800
Views
2
CrossRef citations to date
0
Altmetric
Review

A Narrative Review on Microencapsulation of Obligate Anaerobe Probiotics Bifidobacterium, Akkermansia muciniphila, and Faecalibacterium prausnitzii

, & ORCID Icon

References

  • Hill, C.; Guarner, F.; Reid, G.; Gibson, G. R.; Merenstein, D. J.; Pot, B.; Morelli, L.; Canani, R. B.; Flint, H. J.; Salminen, S.; Calder, P. C.; Sanders, M. E. 2014 The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11(8), 506–514. doi: 10.1038/nrgastro.2014.66.
  • Fijan, S.;; Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. International Journal of Environmental Research and Public Health. 2014, 115, 4745–4767. doi:10.3390/ijerph110504745.
  • Bircher, L.; Geirnaert, A.; Hammes, F.; Lacroix, C.; Schwab, C. Effect of Cryopreservation and Lyophilization on Viability and Growth of Strict Anaerobic Human Gut Microbes. Microb. Biotechnol. 2018, 11(4), 721–733. doi: 10.1111/1751-7915.13265.
  • Ladero, V.; Molecular, S. B. Technological Insights into the Aerotolerance of Anaerobic Probiotics: Examples from Bifidobacteria. Curr. Opin. Food Sci. 2017, 14, 110–115. doi: 10.1016/j.cofs.2017.03.002.
  • Marcial-Coba, M. S.; Cieplak, T.; Cahú, T. B.; Blennow, A.; Knøchel, S.; Nielsen, D. S. Viability of Microencapsulated Akkermansia Muciniphila and Lactobacillus Plantarum during Freeze-drying, Storage and in Vitro Simulated Upper Gastrointestinal Tract Passage. Food Funct. 2018, 9(11), 5868–5879. doi: 10.1039/c8fo01331d.
  • Medina-Vera, I.; Sanchez-Tapia, M.; Noriega-López, L.; Granados-Portillo, O.; Guevara-Cruz, M.; Flores-López, A.; Avila-Nava, A.; Fernández, M. L.; Tovar, A. R.; Torres, N.; A Dietary Intervention with Functional Foods Reduces Metabolic Endotoxaemia and Attenuates Biochemical Abnormalities by Modifying Faecal Microbiota in People with Type 2 Diabetes. Diabetes and Metabolism. 2019, 452, 122–131. doi:10.1016/j.diabet.2018.09.004.
  • Rathore, S.; Desai, P. M.; Liew, C. V.; Chan, L. W.; Heng, P. W. S. Microencapsulation of Microbial Cells. J. Food Eng. 2013, 116(2), 369–381. doi: 10.1016/j.jfoodeng.2012.12.022.
  • John, R. P.; Tyagi, R. D.; Brar, S. K.; Surampalli, R. Y.; Prévost, D. Bio-Encapsulation of Microbial Cells for Targeted Agricultural Delivery. Crit. Rev. Biotechnol. 2011, 31(3), 211–226. doi: 10.3109/07388551.2010.513327.
  • Holkem, A. T.; Raddatz, G. C.; Nunes, G. L.; Cichoski, A. J.; Jacob-Lopes, E.; Ferreira Grosso, C. R.; de Menezes, C. R. Development and Characterization of Alginate Microcapsules Containing Bifidobacterium BB-12 Produced by Emulsification/Internal Gelation Followed by Freeze Drying. LWT - Food Sci. Technol. 2016, 71, 302–308. doi: 10.1016/j.lwt.2016.04.012.
  • Pawar, D. D.; Mulla, A. M.; Solanki, H. K.; Shah, D. A.; Thakar, P. M.; Prajapati, V. D.; Jani, G. K. Development of Microencapsulation Delivery System for Long-Term Preservation of Probiotics as Biotherapeutics Agent. Biomed Res. Int. 2013, 2013, 1–21. doi: 10.1155/2013/620719.
  • Martín, M. J.; Lara-Villoslada, F.; Ruiz, M. A.; Morales, M. E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innovative Food Sci. Emerging Technol. 2015, 27, 15–25. doi: 10.1016/j.ifset.2014.09.010.
