortic. Sci. 1999, 68(2), 275–282. DOI: 10.2503/jjshs.68.275.
  • Diley, D. R.;. Hypobaric Storage of Perishable commodities-Fruits, Vegetables and Seedlings. Acta Hortic. 1977, 62(62), 61–70. DOI: 10.17660/ActaHortic.1977.62.7.
  • Gao, H. Y.; Chen, H. J.; Chen, W. X.; Yang, J. T.; Song, L. L.; Jiang, Y. M.; Zheng, Y. H. Effect of Hypobaric Storage on Physiological and Quality Attributes of Loquat Fruit at Low Temperature. Acta Hortic. 2006, 712:(712), 269–274. DOI: 10.17660/ActaHortic.2006.712.29.
  • Lurie, S.;. Postharvest Heat Treatments. Postharvest Biol. Technol. 1998, 14(3), 257–269. DOI: 10.1016/S0925-5214(98)00045-3.
  • Liu, F.; Tu, K.; Shao, X.; Zhao, Y.; Tu, S.; Su, J.; Hou, Y.; Zou, X. Effect of Hot Air Treatment in Combination with Pichia Guilliermondii on Postharvest Anthracnose Rot of Loquat Fruit. Postharvest Biol. Technol. 2010, 58(1), 65–71. DOI: 10.1016/j.postharvbio.2010.05.009.
  • Jin, P.; Duan, Y.; Wang, L.; Wang, J.; Zheng, Y. Reducing Chilling Injury of Loquat Fruit by Combined Treatment with Hot Air and Methyl Jasmonate. Food Bioprocess. Technol. 2014, 7, 2259–2266.
  • Sahay, K. M.; Singh, K. K. Drying. In Unit Operations of Agricultural Processing; Vikas Publishing House: Delhi, 2004; pp 103–163.
  • Mishra, A.; Sharma, N. Mathematical Modelling and Tray Drying Kinetics of Loquat (Eriobotrya Japonica). Int. J. Eng. Adv. Technol. 2019, 9(2), 2758–2762.
  • El-Safy, F. S.;. Drying Characteristics of Loquat Slices Using Different Dehydration Methods by Comparative Evaluation. World J. Dairy. Food. Sci. 2014, 9(2), 272–284.
  • Blankenship, S. M.; Dole, J. M. 1-Methylcyclopropene: A Review. Postharvest Biol. Technol. 2003, 28(1), 1–25. DOI: 10.1016/S0925-5214(02)00246-6.
  • USEPA. 1-Methylcyclopropene: BIOPESTICIDE REGISTRATION ACTION DOCUMENT, U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division, Washington, D.C., United States, Technical Document for 1-Methylcyclopropene (MCP) also referred to as a BRAD (epa.gov) 2008, accessed on: 02/10/20.
  • Cai, C.; Chen, K.; Xu, W.; Zhang, W.; Li, X.; Ferguson, I. Effect of 1-MCP on Postharvest Quality of Loquat Fruit. Postharvest Biol. Technol. 2006, 40(2), 155–162. DOI: 10.1016/j.postharvbio.2005.12.014.
  • Cao, S.; Zheng, Y.; Wang, K.; Rui, H.; Tang, S. Effects of 1-methylcyclopropene on Oxidative Damage, Phospholipases and Chilling Injury in Loquat Fruit. J. Sci. Food Agric. 2009, 89(13), 2214–2220. DOI: 10.1002/jsfa.3710.
  • Cao, S.; Zheng, Y.; Wang, K.; Rui, H.; Tang, S. Effect of 1-Methylcyclopropene Treatment on Chilling Injury, Fatty Acid and Cell Wall Polysaccharide Composition in Loquat Fruit. J. Agric. Food Chem. 2009, 57(18), 8439–8443. DOI: 10.1021/jf902114y.
  • Cao, S.; Zheng, Y.; Yang, Z. Effect of 1-MCP Treatment on Nutritive and Functional Properties of Loquat Fruit during Cold Storage. New Zeal. J. Crop Hortic. Sci. 2011, 39(1), 61–70. DOI: 10.1080/01140671.2010.526621.
  • Cao, S.; Zheng, Y.; Wang, K.; Jin, P.; Rui, H. Methyl Jasmonate Reduces Chilling Injury and Enhances Antioxidant Enzyme Activity in Postharvest Loquat Fruit. Food Chem. 2009, 115(4), 1458–1463. DOI: 10.1016/j.foodchem.2009.01.082.
  • Cao, S.; Zheng, Y.; Yang, Z.; Tang, S.; Jin, P. Control of Anthracnose Rot and Quality Deterioration in Loquat Fruit with Methyl Jasmonate. J. Sci. Food Agric. 2008, 88(9), 1598–1602. DOI: 10.1002/jsfa.3256.
  • Bedukian Research. Methyl Jasmonate: Safety Data Sheet, Danbury, Connecticut 06810 USA, 2015. (http://search.bedoukian.com/product_images/mxts/399_English_SDS_US.pdf) accessed on: 02/10/20
  • Ding, C.; Chachin, K.; Ueda, Y.; Wang, C. Y. Inhibition of Loquat Enzymatic Browning by Sulfhydryl Compounds. Food Chem. 2002, 76, 213–218.
