4,609
Views
4
CrossRef citations to date
0
Altmetric
Review

Prevention of Type 2 Diabetes through Sardines Consumption: An Integrative Review

ORCID Icon, &

References

  • World Health Organization. International Encyclopedia of Public Health. http://www.who.int/diabetes/en/(accessed Aug 11, 2019).
  • American Diabetes Association. Standards of Medical Care in Diabetes 2018. Diabetes Care. 2018, 41(Supplement 1), S1. DOI: 10.2337/dc18-Sint01.
  • Forouhi, N. G.; Luan, J.; Hennings, S.; Wareham, N. J. Incidence of Type 2 Diabetes in England and Its Association with Baseline Impaired Fasting Glucose: The Ely Study 1990–2000. Diabet. Med. 2007, 24(2), 200–207. DOI: 10.1111/j.1464-5491.2007.02068.x.
  • Nathan, D. M.; Davidson, M. B.; DeFronzo, R. A.; Heine, R. J.; Henry, R. R.; Pratley, R.; Zinman, B. Impaired Fasting Glucose and Impaired Glucose Tolerance: Implications for Care. Diabetes Care. 2007, 30(3), 753–759. DOI: 10.2337/dc07-9920.
  • Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of Diabetes Mellitus and Impaired Glucose Regulation in Spain: The [email protected] Study. Diabetologia. 2012, 55(1), 88–93.
  • Narayan, K. M. V.; Boyle, J. P.; Geiss, L. S.; Saaddine, J. B.; Thompson, T. Impact of Recent Increase in Incidence on Future Diabetes Burden: U.S., 2005–2050. Diabetes Care. 2006, 29(9), 2114–2116. DOI: 10.2337/dc06-1136.
  • DECODE study group. Diabetes and Impaired Glucose Regulation in 13 European Cohorts. Diabetes Care. 2003, 26(1), 61–69. DOI: 10.2337/diacare.26.1.61.
  • Will, J. C.; Williamson, D. F.; Ford, E. S.; Calle, E. E.; Thun, M. J. Intentional Weight Loss and 13-year Diabetes Incidence in Overweight Adults. Am. J. Public Health. 2002, 92(8), 1245–1248. DOI: 10.2105/AJPH.92.8.1245.
  • DeFronzo, R. A.; Ferrannini, E.; Groop, L.; Henry, R. R.; Herman, W. H.; Holst, J. J.; Hu, F. B.; Kahn, C. R.; Raz, I.; Shulman, G. I.; et al. Type 2 Diabetes Mellitus. Nat Rev Dis Primers. 2015, 1, 15019.
  • Lindström, J.; Louheranta, A.; Mannelin, M.; Rastas, M.; Salminen, V.; Eriksson, J.; Uusitupa, M.; Tuomilehto, J. Finnish Diabetes Study. Diabetes Care. 2003, 26(12), 3230–3236.
  • Schellenberg, E. S.; Dryden, D. M.; Vandermeer, B.; Ha, C.; Korownyk, C. Lifestyle Interventions for Patients with and at Risk for Type 2 Diabetes. Ann. Intern. Med. 2013, 159(8), 543–551. DOI: 10.7326/0003-4819-159-8-201310150-00007.
  • Fox, C. S.; Golden, S. H.; Anderson, C.; Bray, G. A.; Burke, L. E.; de Boer, I. H.; Deedwania, P.; Eckel, R. H.; Ershow, A. G.; Fradkin, J.; et al. Update on Prevention of Cardiovascular Disease in Adults with Type 2 Diabetes Mellitus in Light of Recent Evidence. Circulation. 2015, 132(8), 691–718.
  • Curioni, C. C.; Lourenço, P. M. Long-term Weight Loss after Diet and Exercise: A Systematic Review. Int. J. Obes. 2005, 29(10), 1168–1174. DOI: 10.1038/sj.ijo.0803015.
  • Ditschuneit, H. H.; Flechtner-mors, M.; Johnson, T. D.; Adler, G. Metabolic and Weight-loss Effects of a Long-term Dietary Intervention in Obese Patients. Am. J. Clin. Nutr. 1999, 69(2), 198–204. DOI: 10.1093/ajcn/69.2.198.
  • Goodpaster, B. H.; Delany, J. P.; Otto, A. D.; Kuller, L.; Vockley, J.; South-Paul, J. E.; Thomas, S. B.; Brown, J.; McTigue, K.; Hames, K. C.; et al. Effects of Diet and Physical Activity Interventions on Weight Loss and Cardiometabolic Risk Factors in Severely Obese Adults: A Randomized Trial. JAMA. 2010, 304(16), 1795–1802.
  • Hamman, R. F.; Wing, R. R.; Edelstein, S. L.; Lachin, J. M.; Bray, G. A.; Delahanty, L.; Hoskin, M.; Kriska, A. M.; Mayer-David, E. J.; Pi-Sunyer, X.; et al. Effect of Weight Loss with Lifestyle Intervention on Risk of Diabetes. Diabetes Care. 2006, 29(9), 2102–2107.
  • The Diabetes Prevention Program Research Group. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346(6), 393–403. DOI: 10.1056/NEJMoa012512.
  • Sjöström, L.; Peltonen, M.; Jacobson, P.; Sjöström, C. D.; Karason, K.; Wedel, H.; Ahlin, S.; Anveden, Å.; Bengtsson, C.; Bergmark, G.; et al. Bariatric Surgery and Long-term Cardiovascular Events. JAMA. 2012, 307(1), 56–65.
