1,432
Views
23
CrossRef citations to date
0
Altmetric
Review

Synthetic and Natural Antioxidants Used in the Oxidative Stability of Edible Oils: An Overview

ORCID Icon, , , , , , , , & show all

References

  • Colombo, C. A.; Berton, L. H. C.; Diaz, B. G.; Ferrari, R. A. Macauba: A Promising Tropical Palm for the Production of Vegetable Oil. OCL. 2018, 25, 1–9. DOI: 10.1051/ocl/2017038.
  • FAO. Food and Agriculture Organization of the United Nations. Vegetable Oil Food Supply Quantity. FAOSTAT, USA. http://www.fao.org/3/mb060e/mb060e.pdf 2020. (accessed June 10, 2020).
  • Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision. http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_2030_50_2012_rev.pdf 2020. (accessed June 10, 2020).
  • Codex Alimentarius. FAO/WHO. Standard for Named Vegetable Oils http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf 2019. (accessed June 10, 2020).
  • Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry; Seventh Edition, W.H. Freeman and Sapling Learning: New York, NY/USA, 2017.
  • Gunstone, F. D.;. Vegetable Oils. In Bailey’s Industrial Oils and Fats; Shahidi, F., Ed.; John Wiley & Sons: Hoboken, NJ, EUA, 2005; pp pp 213–267.
  • Naz, S.; Sherazi, S. T. H.; Talpur, F. N. Determination of Unsaponifiable Constituents of Deodorizer Distillates by GC–MS. J. Am. Oil. Chem. Soc. 2012, 89, 973–977. DOI: 10.1007/s11746-011-2000-z.
  • Bhosle, B. M.; Subramanian, R. New Approaches in Deacidification of Edible Oils - a Review. J. Food. Eng. 2005, 69, 481–494. DOI: 10.1016/j.jfoodeng.2004.09.003.
  • European Food Safety Authority (EFSA). Risks for Human Health Related to the Presence of 3- and 2- Monochloropropanediol (MCPD), and Their Fatty Acid Esters, and Glycidyl Fatty Acid Esters in Food. Efsa J. 2016, 14, 4426. DOI: 10.2903/j.efsa.2016.4426.
  • JECF. Joint FAO/WHO Expert Committee on Food Additives Eighty-third Meeting. JECFA/83/SC.http://www.fao.org/3/bq821e/BQ821E.pdf 2016. (accessed September 28, 2019).
  • Vaisali, C.; Charanyaa, S.; Belur, P. D.; Regupathi, I. Refining of Edible Oils: A Critical Appraisal of Current and Potential Technologies. Int. J. Food. Sci. Tech. 2015, 50, 13–23. DOI: 10.1111/ijfs.12657.
  • Naz, S.; Sheikh, H.; Siddiqi, R.; Asad Sayeed, S. Oxidative Stability of Olive, Corn and Soybean Oil under Different Conditions. Food. Chem. 2004, 88, 253–259. DOI: 10.1016/j.foodchem.2004.01.042.
  • Bandoniene, D.; Venskutonis, P. R.; Gruzdienė, D.; Murkovic, M. Antioxidative Activity of Sage (Salvia Officinalis L.), Savory (Saturejahortensis L.) And Borage (Boragoofficinalis L.) Extracts in Rapeseed Oil. Eur. J. Lipid. Sci. Tech. 2002, 104, 286–292.
  • Inanç, T.; Maskan, M. Testing the Antioxidant Effect of Essential Oils and BHT on Corn Oil at Frying Temperatures: A Response Surface Methodology. J. Am. Oil. Chem. Soc. 2013, 90, 1845–1850. doi: 10.1007/s11746-013-2351-8.
  • Kochhar, S. P.;. Stabilisation of Frying Oils with Natural Antioxidative Components. Eur. J. Lipid. Sci. Tech. 2000, 102, 552–559. DOI: 10.1002/1438-9312(200009)102:8/9<552::aid-ejlt552>3.0.co;2-v.
  • Osuna, M. B.; Romero, C. A.; Romero, A. M.; Judis, M. A.; Bertola, N. C. Proximal Composition, Sensorial Properties and Effect of Ascorbic Acid and α - Tocopherol on Oxidative Stability of Bread Made with Whole Flours and Vegetable Oils. LWT-Food. Sci. Technol. 2018, 98, 54–61. DOI: 10.1016/j.lwt.2018.08.012.
  • FAO/WHO. Joint FAO/WHO Food Standards Programme Codex Alimentarius Commission. Report of the 25th session of the Codex committee on fats and oils. http://www.jhnfa.org/k166.pdf 2017. (accessed June 10, 2020).
  • Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K. Oxidative Stability of Selected Edible Oils. Molecules. 2018, 23, 1746. doi: 10.3390/molecules23071746.
  • Parcell, J.; Kojima., Y.; Roach., A.; Cain, W. Global Edible Vegetable Oil Market Trends. Biomed Res-Tokyo. 2018, 2, 10. DOI: 10.26717/BJSTR.2018.02.000680.
  • United States Department of Agriculture (USDA) - Agricultural Research Service- Food Data Central. https://fdc.nal.usda.gov/index.html 2019. (accessed June 10, 2020).
  • Maggio, R. M.; Kaufman, T. S.; Carlo, M. D.; Cerretani, L.; Bendini, A.; Cichelli, A.; Compagnone, D. Monitoring of Fatty Acid Composition in Virgin Olive Oil by Fourier Transformed Infrared Spectroscopy Coupled with Partial Least Squares. Food. Chem. 2009, 114, 1549–1554. DOI: 10.1016/j.foodchem.2008.11.029.
  • Wold Health Organization (WHO). Noncommunicable Diseases (NCD) Country Profiles. https://www.who.int/nmh/publications/ncd-profiles-2018/en/2018. (accessed June 10, 2020).
  • Gershuni, V. M.;. Saturated Fat: Part of a Healthy Diet. Curr. Nutr. Rep. 2018, 7, 85–96. DOI: 10.1007/s13668-018-0238-x.
  • Zahir, E.; Saeed, R.; Hameed, M. A.; Yousuf, A. Study of Physicochemical Properties of Edible Oil and Evaluation of Frying Oil Quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arab. J. Chem. 2017, 10, S3870–S3876. DOI: 10.1016/j.arabjc.2014.05.025.
  • Endo, Y.;. Analytical Methods to Evaluate the Quality of Edible Fats and Oils: The JOCS Standard Methods for Analysis of Fats, Oils and Related Materials (2013) and Advanced Methods. J. Oleo. Sci. 2018, 67, 1–10. DOI: 10.5650/jos.ess17130.
  • Bastürk, A.; Ceylan, M. M.; Çavuş, M.; Boran, G.; Javidipour, I. Effects of Some Herbal Extracts on Oxidative Stability of Corn Oil under Accelerated Oxidation Conditions in Comparison with Some Commonly Used Antioxidants. LWT-Food Sci. Technol. 2018, 89, 358–364. DOI: 10.1016/j.lwt.2017.11.005.
  • Moumtaz, S.; Percival, B. C.; Parmar, D.; Grootveld, K. L.; Jansson, P.; Grootveld, M. Toxic Aldehyde Generation in and Food Uptake from Culinary Oils during Frying Practices: Peroxidative Resistance of a Monounsaturate-rich Algae Oil. Sci. Rep. 2019, 9, 1–21. DOI: 10.1038/s41598-019-39767-1.
  • Ayala, A.; Muñoz, M. F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 1, 1–31. DOI: 10.1155/2014/360438.
  • Khanum, R.; Thevanayagam, H. Lipid Peroxidation: Its Effects on the Formulation and Use of Pharmaceutical Emulsions. Asian J. Pharm. Sci. 2017, 12, 401–411. DOI: 10.1016/j.ajps.2017.05.00.
  • Brewer, M. S.;. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. F. 2011, 10, 221–247. DOI: 10.1111/j.1541-4337.2011.00156.x.
  • Shahidi, F.;. Antioxidants: Principles and Applications. In Handbook of Antioxidants for Food Preservation; Shahidi, F., Ed.; Elsevier: Amesterdã, 2015; pp pp. 1–14.
  • Durazzo, A.;. Extractable and Non-extractable Polyphenols: An Overview. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; pp pp. 1–37.
  • Silva, D. T.; Herrera, R.; Heinzmann, B. M.; Calvo, J.; Labidi, J. Nectandra Grandiflora By-products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties. Molecules. 2018, 23, 372. DOI: 10.3390/molecules23020372.
  • Lourenço, F. C.; Moldão-Martins, M.; Alves, V. D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules. 2019, 24, 1–25. DOI: 10.3390/molecules24224132.
  • Choe, E.; Min, D. B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. F. 2009, 8, 345–358. DOI: 10.1111/j.1541-4337.2009.00085.x.
  • Eghbaliferiz, S.; Iranshahi, M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytotherapy. Res. 2016, 30, 1379–1391. DOI: 10.1002/ptr.5643.
  • Ghnimi, S.; Budilarto, E.; Kamal-Eldin, A. The New Paradigm for Lipid Oxidation and Insights to Microencapsulation of Omega-3 Fatty Acids. Compr. Rev. Food Sci. F. 2017, 16, 1206–1218. DOI: 10.1111/1541-4337.12300.