  • Shibui, Y.; Sakai, R.; Manabe, Y.; Masuyama, T. Comparisons of L-cysteine and D-cysteine Toxicity in 4-week Repeated-dose Toxicity Studies of Rats Receiving Daily Oral Administration. J. Toxicologic Path. 2017, 30(3), 217–229. DOI: 10.1293/tox.2017-0002.
  • Akhtar, A.; Abbasi, N. A.; Hussain, A. Effect of Calcium Chloride Treatments on Quality Characteristics of Loquat Fruit during Storage. Pakistan J. Bot. 2010, 42(1), 181–188.
  • Cao, S.; Zhen, Y.; Tang, S.; Wang, K. Improved Control of Anthracnose Rot in Loquat Fruit by a Combination Treatment of Pichia Membranifaciens with CaCl2. Int. J. Food Microbiol. 2008, 126(1–2), 216–220. DOI: 10.1016/j.ijfoodmicro.2008.05.026.
  • Wills, R. B. H.; Pristijono, P.; Golding, J. B. Nitric Oxide and Postharvest Stress of Fruits, Vegetables and Ornamentals. In Nitric Oxide Action in Abiotic Stress Responses in Plants; Khan, M., Mobin, M., Mohammad, F., Corpas, F., Eds.; Springer: Cham, 2015; pp 221–238.
  • Xu, M.; Dong, J.; Zhang, M.; Xu, X.; Sun, L. Cold-induced Endogenous Nitric Oxide Generation Plays a Role in Chilling Tolerance of Loquat Fruit during Postharvest Storage. Postharvest Biol. Technol. 2012, 65, 5–12. DOI: 10.1016/j.postharvbio.2011.10.008.
  • Gao, H.; Tao, F.; Song, L.; Chen, H.; Chen, W.; Zhou, Y.; Mao, J.; Zheng, Y. Effects of Short-term N2 Treatment on Quality and Antioxidant Ability of Loquat Fruit during Cold Storage. J. Sci. Food Agric. 2009, 89(7), 1159–1163. DOI: 10.1002/jsfa.3566.
  • Wang, K.; Cao, S.; Di, Y.; Liao, Y.; Zheng, Y. Effect of Ethanol Treatment on Disease Resistance against Anthracnose Rot in Postharvest Loquat Fruit. Sci. Hortic. 2015, 188, 115–121. DOI: 10.1016/j.scienta.2015.03.014.
  • Marquez, C. J.; Cartagena, J. R.; Perez-Gago, M. B. Effect of Edible Coatings on Japanese Loquat (Eriobotrya Japonica L.) Postharvest Quality. Vitae. 2009, 16, 304–310.
  • Ghasemnezhad, M.; Nezhad, M. A.; Gerailoo, S. Changes in Postharvest Quality of Loquat (Eriobotrya Japonica) Fruits Influenced by Chitosan. Hortic. Environ. Biotechnol. 2011, 52(1), 40–45. DOI: 10.1007/s13580-011-0028-5.
  • Petriccione, M.; Pasquariello, M. S.; Mastrobuoni, F.; Zampella, L.; Patre, D.; Scortichini, M. Influence of a Chitosan Coating on the Quality and Nutraceutical Traits of Loquat Fruit during Postharvest Life. Sci. Hortic. 2015, 197, 1–10.
  • Masih, E. I.; Paul, B. Secretion of β-1,3-Glucanases by the Yeast Pichia Membranifaciens and Its Possible Role in the Biocontrol of Botrytis Cinerea Causing Grey Mold Disease of the Grapevine. Curr. Microbiol. 2002, 44(6), 391–395. DOI: 10.1007/s00284-001-0011-y.
  • Cao, S. F.; Zheng, Y. H.; Tang, S. S.; Jin, P.; Wang, K. T. Biological Control of Post-harvest Anthracnose Rot of Loquat Fruit byPichia Membranefaciens. J. Hortic. Sci. Biotechnol. 2008, 83(6), 816–820. DOI: 10.1080/14620316.2008.11512466.
  • Islas-Osuna, M. A.; Tiznado-Hernández, M. E. Biotechnology and Molecular Biology of Tropical and Subtropical Fruits. In Postharvest Biology and Technology of Tropical and Subtropical Fruits: Volume 1: Fundamental Issues; Yahia, E.M., Ed.; Woodhead Publishing Limited: Sawston, 2011; pp 315–380.
  • Ibarz, A.; Garvin, A.; Costa, J. Rheological Behavior of Loquat (Eriobotyra Japonica) Juices. J. Texture Stud. 1996, 27(2), 175–184. DOI: 10.1111/j.1745-4603.1996.tb00067.x.
  • Olaeta, J. A.; Undurraga, P.; Toledo, E. Effect of Maturity Stage and Fruit Size on the Quality of Loquat (Eriobotrya Japonica Lindl.) Cv. Golden Nugget, after Canning Whole and as a Puree. In First International Symposium on Loquat. Zaragoza: CIHEAM; Llacer, G., Badenes, M.; Eds., CIHEAM-IAMZ: Valencia, Spain, 2003; 181–185.