  • Fried, M.; Yumuk, V.; Oppert, J. M.; Scopinaro, N.; Torres, A. J.; Weiner, R.; Yashkov, Y.; Frühbeck, G. European Association for the Study of Obesity, International Federation for the Surgery of Obesity - European Chapter: Interdisciplinary European Guidelines on Metabolic and Bariatric Surgery. Obes. Facts. 2013, 6(5), 449–468. DOI: 10.1159/000355480.
  • Farag, Y. M. K.; Gaballa, M. R. Diabesity: An Overview of a Rising Epidemic. Neprol. Dial. Transplant. 2011, 26(1), 28–35. DOI: 10.1093/ndt/gfq576.
  • Waters, D. L.; Ward, A. L.; Villareal, D. T. Weight Loss in Obese Adults 65 Years and Older: A Review of the Controversy. Exp. Gerontol. 2013, 48(10), 1054–1061. DOI: 10.1016/j.exger.2013.02.005.
  • Forsythe, L. K.; Wallace, J. M.; Livingstone, M. B. Obesity and Inflammation: The Effects of Weight Loss. Nutr. Res. Rev. 2008, 21(2), 117–133. DOI: 10.1017/S0954422408138732.
  • Ler, L.; Odell, P. M.; DAgostino, R. B.; Stokes, J., 3rd; Kreger, B. E.; Belanger, A. J.; Brownell, K. D. Variability of Body Weight and Health Outcomes in the Framingham Population. N. Engl. J. Med. 1991, 324(26), 1839–1844. DOI: 10.1056/NEJM199106273242602.
  • Blair, S. N.;. Evidence for Success of Exercise in Weight Loss and Control. Ann. Intern. Med. 1993, 119(7), 702–706. Pt 2. DOI: 10.7326/0003-4819-119-7_Part_2-199310011-00015.
  • Newman, A. B.; Yanez, D.; Harris, T.; Duxbury, A.; Enright, P. L.; Fried, L. P. Weight Change in Old Age and Its Association with Mortality. J. Am. Geriatr. Soc. 2001, 49(10), 1309–1318. DOI: 10.1046/j.1532-5415.2001.49258.x.
  • Darmon, P.; Kaiser, M. J.; Bauer, J. M.; Sieber, C. C.; Pichard, C. Restrictive Diets in the Elderly: Never Say Never Again? Clin. Nutr. 2010, 29(2), 170–174. DOI: 10.1016/j.clnu.2009.11.002.
  • Díaz-Rizzolo, D. A.; Kostov, B.; López-Siles, M.; Serra, A.; Colungo, C.; González-de-Paz, L.; Martínez-Medina, M.; Sisó-Almirall, A.; Gomis, R. Healthy Dietary Pattern and Their Corresponding Gut Micrbiota Profile are Linked to a Lower Risk of Type 2 Diabetes, Independent of the Presence of Obesity. Clin. Nutr. 2020, 39(2), 524–532. DOI: 10.1016/j.clnu.2019.02.035.
  • Knoops, K. T.; de Groot, L. C.; Kromhout, D.; Perrin, A. E.; Moreiras-Varela, O.; Menotti, A.; van Staveren, W. A. Mediterranean Diet, Lifestyle Factors, and 10-Year Mortality in Elderly the HALE Project. JAMA. 2004, 292(12), 1433–1439. DOI: 10.1001/jama.292.12.1433.
  • Pittas, A. G.; Lau, J.; Hu, F.; Dawson-Hughes, B. The Role of Vitamin D and Calcium in Type 2 Diabetes. A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2007, 92(6), 2017–2029. DOI: 10.1210/jc.2007-0298.
  • Mayer-Davis, E. J.; Costacou, T.; King, I.; Zaccaro, D. J.; Bell, R. A. Plasma and Dietary Vitamin E in Relation to Incidence of Type 2 Diabetes. Diabetes Care. 2002, 25(12), 2172–2177. DOI: 10.2337/diacare.25.12.2172.
  • Lopez-Riadura, R.; Willett, W. C.; Rimm, E. B.; Liu, S.; Stampfer, M. J.; Manson, J. E.; Hu, F. B. Magnesium Intake and Risk of Type 2 Diabetes in Men and Women. Diabetes Care. 2004, 27(1), 134–140. DOI: 10.2337/diacare.27.1.134.
  • Sun, C.; Zhao, C.; Guven, E. C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K. M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V.; et al. Dietary Polyphenols as Antidiabtic Agents: Advances and Opporunities. Food Frontiers. 2020, 1(1), 18–44. DOI: 10.1002/fft2.15.
  • Saslow, L. R.; Kim, S.; Daubenmier, J. J.; Moskowitz, J. T.; Phinney, S. D.; Goldman, V.; Murphy, E.; Cox, R. M.; Moran, P.; Hecht, F. M. A Randomized Pilot Trial of A Moderate Carbohydrate Diet Compared to A Very Low Carbohydrate Diet in Overweight or Obese Individuals with Type 2 Diabetes Mellitus or Prediabetes. PLoS One. 2014, 9(4), e91027. DOI: 10.1371/journal.pone.0091027.
  • Greenwood, D. C.; Threapleton, D. E.; Evans, C. E.; Cleghorn, C. L.; Nykjaer, C.; Woodhead, C.; Burley, V. J. Glycemic Index, Glycemic Load, Carbohydrates, and Type 2 Diabetes: Systematic Review and Dose-response Meta-analysis of Prospective Studies. Diabetes Care. 2013, 36(12), 4166–4171. DOI: 10.2337/dc13-0325.