  • Ramos, P. E.; Cerqueira, M. A.; Teixeira, J. A.; Vicente, A. A. Physiological Protection of Probiotic Microcapsules by Coatings. Crit. Rev. Food Sci. Nutr. 2018, 58(11), 1864–1877. doi: 10.1080/10408398.2017.1289148.
  • Cook, M. T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V. V. Microencapsulation of Probiotics for Gastrointestinal Delivery. J. Controlled Release. 2012, 162(1), 56–67. doi: 10.1016/j.jconrel.2012.06.003.
  • Redaelli, F.; Sorbona, M.; Rossi, F. Synthesis and Processing of Hydrogels for Medical Applications. Bioresorbable Polymers for Biomedical Applications 2017, 205–228. doi: 10.1016/B978-0-08-100262-9.00010-0.
  • Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A. Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. doi: 10.1016/j.foodchem.2018.07.205.
  • McGuinness, G. B.; Vrana, N. E.; Liu, Y. Processing and Fabrication Technologies for Biomedical Hydrogels. Biomedical Hydrogels 2011, 63–80. doi: 10.1533/9780857091383.1.63.
  • Davarcı, F.; Turan, D.; Ozcelik, B.; Poncelet, D. The Influence of Solution Viscosities and Surface Tension on Calcium-Alginate Microbead Formation Using Dripping Technique. Food Hydrocolloids. 2017, 62, 119–127. doi: 10.1016/j.foodhyd.2016.06.029.
  • Funami, T.; Fang, Y.; Noda, S.; Ishihara, S.; Nakauma, M.; Draget, K. I.; Nishinari, K.; Phillips, G. O. Rheological Properties of Sodium Alginate in an Aqueous System during Gelation in Relation to Supermolecular Structures and Ca2+ Binding. Food Hydrocolloids. 2009, 23(7), 1746–1755. doi: 10.1016/j.foodhyd.2009.02.014.
  • Yeung, T. W.; Üçok, E. F.; Tiani, K. A.; McClements, D. J.; Sela, D. A. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium Longum for Oral Delivery. Front. Microbiol. APR 2016, 7, 1–11. doi: 10.3389/fmicb.2016.00494.
  • Gu, M.; Zhang, Z.; Pan, C.; Goulette, T. R.; Zhang, R.; Hendricks, G.; McClements, D. J.; Xiao, H. Encapsulation of Bifidobacterium Pseudocatenulatum G7 in Gastroprotective Microgels: Improvement of the Bacterial Viability under Simulated Gastrointestinal Conditions. Food Hydrocolloids. January 2019, 91, 283–289. doi: 10.1016/j.foodhyd.2019.01.040.
  • Kumherová, M.; Veselá, K.; Jokešová, K.; Klojdová, I.; Horáčková, Š. Influence of co-encapsulation of Bifidobacterium Animalis Subsp. Lactis Bb12 with Inulin and Ascorbic Acid on Its Viability. Czech J. Food Sci. 2020, 38(No. 1), 57–62. doi: 10.17221/292/2019-cjfs.
  • Yeung, T. W.; Üçok, E. F.; Tiani, K. A.; McClements, D. J.; Sela, D. A. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium Longum for Oral Delivery. Front. Microbiol. 2016, 7(APR), 1–11. doi: 10.3389/fmicb.2016.00494.
  • Morales, M. E.; Ruiz, M. A. Microencapsulation of Probiotic Cells: Applications in Nutraceutic and Food Industry; Elsevier Inc., Oxford, UK, 2016. doi: 10.1016/b978-0-12-804305-9.00016-6.
  • Zanjani, M. A. K.; Ehsani, M. R.; Ghiassi Tarzi, B.; Sharifan, A. Promoting Lactobacillus Casei and Bifidobacterium Adolescentis Survival by Microencapsulation with Different Starches and Chitosan and Poly L-Lysine Coatings in Ice Cream. J. Food Process. Preserv. 2018, 42(1), 1–10. doi: 10.1111/jfpp.13318.
  • Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15(1), 143–182. doi: 10.1111/1541-4337.12179.
  • Shishir, M. R. I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in Micro and Nano-Encapsulation of Bioactive Compounds Using Biopolymer and Lipid-Based Transporters. Trends Food Sci. Technol. 2017 December, 2018(78), 34–60. doi:10.1016/j.tifs.2018.05.018.