  • Takahashi, H.; Sumitani, H.; Inada, Y.; Mori, D.; Nakano, Y. Potent Aroma Volatiles in Fresh Loquat and Its Canned Product. Nippon Shokuhin Kagaku Kogaku Kaishi. 2000, 47(4), 302–310. DOI: 10.3136/nskkk.47.302.
  • Joshi, V. K.; Attri, B. L. Specific Features of Table Wine Production Technology. In Science and Technology of Fruit Wine Production, Academic Press, Elsevier: Waltham, MA, 2017; pp 295–461.
  • Abozeid, W. M.; Nadir, A. S. Physicochemical and Organoleptic Characteristics of Loquat Fruit and Its Processing. Nat. Sci. 2012, 10(6), 108–113.
  • Go, J. K.; Park, S. I. Preparation of Stirred Yoghurt from Milk Added with Korean Loqaut. Korean J. Food Nutr. 2005, 18(3), 200–206.
  • Miyata, Y.; Terai, K.; Tamaya, K.; Maeda, M.; Hayashida, S.; Tokushima, T.; Tanaka, T.; Tanaka, K.; Nishizono, S.; Matsui, T. Fermented Tea Obtained by Tea Rolling Processing of Tea Material Leaves and Loquat Leaves, and Composition Having Extract Contained in Fermented Tea as Active Component. United States Patent 2007/0190219 A1; 2007.
  • Shii, T.; Tanaka, T.; Watarumi, S.; Matsuo, Y.; Miyata, Y.; Tamaya, K.; Tamaru, S.; Tanaka, K.; Matsui, T.; Kouno, I. Polyphenol Composition of a Functional Fermented Tea Obtained by Tea-Rolling Processing of Green Tea and Loquat Leaves. J. Agric. Food Chem. 2011, 59, 7253–7260. DOI: 10.1021/jf201499n.
  • Park, I. D.;. Quality Characteristics of Tofu Added with Loquat (Eriobotrya Japonica Lindl.) Leaf Powder. J. Korean Soc. Food Cult. 2012, 27(5), 521–527. DOI: 10.7318/KJFC/2012.27.5.521.
  • Cho, H.; Kim, K. Quality Characteristics of Cookies Prepared with Loquat (Eriobotrya Japonica Lindl.) Leaf Powder. J. Korean Soc. Food Sci. Nutr. 2013, 42(11), 1799–1804. DOI: 10.3746/jkfn.2013.42.11.1799.
  • Park, I.; Cho, H. Quality Characteristics of Dried Noodles with Added Loquat Leaf Powder. J. Korean Soc. Food Cult. 2011, 26(6), 709–716.
  • Cao, T. L.; Song, K. Effects of Gum Karaya Addition on the Characteristics of Loquat Seed Starch Films Containing Oregano Essential Oil. Food Hydrocoll. 2019, 97, 105198. DOI: 10.1016/j.foodhyd.2019.105198.
  • Erdal, S.; Taskin, M. Production of α-amylase by Penicillium Expansum MT-1 in Solid-state Fermentation Using Waste Loquat (Eriobotrya Japonica Lindley) Kernels as Substrate. Rom. Biotechnol. Lett. 2010, 15(3), 5342–5350.
  • Taskin, M.; Erdal, S.; Genisel, M. Biomass and Exopolysaccharide Production by Morchella Esculenta in Submerged Culture Using Extract from Waste Loquat (Eriobotrya Japonica L.) Kernels. J. Food Process. Preserv. 2011, 35(5), 623–630. DOI: 10.1111/j.1745-4549.2010.00510.x.
  • Golmohammadi, Z.; Rashidi, L. Nutrient Composition and Physicochemical Characteristics of Loquat (Eriobotrya Japonica) Seed Oil. J. Pharm. Heal. Sci. 2018, 6(2), 129–137.
  • Henmi, A.; Shoji, M.; Nomura, M.; Inoue, T. Fatty Acid Composition and Applications of Eriobotrya Japonica Seed Oil. J. Oleo Sci. 2019, 606(7), 599–606. DOI: 10.5650/jos.ess18178.
  • Tanaka, T.; Miyata, Y.; Tamaya, K.; Kusano, R.; Matsuo, Y.; Tamaru, S.; Tanaka, K.; Matsui, T.; Maeda, M.; Kouno, I. Increase of Theaflavin Gallates and Thearubigins by Acceleration of Catechin Oxidation in a New Fermented Tea Product Obtained by the Tea-Rolling Processing of Loquat (Eriobotrya Japonica) and Green Tea Leaves. J. Agric. Food Chem. 2009, 57(13), 5816–5822. DOI: 10.1021/jf900963p.
  • Morton, J. F.;. Loquat. In Fruits of Warm Climates; Morton, J.F., Ed.; FL: Miami, 1987; pp 103–108.
  • Condit, I. J.;. The Loquat. Calif. Exp. Stn. Bull. 1915, 250, 1–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.