  • Carneiro, H. C. F.; Tonon, R. V.; Grosso, C. R. F.; Hubinger, M. D. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Different Combinations of Wall Materials. J. Food. Eng. 2013, 115, 443–451. DOI: 10.1016/j.jfoodeng.2012.03.033.
  • Gharibzahedi, S. M. T.; George, S.; Greiner, R.; Estevinho, B. N.; Fernández, M. J. F.; Mcclements, D. J.; Roohinejad, S. New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking. Compr. Rev. Food. Sci. F. 2018, 17, 274–289. DOI: 10.1111/1541-4337.12324.
  • Matthäus, B.;. Oxidation of Edible Oils. In Oxidation in Foods and Beverages and Antioxidant Applications; Decker, E., Elias, R., McClements, D.J., Eds.; Woodhead Publishing: Cambridge, 2010; pp pp 183–238.
  • Grosshagauer, S.; Steinschaden, R.; Pignitter, M. Strategies to Increase the Oxidative Stability of Cold Pressed Oils. LWT-Food. Sci. Technol. 2019, 106, 72–77. DOI: 10.1016/j.lwt.2019.02.046.
  • Liu, R.; Mabury, S. A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. DOI: 10.1021/acs.est.0c05077.
  • Embuscado, M. E.;. Spices and Herbs: Natural Sources of Antioxidants – A Mini Review. J. Funct. Foods. 2015, 18, 811–819. DOI: 10.1016/J.JFF.2015.03.005.
  • Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology & Medicine, 5rd ed; Oxford University Pres: New York, 2015. Doi:10.1093/acprof:oso/9780198717478.001.0001.
  • Miková, K.;. The Regulation of Antioxidants in Food. In Antioxidants in Food: Practical Applications; Pokorny, J., Yanishlieva, N., Gordon, M., Eds.; Cambrigde: Woodhead Publishing Limited, 2001; pp pp 267–284.
  • Fan, L.; Eskin, N. A. M. The Use of Antioxidants in the Preservation of Edible Oils. In Handbook of Antioxidants for Food Preservation; Shahidi, F., Ed.; Woodhead Publishing: Cambridge, 2015; pp pp 373–388. DOI: 10.1016/B978-1-78242-089-7.00015-4.
  • Shahidi, F.; Zhong, H. J.; Ambigaipalan, P. Bailey’s Industrial Oil and Fat Products;; John Wiley & Sons: Hoboken, NJ, EUA, 2020.
  • Rahmania, H.; Kato, S.; Sawada, K.; Hayashi, C.; Hashimoto, H.; Nakajima, S.; Otoki, Y.; Ito, J.; Nakagawa, K. Revealing the Thermal Oxidation Stability and Its Mechanism of Rice Bran Oil. Sci. Rep. 2020, 10, 1–11. DOI: 10.1038/s41598-020-71020-y.
  • Shahidi, F.; Zhong, Y. Lipid Oxidation and Improving the Oxidative Stability. Chem. Soc. Rev. 2010, 39, 4067–4079. DOI: 10.1039/b922183m.
  • Taghvaei, M.; Jafari, S. M. Application and Stability of Natural Antioxidants in Edible Oils in order to Substitute Synthetic Additives. J. Food. Sci. Technol. 2015, 52, 1272–1282. DOI: 10.1007/s13197-013-1080-1.
  • FAO/HOW – Food Standards. CODEX ALIMENTARIUS. GSFA Online Updated up to the 42nd Session of the CODEX Alimentarius Commission. FOOD ADDITIVE INDEX. http://www.fao.org/gsfaonline/additives/index.html 2019. (accessed June 10, 2020).
  • Government of Canada. Food Additives that May Be Used as Class IV Preservatives PART IV. Justice Laws Website. https://laws-lois.justice.gc.ca/Search/Search.aspx?txtS3archA11=oil&txtT1tl3=%22Food+and+Drug+Regulations%22&h1ts0n1y=0&ddC0nt3ntTyp3=Regulations 2018. (accessed June 10, 2020).
  • Initial Assessment Report Application A555 Declaration of Antioxidants in Fats and Oils. www.foodstandards.gov.au 2006. (accessed June 10, 2020).
  • Japan External Trade Organization – JETRO. Specifications and Standards for Foods, Food Additives, etc. Under the Food Sanitation Act (Abstract). https://www.jetro.go.jp/en/2011. (accessed June 10, 2020).
  • Brazil. Ministério Da Saúde. Conselho Nacional De Saúde (1988). Resolução CNS/MS N° 04, De 24 De Novembro De 1988. http://bvsms.saude.gov.br/bvs/saudelegis/cns/1988/res0004_24_11_1988.html 1988. (accessed June 10, 2020).