  • Mao, L.; Pan, Q.; Yuan, F.; Gao, Y. Formation of Soy Protein Isolate-Carrageenan Complex Coacervates for Improved Viability of Bifidobacterium Longum during Pasteurization and in Vitro Digestion. Food Chem. 2019, August 2018, 276, 307–314. doi: 10.1016/j.foodchem.2018.10.026.
  • Negut, I.; Grumezescu, V.; Dorcioman, G.; Socol, G. Microscale Drug Delivery Systems: Current Perspectives and Novel Approaches. Nano- and Microscale Drug Delivery Systems 2017, 1–15. doi: 10.1016/B978-0-323-52727-9.00001-7.
  • Nunes, G. L.; Motta, M. H.; Cichoski, A. J.; Wagner, R.; Muller, É. I.; Codevilla, C. F.; Silva, C. D. B. D.; Menezes, C. R. D. Encapsulation of Lactobacillus Acidophilus La-5 and Bifidobacterium Bb-12 by Spray Drying and Evaluation of Its Resistance in Simulated Gastrointestinal Conditions, Thermal Treatments and Storage Conditions. Ciência Rural. 2018, 48(6), 1–11. doi: 10.1590/0103-8478cr20180035.
  • Bustamante, M.; Oomah, B. D.; Rubilar, M.; Shene, C. Effective Lactobacillus Plantarum and Bifidobacterium Infantis Encapsulation with Chia Seed (Salvia Hispanica L.) And Flaxseed (Linum Usitatissimum L.) Mucilage and Soluble Protein by Spray Drying. Food Chem. 2017, 216, 97–105. doi: 10.1016/j.foodchem.2016.08.019.
  • Pedroso, D. L.; Dogenski, M.; Thomazini, M.; Heinemann, R. J. B.; Favaro-Trindade, C. S. Microencapsulation of Bifidobacterium AnimalisSubsp. Lactis and Lactobacillus Acidophilus in Cocoa Butter Using Spray Chilling Technology. Brazilian J. Microbiol., 2013, 44 (3), 777–783. https://doi.org/10.1590/S1517-83822013000300017
  • Fang, Z.; Jiang, R.; Zhang, L.; Wu, Y.; Zhao, X.; Zhao, L.; Li, J.; Zou, S.; Zhang, M.; Du, F. In Situ Fabrication of Radiopaque Microcapsules for Oral Delivery and Real-Time Gastrointestinal Tracking of Bifidobacterium. Int. J. Nanomed. 2018, 13, 4093–4105. doi: 10.2147/IJN.S145837.
  • Broeckx, G.; Vandenheuvel, D.; Claes, I. J. J.; Lebeer, S.; Kiekens, F. Drying Techniques of Probiotic Bacteria as an Important Step Towards the Development of Novel Pharmabiotics. Int. J. Pharmaceutics. 2016, 505(1–2), 303–318. doi: 10.1016/j.ijpharm.2016.04.002.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. doi: 10.1016/j.cis.2015.05.003.
  • Vandenheuvel, D.; Singh, A.; Vandersteegen, K.; Klumpp, J.; Lavigne, R.; Van Den Mooter, G. Feasibility of Spray Drying Bacteriophages into Respirable Powders to Combat Pulmonary Bacterial Infections. Eur. J. Pharm. Biopharm. 2013, 84(3), 578–582. doi: 10.1016/j.ejpb.2012.12.022.
  • Huang, S.; Vignolles, M. L.; Chen, X. D.; Le Loir, Y.; Jan, G.; Schuck, P.; Jeantet, R. Spray Drying of Probiotics and Other Food-Grade Bacteria: A Review. Trends Food Sci. Technol. 2017, 63, 1–17. doi: 10.1016/j.tifs.2017.02.007.
  • Mao, L.; Pan, Q.; Hou, Z.; Yuan, F.; Gao, Y. Development of Soy Protein Isolate-Carrageenan Conjugates through Maillard Reaction for the Microencapsulation of Bifidobacterium Longum. Food Hydrocolloids. 2018, 84(February), 489–497. doi: 10.1016/j.foodhyd.2018.06.037.
  • Arslan-Tontul, S.; Single, E. M. Double Layered Microencapsulation of Probiotics by Spray Drying and Spray Chilling. Lwt. 2017, 81, 160–169. doi: 10.1016/j.lwt.2017.03.060.