  • Rendell, M.;. Dietary Treatment of Diabetes Mellitus. New Engl. J. Med. Ed. 2000, 342(19), 1440–1441. DOI: 10.1056/NEJM200005113421910.
  • Thanopoulou, A. C.; Karamanos, B. G.; Angelico, F. V.; Assaad-Khalil, S. H.; Barbato, A. F.; Del Ben, M. P.; Djordjevic, P. B.; Dimitrijevic-Sreckovic, V. S.; Galloti, C. A.; Katsilambros, N. L.; et al. Dietary Fat Intake as Risk Factor for the Development of Diabetes: Multinational, Multicenter Study of the Mediterranean Group for the Study of Diabetes (MGSD). Diabetes Care. 2003, 26(2), 302–307.
  • Meyer, K. A.; Kushi, L. H.; Jacobs, D. R.; Folsom, A. R. Dietary Fat and Incidence of Type 2. Diabetes Care. 2001, 24(9), 1528–1535. June 2000. DOI: 10.2337/diacare.24.9.1528.
  • Hu, F. B.; van Dam, R. M.; Liu, S. Diet and Risk of Type II Diabetes: The Role of Types of Fats and Carbohydrates. Diabetologia. 2001, 44(7), 805–817. DOI: 10.1007/s001250100547.
  • Lichtenstein, A. H.; Schwab, U. S. Relationship of Dietary Fat to Glucose Metabolism. Atherosclerosis. 2000, 150(2), 227–243. DOI: 10.1016/S0021-9150(99)00504-3.
  • Pan, D. A.; Lillioja, S.; Milner, M. R.; Kriketos, A. D.; Baur, L. A.; Bogardus, C.; Storlien, L. H. Skeletal Muscle Membrane Lipid Composition Is Related to Adiposity and Insulin Action. J. Clin. Invest. 1995, 96(6), 2802–2808. DOI: 10.1172/JCI118350.
  • Brinkworth, G. D.; Noakes, M.; Parker, B.; Foster, P.; Clifton, P. M. Long-term Effects of Advice to Consume a High-protein, Low-fat Diet, Rather than a Conventional Weight-loss Diet, in Obese Adults with Type 2 Diabetes: One-year Follow-up of a Randomised Trial. Diabetologia. 2004, 47(10), 1677–1686. DOI: 10.1007/s00125-004-1511-7.
  • van Nielen, M.; Feskens, E. J. M.; Mensink, M.; Sluijs, I.; Molina, E.; Amiano, P.; Ardanaz, E.; Balkau, B.; Beulens, J. W. L.; Boeing, H.; et al. Dietary Protein Intake and Incidence of Type 2 Diabetes in Europe: The EPIC-InterAct Case-Cohort Study. Diabetes Care. 2014, 37(7), 1854–1862.
  • Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis of Cohort Studies. Nutrients. 2017, 9(9), 1–17. DOI: 10.3390/nu9090982.
  • Patel, P. S.; Sharp, S. J.; Luben, R. N.; Khaw, K. T.; Bingham, S. A.; Wareham, N. J.; Forouhi, N. G. Association between Type of Dietary Fish and Seafood Intake and the Risk of Incident Type 2 Diabetes: The European Prospective Investigation of Cancer (Epic)-norfolk Cohort Study. Diabetes Care. 2009, 32(10), 1857–1863. DOI: 10.2337/dc09-0116.
  • Mozaffarian, D.; Rimm, E. B.; Intake, F. Contaminants, and Human Health. JAMA. 2006, 296(15), 1885. DOI: 10.1001/jama.296.15.1885.
  • Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Matsushita, Y.; Poudel-Tandukar, K.; Kato, M.; Oba, S.; Inoue, M.; Tsugane, S.; et al. Fish Intake and Type 2 Diabetes in Japanese Men and Women: The Japan Public Health Center-based Prospective Study. Am. J. Clin. Nutr. 2011, 94(3), 884–891.
  • Kromann, N.; Green, A. Epidemiological Studies in the Upernavik District, Greenland. Incidence of Some Chronic Diseases 1950–1974. Acta. Med. Scand. 1980, 208(401), 401–406.
  • Zheng, J.; Huang, T.; Yu, Y.; Hu, X.; Yang, B.; Li, D. Fish Consumption and CHD Mortality: An Updated Meta-analysis of Seventeen Cohort Studies. Public Health Nutr. 2012, 15(4), 725–737. DOI: 10.1017/S1368980011002254.
  • Qin, B.; Plassman, B. L.; Edwards, L. J.; Popkin, B. M.; Adair, L. S.; Mendez, M. A. Fish Intake Is Associated with Slower Cognitive Decline in Chinese Older Adults1–3. J. Nutr. 2014, 144(10), 1579–1585. DOI: 10.3945/jn.114.193854.
  • Esmailzadehha, N.; Ziaee, A.; Kazemifar, A. M.; Ghorbani, A.; Oveisi, S. Prevalence of Metabolic Syndrome in Qazvin Metabolic Diseases Study (QMDS), Iran: A Comparative Analysis of Six Definitions. Endocr. Regul. 2013, 47(3), 111–120. DOI: 10.4149/endo_2013_03_111.
  • Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of Eicosapentaenoic Acid on Major Coronary Events in Hypercholesterolaemic Patients (JELIS): A Randomised Open-label, Blinded Endpoint Analysis. Lancet. 2007, 369(9567), 1090–1098.
  • Iso, H.; Kobayashi, M.; Ishihara, J.; Sasaki, S.; Okada, K.; Kita, Y.; Kokubo, I.; Tsugane, S. Intake of Fish and N3 Fatty Acids and Risk of Coronary Heart Disease among Japanese: The Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2006, 113(2), 195–202. DOI: 10.1161/CIRCULATIONAHA.105.581355.