  • European Comission (EC). Uniform Sanitary and Epidemiological and Hygienic Requirements for Goods Subject to Sanitary and Epidemiological Supervision (Control). Chapter II Part 22 Safety Requirements for Food Additives and Flavourings. 2011. https://ec.europa.eu/food/safety/general_food_law_en (accessed June 10, 2020).
  • Joint Expert Committee on Food Additives - JECFA. Monographs. http://www.inchem.org/pages/jecfa.html (accessed June 10, 2020).
  • Carocho, M.; Ferreira, I. C. F. R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food. Chem. Toxicol. 2013, 51, 15–25. DOI: 10.1016/j.fct.2012.09.021.
  • Hocman, G.;. Biochemistry of Aging and Cancer. Int. J. Biochem. 1981, 13, 659–672. DOI: 10.1016/0020-711X(81)90034-3.
  • Wichi, H. P.;. Enhanced Tumour Development by Butylated Hydroxytoluene (BHT) in the Liver, Lung and Gastro-intestinal Tract. Food. Chem. Toxicol. 1986, 24, 1127–1130. DOI: 10.1016/0278-6915(86)90298-x.
  • Williams, G. M.; Iatropoulos, M. J.; Whysner, J. Safety Assessment of Butylated Hydroxyanisole and Butylated Hydroxytoluene as Antioxidant Food Additives. Food. Chem. Toxicol. 1999, 37, 1027–1038. DOI: 10.1016/s0278-6915(99)00085-x.
  • European Food Safety Authority (EFSA). Scientific Opinion on the Re-evaluation of Butylated Hydroxyanisole - BHA (E 320) as a Food Additive. Efsa J. 2011, 9, 2392. DOI: 10.2903/j.efsa.2011.2392.
  • European Food Safety Authority (EFSA). Scientific Opinion on the Re-evaluation of Butylated Hydroxytoluene BHT (E 321) as a Food Additive. Efsa J. 2012, 10, 2588. DOI: 10.2903/j.efsa.2012.2669.
  • European Commission (EC). Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives. OJEU. 2011, 295, 1–177.
  • Yanishlieva, N. V.; Marinova, E.; Pokorny, J. Natural Antioxidants from Herbs and Spices. Eur. J. Lipid Sci. Technol. 2006, 108, 776–793. DOI: 10.1002/ejlt.200600127.
  • Selvamuthukumaran, M.; Shi, J. Recent Advances in Extraction of Antioxidants from Plant By-products Processing Industries. Food. Qual. and Saf. 2017, 1, 61–81. DOI: 10.1093/fqs/fyx004.
  • Mishra, S. K.; Belur, P. D.; Iyyaswami, R. Use of Antioxidants for Enhancing Oxidative Stability of Bulk Edible Oils: A Review. Int. J. Food Sci. Technol. 2020, 55, 1–12. DOI: 10.1111/ijfs.14716.
  • Singh, A. P.; Fathordoobady, F.; Guo, Y.; Singh, A.; Kitts, D. D. Antioxidants Help Favorably Regulate the Kinetics of Lipid Peroxidation, Polyunsaturated Fatty Acids Degradation and Acidic Cannabinoids Decarboxylation in Hempseed Oil. Sci. Rep. 2020, 10, 1–12. DOI: 10.1038/S41598-020-67267-0.
  • Santos, N. A.; Cordeiro, A. M. T. M.; Damasceno, S. S.; Aguiar, R. T.; Rosenhaim, R.; Filho, J. R. C.; Carvalho, J. R.; Santos, I. M. G.; Maia, A. S.; Souza, A. G. Commercial Antioxidants and Thermal Stability Evaluations. Fuel. 2012, 97, 638–643. DOI: 10.1016/j.fuel.2012.01.074.
  • Franco, D.; Rodríguez-Amado, I.; Agregán, R.; Munekata, P. E. S.; Vázquez, J. A.; Barba, F. J.; Lorenzo, J. M. Optimization of Antioxidants Extraction from Peanut Skin to Prevent Oxidative Processes during Soybean Oil Storage. LWT-Food. Sci. Technol. 2018, 88, 1–8. DOI: 10.1016/j.lwt.2017.09.027.
  • Kozłowska, M.; Gruczyńska, E. Comparison of the Oxidative Stability of Soybean and Sunflower Oils Enriched with Herbal Plant Extracts. Chem. Pap. 2018, 72, 2607–2615. DOI: 10.1007/s11696-018-0516-5.