  • McClements, D. J.;. Encapsulation, Protection, and Release of Hydrophilic Active Components: Potential and Limitations of Colloidal Delivery Systems. Adv. Colloid Interface Sci. 2015, 219, 27–53. doi: 10.1016/j.cis.2015.02.002.
  • Liserre, A. M.; Ré, M. I.; Franco, B. D. G. M. Microencapsulation of Bifidobacterium Animalis Subsp. Lactis in Modified Alginate-Chitosan Beads and Evaluation of Survival in Simulated Gastrointestinal Conditions. Food Biotechnol. 2007, 21(1), 1–16. doi: 10.1080/08905430701191064.
  • Prasanna, P. H. P.; Charalampopoulos, D. Encapsulation of Bifidobacterium Longum in Alginate-Dairy Matrices and Survival in Simulated Gastrointestinal Conditions, Refrigeration, Cow Milk and Goat Milk. Food Biosci. 2018, November 2017, 21, 72–79. doi: 10.1016/j.fbio.2017.12.002.
  • Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F. C.; Marzo, F.; Villarán, M. D. C. Microencapsulation of a Probiotic and Prebiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastro-Intestinal Conditions. Int. J. Food Microbiol. 2010, 142(1–2), 185–189. doi: 10.1016/j.ijfoodmicro.2010.06.022.
  • And, C. I.; Kailasapathy, K. Effect of Co-Encapsulation of Probiotics with Prebiotics on Increasing the Viability of Encapsulated Bacteria under in Vitro Acidic and Bile Salt Conditions and in Yogurt. J. Food Sci. 2005, 70(1), M18–M23. doi: 10.1111/j.1365-2621.2005.tb09041.x.
  • Bernucci, B. S. P.; Loures, C. M. G.; Lopes, S. C. A.; Oliveira, M. C.; Sabino, A. P.; Vilela, J. M. C.; Andrade, M. S.; Lacerda, I. C.; Nicoli, J. R.; Oliveira, E. S. Effect of Microencapsulation Conditions on the Viability and Functionality of Bifidobacterium Longum 51A. LWT - Food Sci. Technol. 2017, 80, 341–347. doi: 10.1016/j.lwt.2017.02.036.
  • Amine, K. M.; Champagne, C. P.; Raymond, Y.; St-Gelais, D.; Britten, M.; Fustier, P.; Salmieri, S.; Lacroix, M. Survival of Microencapsulated Bifidobacterium Longum in Cheddar Cheese during Production and Storage. Food Control. 2014, 37, 193–199. doi: 10.1016/J.FOODCONT.2013.09.030.
  • Silva, J.; Freixo, R.; Gibbs, P.; Teixeira, P. Spray-Drying for the Production of Dried Cultures. Int. J. Dairy Technol. 2011, 64(3), 321–335. doi: 10.1111/j.1471-0307.2011.00677.x.
  • Donato, L.; Guyomarc’h, F.; Amiot, S.; Dalgleish, D. G. Formation of Whey Protein/κ-Casein Complexes in Heated Milk: Preferential Reaction of Whey Protein with κ-Casein in the Casein Micelles. Int. Dairy J. 2007, 17(10), 1161–1167. DOI: 10.1016/J.IDAIRYJ.2007.03.011.
  • Prasanna, P. H. P.; Charalampopoulos, D. Encapsulation in an Alginate–Goats’ Milk–Inulin Matrix Improves Survival of Probiotic Bifidobacterium in Simulated Gastrointestinal Conditions and Goats’ Milk Yoghurt. Int. J. Dairy Technol. 2019, 72(1), 132–141. doi: 10.1111/1471-0307.12568.
  • Picot, A.; Lacroix, C. Encapsulation of Bifidobacteria in Whey Protein-Based Microcapsules and Survival in Simulated Gastrointestinal Conditions and in Yoghurt. Int. Dairy J. 2004, 14(6), 505–515. doi: 10.1016/J.IDAIRYJ.2003.10.008.
  • Verruck, S.; de Liz, G. R.; Dias, C. O.; de Mello Castanho, A. R.; Prudencio, D. E. S. Effect of Full-Fat Goat’s Milk and Prebiotics Use on Bifidobacterium BB-12 Survival and on the Physical Properties of Spray-Dried Powders under Storage Conditions. Food Res. Int. 2019, Aug 2018, 119, 643–652. doi: 10.1016/j.foodres.2018.10.042.