  • de Goede, J.; Geleijnse, J. M.; Boer, J. M. A.; Kromhout, D.; Verschuren, W. M. M. Marine (N-3) Fatty Acids, Fish Consumption, and the 10-Year Risk of Fatal and Nonfatal Coronary Heart Disease in a Large Population of Dutch Adults with Low Fish Intake. J. Nutr. 2010, 140(5), 1023–1028. DOI: 10.3945/jn.109.119271.
  • Chowdhury, R.; Stevens, S.; Gorman, D.; Pan, A.; Warnakula, S.; Chowdhury, S.; Ward, H.; Johnson, L.; Crowe, F.; Hu, F. B.; et al. Association between Fish Consumption, Long Chain Omega 3 Fatty Acids, and Risk of Cerebrovascular Disease: Systematic Review and Meta-analysis. BMJ. 2012, 345(7881), 1–9. DOI: 10.1136/bmj.e6698.
  • He, K.; Song, Y.; Daviglus, M. L.; Liu, K.; Van Horn, L.; Dyer, A. R.; Goldbourt, U.; Greenland, P. Fish Consumption and Incidence of Stroke: A Meta-analysis of Cohort Studies. Stroke. 2004, 35(7), 1538–1542. DOI: 10.1161/01.STR.0000130856.31468.47.
  • Leung Yinko, S. L. L.; Stark, K. D.; Thanassoulis, G.; Pilote, L. Fish Consumption and Acute Coronary Syndrome: A Meta-analysis. Am. J. Med. 2014, 127(9), 848–857. DOI: 10.1016/j.amjmed.2014.04.016.
  • Mozaffarian, D.; Prineas, R. J.; Stein, P. K.; Siscovick, D. S. Dietary Fish and N-3 Fatty Acid Intake and Cardiac Electrocardiographic Parameters in Humans. J. Am. Coll. Cardiol. 2006, 48(3), 478–484. DOI: 10.1016/j.jacc.2006.03.048.
  • König, A.; Bouzan, C.; Cohen, J. T.; Connor, W. E.; Kris-Etherton, P. M.; Gray, G. M.; Lawrence, R. S.; Savitz, D. A.; Teutsche, S. M. A Quantitative Analysis of Fish Consumption and Coronary Heart Disease Mortality. Am. J. Prev. Med. 2005, 29(4), 335–346. DOI: 10.1016/j.amepre.2005.07.001.
  • Buscemi, S.; Nicolucci, A.; Lucsiano, G.; Galvano, F.; Grosso, G.; Belmonte, S.; Sprini, D.; Migliaccio, S.; Cianferotti, L.; Brandi, M. L.; et al. Habitual Fish Intake and Clinically Silent Carotid Atherosclerosis. Nutr. J. 2014, 13(1). DOI: 10.1186/1475-2891-13-2.
  • He, K.; Liu, K.; Daviglus, M. L.; Mayer-Davis, E.; Jenny, N. S.; Jiang, R.; Ouyang, P.; Steffen, L. M.; Siscovick, D.; Wu, C.; et al. Intakes of Long-chain N-3 Polyunsaturated Fatty Acids and Fish in Relation to Measurements of Subclinical Atherosclerosis. Am. J. Clin. Nutr. 2008, 88(4), 1111–1118.
  • Erkkila, A. T.; Lichtenstein, A. H.; Mozaffarian, D.; Herrington, D. M. Fish Intake Is Associated with a Reduced Progression of Coronary Artery Atherosclerosis in Postmenopausal Women with Coronary Artery Disease. Am. J. Clin. Nutr. 2004, 80(3), 626–632. DOI: 10.1093/ajcn/80.3.626.
  • Lee, C.; Liese, A.; Wagenknecht, L.; Lorenzo, C.; Haffner, S.; Hanley, A. Fish Consumption, Insulin Sensitivity and Beta-cell Function in the Insulin Resistance Atherosclerosis Study (IRAS). Nutr. Metab. Cardiovasc Dis. 2013, 23(9), 829–835. DOI: 10.1016/j.numecd.2012.06.001.
  • Kaushik, M.; Mozaffarian, D.; Spiegelman, D.; Manson, J. E.; Willett, W. C.; Hu, F. B. Long-chain Omega-3 Fatty Acids, Fish Intake, and the Risk of Type 2 Diabetes Mellitus. Am. J. Clin. Nutr. 2009, 90(3), 613–620. DOI: 10.3945/ajcn.2008.27424.
  • Wu, H.; Bertrand, K. A.; Choi, A. L.; Hu, F. B.; Laden, F.; Grandjean, P.; Sun, Q. Persistent Organic Pollutants and Type 2 Diabetes: A Prospective Analysis in the Nurses Health Study and Meta-analysis. Environ. Health Perspect. 2013, 121(2), 153–161. DOI: 10.1289/ehp.1205248.
  • Ruzzin, J.; Petersen, R.; Meugnier, E.; Madsen, L.; Lock, E. J.; Lillefosse, H.; Ma, T.; Pesenti, S.; Sonne, S. B.; Marstrand, T. T.; et al. Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome. Environ. Health Perspect. 2010, 118(4), 465–471.
  • Taylor, K. W.; Novak, R. F.; Anderson, H. A.; Birnbaum, L. S.; Blystone, C.; DeVito, M.; Jacobs, D.; Kohrle, J.; Lee, D.-H.; Rylander, L.; et al. Evaluation of the Association between Persistent Organic Pollutants (Pops) and Diabetes in Epidemiological Studies: A National Toxicology Program Workshop Review. Environ. Health Perspect. 2013, 121(7), 774–783.