  • Mezza, G. N.; Borgarello, A. V.; Grosso, N. R.; Fernandez, H.; Pramparo, M. C.; Gayol, M. F. Antioxidant Activity of Rosemary Essential Oil Fractions Obtained by Molecular Distillation and Their Effect on Oxidative Stability of Sunflower Oil. Food Chem. 2018, 242, 9–15. DOI: 10.1016/j.foodchem.2017.09.042.
  • Si, W.; Chen, Y. P.; Zhang, J.; Chen, Z.-Y.; Chung, H. Y. Antioxidant Activities of Ginger Extract and Its Constituents toward Lipids. Food. Chem. 2018, 239, 1117–1125. DOI: 10.1016/j.foodchem.2017.07.055.
  • Bodoira, R. M.; Penci, M. C.; Ribotta, P. D.; Martínez, M. L. Chia (Salvia Hispanica L.) Oil Stability: Study of the Effect of Natural Antioxidants. LWT-Food Sci. Technol. 2017, 75, 107–113. DOI: 10.1016/j.lwt.2016.08.031.
  • Agregán, R.; Lorenzo, J. M.; Munekata, P. E. S.; Dominguez, R.; Carballo, J.; Franco, D. Assessment of the Antioxidant Activity of Bifurcaria Bifurcata Aqueous Extract on Canola Oil. Effect of Extract Concentration on the Oxidation Stability and Volatile Compound Generation during Oil Storage. Food. Res. J. 2017, 99, 1095–1102. DOI: 10.1016/j.foodres.2016.10.029.
  • Elbadrawy, E.; Sello, A. Evaluation of Nutritional Value and Antioxidant Activity of Tomato Peel Extracts. Arab. J. Chem. 2016, 9, S1010–S1018. DOI: 10.1016/j.arabjc.2011.11.011.
  • Bravi, E.; Perretti, G.; Falconi, C.; Marconi, O.; Fantozzi, P. Antioxidant Effects of Supercritical Fluid Garlic Extracts in Sunflower Oil. J. Sci. Food Agric. 2016, 97, 102–107. DOI: 10.1002/jsfa.7690.
  • Franco, D.; Pateiro, M.; Rodríguez Amado, I.; López Pedrouso, M.; Zapata, C.; Vázquez, J. A.; Lorenzo, J. M. Antioxidant Ability of Potato (Solanum Tuberosum) Peel Extracts to Inhibit Soybean Oil Oxidation. Eur. J. Lipid. Sci. Tech 2016 (118), 1891–1902. DOI: 10.1002/ejlt.201500419.
  • Chong, Y. M.; Changb, S. K.; Siaa, W. C. M.; Yim, H. S. Antioxidant Efficacy of Mangosteen (Garcinia Mangostana Linn.) Peel Extracts in Sunflower Oil during Accelerated Storage. Food. Biosci. 2015, 12, 18–25. DOI: 10.1016/j.fbio.2015.07.002.
  • Asha, A.; Manjunatha, M.; Rekha, R. M.; Surendranath, B.; Heartwin, P.; Rao, J.; Magdaline, E.; Sinha, C. Antioxidant Activities of Orange Peel Extract in Ghee (Butter Oil) Stored at Different Storage Temperatures. J. Food Sci. Technol. 2015, 52, 8220–8227. DOI: 10.1007/s13197-015-1911-3.
  • Kurhade, A. H.; Waghmare, J. S. Effect of Banana Peel Oleoresin on Oxidative Stability of Sunflower and Soybean Oil. J. Food. Process. Pres. 2015, 39, 1788–1797. DOI: 10.1111/jfpp.12413.
  • Park, J.; Gim, S. Y.; Jeon, J.-Y.; Kim, M.-J.; Choi, H.-K.; Lee, J. Chemical Profiles and Antioxidant Properties of Roasted Rice Hull Extracts in Bulk Oil and Oil-in-water Emulsion. Food. Chem. 2019, 272, 242–250. DOI: 10.1016/j.foodchem.2018.08.054.
  • Kehili, M.; Choura, S.; Zammel, A.; Allouche, N.; Sayadi, S. Oxidative Stability of Refined Olive and Sunflower Oils Supplemented with Lycopene-rich Oleoresin from Tomato Peels Industrial By-product, during Accelerated Shelf-life Storage. Food. Chem. 2018, 246, 295–304. DOI: 10.1016/j.foodchem.2017.11.034.
  • Nour, V.; Corbua, A. R.; Rotarua, P.; Karageorgouc, I.; Lalas, S. Effect of Carotenoids, Extracted from Dry Tomato Waste, on the Stability and Characteristics of Various Vegetable Oils. Grasas Aceites. 2018, 69, 238–249. DOI: 10.3989/gya.0994171.