  • Lee, D. H.; Lee, I. K.; Song, K.; Steffes, M.; Toscano, W.; Baker, B. A.; Jacobs, D. R., Jr. A Strong Dose-response Relation between Serum Concentrations of Persistent Organic Pollutants and Diabetes: Results from the National Health and Examination Survey 1999–2002. Diabetes Care. 2006, 29(7), 1638–1644.
  • Borkman, M.; Storlien, L. H.; Pan, D. A.; Jenkins, A. B.; Chisholm, D. J.; Campbell, L. V. The Relation between Insulin Sensitivity and the Fatty-Acid Composition of Skeletal-Muscle Phospholipids. N. Engl. J. Med. 1993, 328(4), 238–244. DOI: 10.1056/NEJM199301283280404.
  • Uhe, A. M.; Collier, G. R.; ODea, K. A Comparison of the Effects of Beef, Chicken and Fish Protein on Satiety and Amino Acid Profiles in Lean Male Subjects. J. Nutr. 1992, 122(3), 467–472. DOI: 10.1093/jn/122.3.467.
  • Pilon, G.; Ruzzin, J.; Rioux, L. E.; Lavigne, C.; White, P. J.; Frøyland, L.; Jacqes, H.; Bryl, P.; Beaulieu, L.; Marette, A. Differential Effects of Various Fish Proteins in Altering Body Weight, Adiposity, Inflammatory Status, and Insulin Sensitivity in High-fat-fed Rats. Metabolism. 2011, 60(8), 1122–1130.
  • Rees, K.; Hartley, L.; Flowers, N.; Clarke, A.; Hooper, L.; Thorogood, M.; Stranges, S. Mediterranean Dietary Pattern for the Primary Prevention of Cardiovascular Disease (Review). Cochrane Database Syst. Rev. 2016, 12(8), CD009825.
  • Zhang, M.; Picard-deland, E.; Marette, A. Fish and Marine Omega-3 Polyunsatured Fatty Acid Consumption and Incidence of Type 2 Diabetes : A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2013, 2013, 501015. DOI: 10.1155/2013/501015.
  • Lichtenstein, A. H.; Appel, L. J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H. A.; Franklin, B.; Kris-Etherton, P.; Harris, W. S.; Howard, B.; et al. Diet and Lifestyle Recommendations Revision 2006 A Scientific Statement from the American Heart Association Nutrition Committee. Ciruculation. 2006, 114(1), 82–96.
  • Lankinen, M.; Schwab, U.; Erkkilä, A.; Seppänen-Laakso, T.; Hannila, M. L.; Mussalo, H.; Lehto, S.; Uusituupa, M.; Gylling, H.; Oresic, M. Fatty Fish Intake Decreases Lipids Related to Inflammation and Insulin Signaling — A Lipidomics Approach. Plos One. 2009, 4(4), 1–9. DOI: 10.1371/journal.pone.0005258.
  • Summers, S. A.;. Progress in Lipid Research Ceramides in Insulin Resistance and Lipotoxicity. Prog. Lipid Res. 2006, 45(1), 42–72. DOI: 10.1016/j.plipres.2005.11.002.
  • Hagen, I. V.; Helland, A.; Bratlie, M.; Brokstad, K. A.; Rosenlund, G.; Sveier, H.; Mellgren, G.; Gudbrandsen, O. A. High Intake of Fatty Fish, but Not of Lean Fish, Affects Serum Concentrations of TAG and HDL-cholesterol in Healthy, Normal-weight Adults : A Randomised Trial. Br. J. Nutr. 2016, 116(4), 648–657. DOI: 10.1017/S0007114516002555.
  • Alhassan, A.; Young, J.; Lean, M. E. J.; Lara, J. Consumption of Fi Sh and Vascular Risk Factors : A Systematic Review and Meta-analysis of Intervention Studies. Atherosclerosis. 2017, 266, 87–94. DOI: 10.1016/j.atherosclerosis.2017.09.028.
  • Manninen, V.; Tenkanen, L.; Koskinen, P.; Huttunen, J. K.; Manttari, M.; Heinonen, O. P.; Frick, M. H. Joint Effects of Serum Triglyceride and LDL Cholesterol and HDL Cholesterol Concentrations on Coronary Heart Disease Risk in the Helsinki Heart Study. Implications for Treatment. Circulation. 1992, 85(1), 37–45. DOI: 10.1161/01.CIR.85.1.37.
  • Kim, J.; Koh, K. K.; Quon, M. J. The Union of Vascular and Metabolic Actions of Insulin in Sickness and in Health. Arterioscler Thromb. Vasc. Biol. 2005, 46, 1978–1985.
  • Imamura, S.; Morioka, T.; Yamazaki, Y.; Numaguchi, R.; Urata, H.; Motoyama, K.; Mori, K.; Fukumoto, S.; Shoji, T.; Emoto, M.; et al. Plasma Polyunsaturated Fatty Acid Profile and Delta-5 Desaturase Activity are Altered in Patients with Type 2 Diabetes. Metabolism. 2014, 63(11), 1432–1438.
  • Djoussé, L.; Biggs, M. L.; Lemaitre, R. N.; King, I. B.; Song, X.; Ix, J. H.; Mukamal, K. J.; Siscovick, D. S.; Mozaffarian, D. Plasma Omega-3 Fatty Acids and Incident Diabetes in Older Adults. Am. J. Clin. Nutr. 2011, 94(2), 527–533.
  • Stephens, F. B.; Mendis, B.; Shannon, C. E.; Cooper, S.; Ortori, C. A.; Barrett, D. A.; Mansell, P.; Tsintzas, K. Fish Oil Omega-3 Fatty Acids Partially Prevent Lipid Induced Insulin Resistance in Human Skeletal Muscle without Limiting Acylcarnitine Accumulation. Clin. Sci. (Lond). 2014, 127(5), 315–322. DOI: 10.1042/CS20140031.
  • Bremer, A. A.; Stanhope, K. L.; Graham, J. L.; Cummings, B. P.; Ampah, S. B.; Saville, B. R.; Havel, P. J. Fish Oil Supplementation Ameliorates Fructose- Induced Hypertriglyceridemia and Insulin Resistance in Adult Male Rhesus Macaques. J. Nutr. 2014, 144(1), 5–11. DOI: 10.3945/jn.113.178061.
  • Chen, C.; Yu, X.; Shao, S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-analysis. PLoS One. 2015, 10(10), 1–14.
  • Ouellet, V.; Marois, J.; Weisnagel, S. J.; Jacques, H. Dietary Cod Protein Improves Insulin Sensitivity in Insulin-Resistant Men and Women. Diabetes Care. 2007, 30(11), 2816–2821. DOI: 10.2337/dc07-0273.
  • Drotningsvik, A.; Mjøs, S. A.; Pampanin, D. M.; Slizyte, R.; Carvajal, A.; Remman, T.; Høgøy, I.; Gudbrandsen, O. A. Dietary Fish Protein Hydrolysates Containing Bioactive Motifs Affect Serum and Adipose Tissue Fatty Acid Compositions, Serum Lipids, Postprandial Glucose Regulation and Growth in Obese Zucker Fa/fa Rats. Br. J. Nutr. 2016, 116(8), 1336–1345. DOI: 10.1017/S0007114516003548.
  • Ryan, J. T.; Ross, R. P.; Bolton, D.; Fitzgerald, G. F.; Stanton, C. Bioactive Peptides from Muscle Sources : Meat and Fish. Nutrients. 2011, 3(9), 765–791. DOI: 10.3390/nu3090765.
  • Kim, S. K.; Wijesekara, I. Development and Biological Activities of Marine-derived Bioactive Peptides : A Review. J. Funct. Foods. 2010, 2(1), 1–9. DOI: 10.1016/j.jff.2010.01.003.
  • Boukhari, N.; Taleb-Senouci, D.; Chabane, F. Z.; Besbes, M.; Lamri-Senhadji, M. Y. Fish By-products Oil Corrects Dyslipidemia, Improves Reverse Cholesterol Transport and Stimulates Paraoxonase-1 Activity in Obese Rat. Ann. Cardiol. Angeiol. (Paris). 2013, 62(3), 149–154. DOI: 10.1016/j.ancard.2013.04.007.
  • Lu, Z.; Chen, T. C.; Zhang, A.; Persons, K. S.; Kohn, N.; Berkowitz, R.; Martinello, S.; Holick, M. F. An Evaluation of the Vitamin D3 Content in Fish: Is the Vitamin D Content Adequate to Satisfy the Dietary Requirement for Vitamin D? J. Steroid. Biochem. Mol. Biol. 2007, 103,(3–5), 642–644.
  • Tratado de nutrición; Hernández M., Sastre, A. Ediciones Días de Santos S.A.: Madrid, Spain, 1999.
  • Carneiro, E. M.; Latorraca, M. Q.; Araujo, E.; Beltrá, M.; Oliveras, M. J.; Navarro, M.; Berná, G.; Bedoya, F. J.; Velloso, A.; Soria, B.; et al. Taurine Supplementation Modulates Glucose Homeostasis and Islet Function. J. Nutr. Biochem. 2009, 20(7), 503–511.
  • Imae, M.; Asano, T.; Murakami, S. Potential Role of Taurine in the Prevention of Diabetes and Metabolic Syndrome. Amino Acids. 2014, 46(1), 81–88. DOI: 10.1007/s00726-012-1434-4.
  • Schaffer, S. W.; Jong, C. J.; Ramila, K. C.; Azuma, J. Physiological Roles of Taurine in Heart and Muscle. J. Biomed. Sci. 2010, 17(Suppl 1), 1–8. DOI: 10.1186/1423-0127-17-S1-S2.
  • Ribeiro, R. A.; Santos-Silv, J. C.; Vettorazzi, J. F.; Cotrim, B. B.; Mobiolli, D. D. M.; Boschero, A. C.; CArneiro, E. M. Taurine Supplementation Prevents Morpho-physiological Alterations in High- Fat Diet Mice Pancreatic B-cells. Amino Acids. 2012, 43(4), 1791–1801. DOI: 10.1007/s00726-012-1263-5.
  • Hansen, S. H.;. The Role of Taurine in Diabetes and the Development of Diabetic Complications. Diabetes Metab. Res. Rev. 2001, 17(5), 330–346. DOI: 10.1002/dmrr.229.
  • Gavrovskaya, L. K.; Ryzhova, O. V.; Safonova, A. F.; Matveev, A. K.; Sapronov, N. S. Protective Effect of Taurine on Rats with Experimental Insulin-dependent Diabetes Mellitus. Bull. Exp. Biol. Med. 2008, 146(2), 226–228. DOI: 10.1007/s10517-008-0258-4.