  • Delfanian, M.; Kenari, R. E.; Sahari, M. A. Evaluation of Antioxidant Activity of Loquat Fruit (Eriobotrya Japonicalindl.) Skin and the Feasibility of Their Application to Improve the Oxidative Stability of Soybean Oil. J. Food. Sci. Technol. 2016, 53, 2244–2252. DOI: 10.1007/s13197-016-2181-4.
  • Peñalvo, G. C.; Robledo, V. R.; Callado, -C. S.-C.; Santander-Ortega, M. J.; Castro-Vázquez, L.; Victoria Lozano, M.; Arroyo-Jiménez, M. M. Improving Green Enrichment of Virgin Olive Oil by Oregano. Effects on Antioxidants. Food. Chem. 2016, 197, 509–515. DOI: 10.1016/j.foodchem.2015.11.002.
  • Khemakhem, I.; Yaiche, C.; Ayadi, M. A.; Bouaziz, M. Impact of Aromatization by Citrus Limetta and Citrus Sinensis Peels on Olive Oil Quality, Chemical Composition and Heat Stability. J. Am. Oil. Chem. Soc. 2015, 92, 701–708. DOI: 10.1007/s11746-015-2636-1.
  • Delfanian, M.; Kenari, R. E.; Sahari, M. A. Antioxidant Activity of Loquat (Eriobotrya Japonica Lindl.) Fruit Peel and Pulp Extracts in Stabilization of Soybean Oil during Storage Conditions. Int. J. Food. Prop. 2015, 18, 2813–2824. DOI: 10.1080/10942912.2015.1013635.
  • Ben-Ali, M.; Dhouib, K.; Damak, M.; Allouche, N. Stabilization of Sunflower Oil during Accelerated Storage: Use of Basil Extract as a Potential Alternative to Synthetic Antioxidants. Int. J. Food. Prop. 2014, 17, 1547–1559. DOI: 10.1080/10942912.2012.723659.
  • Jabri-Karoui, I.; Marzouk, B. Bioactive Compounds, Antioxidant Activities and Heat Stability of Corn Oil Enriched with Tunisian Citrus Aurantium L. Peel Extract. J. Am. Oil. Chem. Soc. 2014, 91, 1367–1375. DOI: 10.1007/s11746-014-2485-3.
  • Guiotto, E. N.; Ixtaina, V. Y.; Nolasco, S. M.; Tomás, M. C. Effect of Storage Conditions and Antioxidants on the Oxidative Stability of Sunflower–Chia Oil Blends. J. Am. Oil Chem. Soc. 2014, 91, 767–776. DOI: 10.1007/s11746-014-2410-9.
  • Poiana, M. A.;. Enhancing Oxidative Stability of Sunflower Oil during Convective and Microwave Heating Using Grape Seed Extract. Int. J. Mol. Sci. 2012, 13, 9240–9259. DOI: 10.3390/ijms13079240.
  • Okhli, S.; Mirzaei, H.; Hosseini, S. E. Antioxidant Activity of Citron Peel (Citrus Medica L.) Essential Oil and Extract on Stabilization of Sunflower Oil. OCL. 2020, 27, 1–7. DOI: 10.1051/ocl/2020022.
  • Drăghici, O.; Păcală, M.-L.; Oancea, S. Kinetic Studies on the Oxidative Stabilization Effect of Red Onion Skins Anthocyanins Extract on Parsley (Petroselinum Crispum) Seed Oil. Food. Chem. 2018, 265, 337–343. DOI: 10.1016/j.foodchem.2018.05.075.
  • USDA. United States Department of Agriculture. Oils Seeds: World Markets and Trade. Foreign Agricultural Service/USDA, Global Market Analysis. https://www.qianzhan.com/analyst/detail/220/200713-f26ac6c2.html 2020. (accessed November 06, 2020).
  • Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible Plant Oil: Global Status, Health Issues, and Perspectives. Front. Plant Sci. 2020, 11, 1315. DOI: 10.3389/fpls.2020.01315.
  • Magri, A.; Petriccione, M.; Cerqueira, M. A.; Gutiérrez, T. J. Self-assembled Lipids for Food Applications: A Review. Adv. Colloid Interface Sci. 2020, 285, 102279. DOI: 10.1016/j.cis.2020.102279.
  • Ahmad, A.; Ahsan, H. Lipid-based Formulations in Cosmeceuticals and Biopharmaceuticals. Biomedical Dermatology. 2020, 4, 1–10. DOI: 10.1186/s41702-020-00062-9.
  • Naeli, M. H.; Farmani, J.; Zargaraan, A. Rheological and Physicochemical Modification of Trans-free Blends of Palm Stearin and Soybean Oil by Chemical Interesterification. J. Food. Process. Eng. 2017, 40, 1–12. DOI: 10.1111/jfpe.12409.