  • Brøns, C.; Spohr, C.; Storgaard, H.; Dyerberg, J.; Vaag, A. Effect of Taurine Treatment on Insulin Secretion and Action, and on Serum Lipid Levels in Overweight Men with a Genetic Predisposition for Type II Diabetes Mellitus. Eur. J. Clin. Nutr. 2004, 58(9), 1239–1247. DOI: 10.1038/sj.ejcn.1601955.
  • Chauncey, K. B.; Tenner, T. E.; Lombardini, J. B.; Jones, B. G.; Brooks, M. L.; Warner, R. D.; David, R. L.; Ragain, R. M. The Effect of Taurine Supplementation on Patients with Type 2 Diabetes Mellitus. Taur. 5. Adv. Exp. Med. Biol. 2003, 526, 91–96.
  • Kaneko, H.; Kobayashi, M.; Mizunoe, Y.; Yoshida, M.; Yasukawa, H.; Hoshino, S.; Itagawa, R.; Furuichi, T.; Okita, N.; Sudo, Y.; et al. Taurine Is an Amino Acid with the Ability to Activate Autophagy in Adipocytes. Amino Acids. 2018, 50(5), 527–535.
  • Das, J.; Vasan, V.; Sil, P. C. Taurine Exerts Hypoglycemic Effect in Alloxan-induced Diabetic Rats, Improves Insulin-mediated Glucose Transport Signaling Pathway in Heart and Ameliorates Cardiac Oxidative Stress and Apoptosis. Toxicol. Appl. Pharmacol. 2012, 258(2), 296–308. DOI: 10.1016/j.taap.2011.11.009.
  • Figueroa, A. L.; Figueiredo, H.; Rebuffat, S.; Vieira, E.; Gomis, R. Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet. Sci. Rep. 2016, 6(November), 1–13. DOI: 10.1038/srep36801.
  • Kim, K. S.; Oh, D. H.; Kim, J. Y.; Lee, B. G.; You, J. S.; Chang, K. J.; Chung, H. J.; Yoo, M. C.; Yang, H. I.; Kang, J. H.; et al. Taurine Ameliorates Hyperglycemia and Dyslipidemia by Reducing Insulin Resistance and Leptin Level in Otsuka Long-Evans Tokushima Fatty (OLETF) Rats with Long-term Diabetes. Exp. Mol. Med. 2012, 44(11), 665–673.
  • Miyazaki, T.; Sasaki, S.; Toyoda, A.; Shirai, M.; Ikehami, T.; Matsuzaki, Y.; Honda, A. The Effects of Taurine Depletion on Bile Acid Composition and Its Amino Acid‐conjugation in the Bile of Cats. Faseb J. 2019, 33(S1).
  • Nakamura-Yamanaka, Y.; Tsuji, K.; Ichikawa, T. Effect of Dietary Taurine on Cholesterol 7 Alpha-hydroxylase Activity in the Liver of Mice Fed a Lithogenic Diet. J. Nutr. Sci. Vitaminol. (Tokyo). 1987, 33(3), 239–243. DOI: 10.3177/jnsv.33.239.
  • Bass, J.; Takahashi, J. S. Circadian Integration of Metabolism and Energetics. Science. 2010, 330(6009), 1349–1354. DOI: 10.1126/science.1195027.
  • Oike, H.; Oishi, K.; Kobori, M. Nutrients, Clock Genes, and Chrononutrition. Curr. Nutr. Rep. 2014, 3(3), 204–212. DOI: 10.1007/s13668-014-0082-6.
  • Qian, J.; Scheer, F. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trens. Endocrinol. Metab. 2016, 27(5), 282–293. DOI: 10.1016/j.tem.2016.03.005.
  • Parsons, M. J.; Lester, K. J.; Barclay, N. L.; Archer, S. N.; Nolan, P. M.; Eley, T. C.; Gregory, A. M. Polymorphisms in the Circadian Expressed Genes PER3 and ARNTL2 are Associated with Diurnal Preference and GNβ3 with Sleep Measures. J. Sleep Res. 2014, 23(5), 595–604. DOI: 10.1111/jsr.12144.
  • Laermans, J.; Depoortere, I. Chronobesity: Role of the Circadian System in the Obesity Epidemic. Obes. Rev. 2016, 17(2), 108–125. DOI: 10.1111/obr.12351.
  • Elvevoll, E. O.; Eilertsen, K. E.; Brox, J.; Dragnes, B. T.; Falkenberg, P.; Olsen, J. O.; Kirkhus, B.; Lamglait, A.; Osternud, B. Seafood Diets: Hypolipidemic and Antiatherogenic Effects of Taurine and N-3 Fatty Acids. Atherosclerosis. 2008, 200(2), 396–402. DOI: 10.1016/j.atherosclerosis.2007.12.021.
  • Mikami, N.; Hosokawa, M.; Miyashita, K. Dietary Combination of Fish Oil and Taurine Decreases Fat Accumulation and Ameliorates Blood Glucose Levels in Type 2 Diabetic/Obese KK-A Y Mice. J. Food Sci. 2012, 77(6), 114–120. DOI: 10.1111/j.1750-3841.2012.02687.x.
  • United States Department of Agriculture. Agricultural Research Service; National Nutrient Database for Standard Reference Legacy Release. https://www.usda.gov/(accessed July 24, 2019).
  • Gormley, T. R.; Neumann, T.; Fagan, J. D.; Brunton, N. P. Taurine Content of Raw and Processed Fish Fillets/portions. Eur. Food Res. Technol. 2007, 225(5–6), 837–842. DOI: 10.1007/s00217-006-0489-4.
  • Connell, J. J.; saff of Torry Research Station. Advances in Fish Science and Technology; Press: United Kingdom, 1980.
  • Balfegó, M. Diabetis mellitus tipus 2: Impacte metabòlic duna dieta rica en sardina. Ph.D. Biomedicine thesis, Universitat de Barcelona, Barceona, Spain, 2016.
  • Vuković, G.; Romanić, S. H.; Babić, Z.; Mustać, B.; Štrbac, M.; Deljanin, I.; Antanasijević, D. Persistent Organic Pollutants (Pops) in Edible Fish Species from Different Fishing Zones of Croatian Adriatic. Mar. Pollut. Bull. 2018, 137, 71–80. DOI: 10.1016/j.marpolbul.2018.10.014.
  • Kljaković-Gašpić, Z.; Romanić, S. H.; Klinčić, D.; Tičina, V. Chlorinated Compounds in the Muscle Tissue of Fish from the Croatian Adriatic: Preliminary Data on Contamination and the Associated Health Risks. Arch. Ind. Hyg. Toxicol. 2015, 66(4), 299–308.
  • Bocio, A.; Domingo, J. L.; Falcó, G.; Llobet, J. M. Concentrations of PCDD/PCDFs and PCBs in Fish and Seafood from the Catalan (Spain) Market: Estimated Human Intake. Environ. Int. 2007, 33(2), 170–175. DOI: 10.1016/j.envint.2006.09.005.
  • Affane, F.; Benahmed Daidj, N. B.; Louala, S.; Munezero, A. N.; Lamri-Senhadji, M. Y. Effects of an Obesogenic Diet Enriched in Sardine By-products on Pro-atherogenic Markers in Wistar Rats. Ann. Cardiol. Angeiol. 2016, 65(3), 214–218. DOI: 10.1016/j.ancard.2016.04.011.
  • Rodrigues, P. O.; Martins, S. V.; Lopes, P. A.; Ramos, C.; Miguéis, S.; Alfaia, C. M.; Pinto, R. M.; Rolo, E. A.; Bispo, P.; Batista, I.; et al. Influence of Feeding Graded Levels of Canned Sardines on the Inflammatory Markers and Tissue Fatty Acid Composition of Wistar Rats. Br. J. Nutr. 2014, 112(3), 309–319.
  • Balfegò, M.; Canivell, S.; Hanzu, F. A.; Sala-Vila, A.; Martínez-Medina, M.; Murillo, S.; Mur, T.; Ruano, E.; Linares, F.; Porras, N.; et al. Effects of Sardine-enriched Diet on Metabolic Control, Inflammation and Gut Microbiota in Drug-naïve Patients with Type 2 Diabetes: A Pilot Randomized. Lipids Health Dis. 2016, 15(1), DOI: 10.1186/s12944-016-0245-0.
  • Moreira, A. C.; Gaspar, A.; Serra, M. A.; Simões, J.; Lopes da Cruz, J.; Amaral, T. F. Effect of a Sardine Supplement on C-reactive Protein in Patients Receiving Hemodialysis. J. Ren. Nutr. 2007, 17(3), 205–213. DOI: 10.1053/j.jrn.2007.02.005.
  • Madani, Z.; Louchami, K.; Sener, A.; Malaisse, W. J.; Ait Yahia, D. Dietary Sardine Protein Lowers Insulin Resistance, Leptin and TNF- α and Beneficially Affects Adipose Tissue Oxidative Stress in Rats with Fructose-induced Metabolic Syndrome. Int. J. Mol. Med. 2012, 29(2), 311–318. DOI: 10.3892/ijmm.2011.836.
  • Hamza-Reguig, S.; Benahmed Daidj, N. B.; Louala, S.; Boualga, A.; Lamri-Senhadji, M. Effect of Replacing Sardine Oil with Margarine on Dyslipidemia, Dysglycemia and Redox Status of Adipose Tissue in High-fat Diet-induced Obesity in Wistar Rats. Nutr. Food Sci. 2017, 47(1), 2–17. DOI: 10.1108/NFS-04-2016-0041.
  • BelHadj, S.; Hentati, O.; Baccouch, N.; Ben Salah, H.; Boudaouara, T.; Ben Hadj, A.; Allouch, N.; El Feki, A. F. Effect of Sardina Pilchardus Oil on Alloxan-induced Diabetic Rats. J. Metab. Dis. 2016, 122(1), 27–35.
  • Aguilera, A. A.; Díaz, G. H.; Barcelata, M. L.; Guerrero, O. A.; Ros, R. M. Effects of Fish Oil on Hypertension, Plasma Lipids, and Tumor Necrosis factor-α in Rats with Sucrose-induced Metabolic Syndrome. J. Nutr. Biochem. 2004, 15(6), 350–357. DOI: 10.1016/j.jnutbio.2003.12.008.
  • Venturini, D.; Simão, A. N.; Urbano, M. R.; Dichi, I. Effects of Extra Virgin Olive Oil and Fish Oil on Lipid Profile and Oxidative Stress in Patients with Metabolic Syndrome. Nutrition. 2015, 31(6), 834–840. DOI: 10.1016/j.nut.2014.12.016.
  • Benaicheta, N.; Labbaci, F. Z.; Bouchenak, M.; Boukortt, F. O. Effect of Sardine Proteins on Hyperglycaemia, Hyperlipidaemia and Lecithin:cholesterol Acyltransferase Activity, in High-fat Diet-induced Type 2 Diabetic Rats. Br. J. Nutr. 2016, 115(1), 6–13. DOI: 10.1017/S0007114515004195.