  • Blasi., F.; Cossignani, L. An Overview of Natural Extracts with Antioxidant Activity for the Improvement of the Oxidative Stability and Shelf Life of Edible Oils. Processes. 2020, 8, 956. DOI: 10.3390/pr8080956.
  • Bewer, M. S.;. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–231.
  • Berger, R. G.;. Biotechnology of Flavours-the Next Generation. Biotechnol. Lett. 2009, 31, 1651–1659. DOI: 10.1007/s10529-009-0083-5.
  • Seyidoglu, N.; Aydin, C. Stress, Natural Antioxidants and Future Perspectives; Intech Open: London, UK, 2020. DOI: 10.5772/intechopen.91167.
  • Teboukeu, G. B.; Fabrice Tonfack, D. F.; Klang, T.; Karuna, M. J.; Womeni, M. S. L. Optimization of the Extraction of Natural Antioxidants from Coffea Robusta Leaves and Evaluation of Their Ability to Preserve Palm Olein from Oxidation during Accelerated Storage. Food Sci. Nutr. 2018, 6, 1751–1761. DOI: 10.1002/fsn3.702.
  • Sharma, S.; Cheng, S.-F.; Bhattacharya, B.; Chakkaravarthi, S. Efficacy of Free and Encapsulated Natural Antioxidants in Oxidative Stability of Edible Oil: Special Emphasis on Nanoemulsion-based Encapsulation. Trends Food Sci. Tech. 2019, 91, 305–318. DOI: 10.1016/j.tifs.2019.07.030.
  • Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-products: A Review. Ultrason. Sonochem. 2021, 70, 105325. DOI: 10.1016/j.ultsonch.2020.105325.
  • Nadar, S. S.; Rao, P.; Rathod, V. K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. DOI: 10.1016/j.foodres.2018.03.006.
  • Wen, L.; Zhang, Z.; Sun, D. W.; Sivagnanam, S. P.; Tiwari, B. K. Combination of Emerging Technologies for the Extraction of Bioactive Compounds. Critical Reviews in Food Sci. Nutr 2020, 60, 1826–1841. DOI: 10.1080/10408398.2019.1602823.
  • Yan, L. G.; He, L.; Xi, J. High Intensity Pulsed Electric Field as an Innovative Technique for Extraction of Bioactive compounds-A Review. Critical Reviews in Food Sci. Nutr 2017, 57, 2877–2888. DOI: 10.1080/10408398.2015.1077193.
  • Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-products, Seaweeds and Microalgae – An Update. TrAC Trends Anal. Chem 2019, 116, 198–213. DOI: 10.1016/j.trac.2019.04.030.
  • Pereira, D. T. V.; Tarone, A. G.; Cazarin, C. B. B.; Barbero, G. F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds from Grape Marc. J. Food Eng. 2019, 240, 105–113. DOI: 10.1016/j.jfoodeng.2018.07.019.
  • Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B. K.; Vorobiev, E.; Lebovka, N.; et al. Application of Non-conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Eng. Rev. 2016, 8, 214–234. DOI: 10.1007/s12393-015-9131-1.
  • Chemat, F.; Vian, M. A.; Tixier, A. S. F. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22, 2325–2353. DOI: 10.1039/c9gc03878g.
  • Cao, G. H.; Alessio, H. M.; Cutler, R. G. Oxygen-radical Absorbency Capacity Assay for Antioxidants. Free. Radic. Biol. Med. 1993, 14, 303–311. DOI: 10.1016/0891-5849(93)90027-R.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3.
  • Miller, H. E.;. A Simplified Method for the Evaluation of Antioxidant. J. Am. Oil. Chem. Soc. 1971, 48, 91. DOI: 10.1007/BF02635693.
  • Marco, G.;. A Rapid Method for Evaluation of Antioxidants. J. Am. Oil. Chem. Soc. 1968, 45, 594–598. DOI: 10.1007/BF02668958.
  • Halliwell, B.; Gutteridge, J. M.; Aruoma, O. I. The Deoxyribose Method: A Simple “Test-tube” Assay for Determination of Rate Constants for Reactions of Hydroxyl Radicals. Anal. Chem. 1987, 165, 215–219. DOI: 10.1016/0003-2697(87)90222-3.
  • Gutteridge, J. M. C.; Halliwell, B. The Deoxyribose Assay: An Assay Both for ‘Free’hydroxyl Radical and for Site-specific Hydroxyl Radical Production. Biochem. J. 1988, 253, 932–933. DOI: 10.1042/bj2530932.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. L. W. T. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol. 1995, 28, 25–30.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Chem. 1996, 239, 70–76. DOI: 10.1006/abio.1996.0292.
  • Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols as Determined by a Modified Ferric Reducing/antioxidant Power Assay. J. Agric. Food. Chem. 2000, 48, 3396–3402. DOI: 10.1021/jf9913458.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. DOI: 10.1021/jf0502698.
  • ISO (Intl. Organization for Standardization). Determination of Substances Characteristic of Green and Black tea‐Part 1: Content of Total Polyphenols in tea‐Colorimetric Method Using Folin‐Ciocalteu Reagent. 2005. DOI: 10.3403/03247193.
  • Griess, P.;. Bemerkungen zu der Abhandlung der HH. Weselky und Benedikt, Ueber einege Azoverbindungen. Ber. Dtsch. Chem. Ges. 1879, 12, 426–428. DOI: 10.1002/cber.187901201117.
  • Marcocci, L.; Maguire, J. J.; Droylefaix, M. T.; Packer, L. The Nitric Oxide-scavenging Properties of Ginkgo Biloba Extract EGb 761. Biochem. Biophys. Res. Commun 1994, 201, 748–755. DOI: 10.1006/bbrc.1994.1764.
  • Kishida, E.; Kamura, A.; Tokumaru, S.; Oribe, M.; Iguchi, H.; Kojo, S. Re-evaluation of Malondialdehyde and Thiobarbituric Acid-reactive Substances as Indexes of Autoxidation Based on Oxygen Consumption. J. Agric. Food Chem. 1993, 41, 1–4. DOI: 10.1021/jf00025a001.
  • Apak, R.; Özyürek, M.; Guüclu¸, K.; Çapanoglŭ, E. Antioxidant Activity/ Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (Et)-based Assays. ‎J. Agric. Food. Chem. 2016, 64, 997–1027. DOI: 10.1021/acs.jafc.5b04739.
  • Alam, N. M.; Bristi, N. J.; Rafiquzzaman, M. Review on in Vivo and in Vitro Methods Evaluation of Antioxidant Activity. Saudi. Pharm. J. 2013, 21, 143–152. DOI: 10.1016/j.jsps.2012.05.002.
  • Thorat, I. D.; Jagtapb, D. D.; Mohapatrac, D.; Joshib, D. C.; Sutarb, R. F.; Kapdib, S. S. Antioxidants, Their Properties, Uses in Food Products and Their Legal Implications. Int. J. Food. Stud. 2013, 2, 81–104. DOI: 10.7455/ijfs/2.1.2013.a7.
  • Brazil. Ministério Da Saúde. Agência Nacional De Vigilância Sanitária. Resolução Da Diretoria Colegiada, RDC Nº 239, De 2018. Diário Oficial Da União, Brasília, DF, 26 De Julho De 2018. Seção 1, p. 90. http://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/34380515/do1-2018-07-27-resolucao-da-diretoria-colegiada-rdc-n-239-de-26-de-julho-de-2018-34380387 2018. (accessed June 10, 2020).
  • Whysner, J.; Williams, G. M. Butylated Hydroxy Anisole Mechanistic Data and Risk Assessment: Conditional Species-Specific Cytotoxicity, Enhanced Cell Proliferation, and Tumor Promotion. Pharmacol. Therapeut. 1996, 71, 137–151. DOI: 10.1016/0163-7258(96)00066-6.
  • Sun, B.; Fukuhara, M. Effects of Co-administration of Butylated Hydroxytoluene, Butylated Hydroxyanisole and Flavonoids on the Activation of Mutagens and Drug-metabolizing Enzymes in Mice. Toxicology. 1997, 122, 61–72. DOI: 10.1016/s0300-483x(97)00078-4.
  • Oh, J.; Jo, H.; Cho, A. R.; Kim, S.-J.; Han, J. Antioxidant and Antimicrobial Activities of Various Herbal Teas. Food Control. 2013, 31, 403–409. DOI: 10.1016/j.foodcont.2012.10.021.
  • Pokorny, J.;. Are Natural Antioxidants Better – And Safer – Than Synthetic Antioxidants? Eur. J. Lipid. Sci. Tech. 2007, 109, 629–642. DOI: 10.1002/ejlt.200700064.
  • Khurana, R. K.; Jain, A.; Jain, A.; Sharma, T.; Singh, B.; Kesharwani, P. Administration of Antioxidants in Cancer: Debate of the Decade. Drug. Discov. Today. 2018, 23, 763–770. DOI: 10.1016/j.drudis.2018.01.021.
  • Srinivasan, J. R.; Kawamura, Y. JECFA - Chemical and Technical Assessment (CTA). http://www.fao.org/3/a-br565e.pdf (accessed June 10, 2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.