  • Fayed, B.; Abood, A.; El-Sayed, H. S.; Hashem, A. M.; Mehanna, N. S. H. A Synbiotic Multiparticulate Microcapsule for Enhancing Inulin Intestinal Release and Bifidobacterium Gastro-Intestinal Survivability. Carbohydr. Polym. 2018, 193(February), 137–143. doi: 10.1016/j.carbpol.2018.03.068.
  • Alehosseini, A.; Del Pulgar, G.; Fabra, E. M.; Gómez-Mascaraque, M. J.; Benítez-Páez, L. G.; Sarabi-Jamab, A.; Ghorani, M.; Lopez-Rubio, B.; Agarose-Based Freeze-Dried, A. Capsules Prepared by the Oil-Induced Biphasic Hydrogel Particle Formation Approach for the Protection of Sensitive Probiotic Bacteria. Food Hydrocolloids. 2019. 87 August 2018 487–496 doi:10.1016/j.foodhyd.2018.08.032.
  • Ashwar, B. A.; Gani, A.; Gani, A.; Shah, A.; Masoodi, F. A. Production of RS4 from Rice Starch and Its Utilization as an Encapsulating Agent for Targeted Delivery of Probiotics. Food Chem. 2018, 239, 287–294. doi: 10.1016/J.FOODCHEM.2017.06.110.
  • Reid, A. A.; Champagne, C. P.; Gardner, N.; Fustier, P.; Vuillemard, J. C. Survival in Food Systems of Lactobacillus Rhamnosus R011 Microentrapped in Whey Protein Gel Particles. J. Food Sci. 2007, 72(1), M031–M037. doi: 10.1111/j.1750-3841.2006.00222.x.
  • Loyeau, P. A.; Spotti, M. J.; Vanden Braber, N. L.; Rossi, Y. E.; Montenegro, M. A.; Vinderola, G.; Carrara, C. R. Microencapsulation of Bifidobacterium Animalis Subsp . Lactis INL1 Using Whey Proteins and Dextrans Conjugates as Wall Materials. Food Hydrocolloids. 2018, 85(March), 129–135. doi: 10.1016/j.foodhyd.2018.06.051.
  • Devi, N.; Sarmah, M.; Khatun, B.; Maji, T. K. Encapsulation of Active Ingredients in Polysaccharide–Protein Complex Coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. doi: 10.1016/j.cis.2016.05.009.
  • Oancea, A.-M.; Aprodu, I.; Ghinea, I. O.; Barbu, V.; Ioniţă, E.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. A Bottom-up Approach for Encapsulation of Sour Cherries Anthocyanins by Using β-lactoglobulin as Matrices. J. Food Eng. 2017, 210, 83–90. doi: 10.1016/J.JFOODENG.2017.04.033.
  • Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Vegetable Proteins in Microencapsulation: A Review of Recent Interventions and Their Effectiveness. Ind. Crops Prod. 2013, 42, 469–479. doi: 10.1016/j.indcrop.2012.06.035.
  • Tang, C. H.; Nanostructured Soy Proteins: Fabrication and Applications as Delivery Systems for Bioactives (A Review). Food Hydrocolloids. 2019. 91 September 2018 92–116 DOI:10.1016/j.foodhyd.2019.01.012.
  • Shu, G.; Wang, Z.; Chen, L.; Wan, H.; Chen, H. Characterization of Freeze-Dried Lactobacillus Acidophilus in Goat Milk Powder and Tablet: Optimization of the Composite Cryoprotectants and Evaluation of Storage Stability at Different Temperature. LWT - Food Sci. Technol. 2018, 90, 70–76. doi: 10.1016/J.LWT.2017.12.013.
  • Clark, S.; Mora García, M. B. A 100-Year Review: Advances in Goat Milk Research. J. Dairy Sci. 2017, 100(12), 10026–10044. doi: 10.3168/jds.2017-13287.
  • Amigo, L.; Milk, F. J. Goat Milk. Fuquay, J.W.B.(Ed.) T.-E. of D. S Second E., Academic Press: San Diego 2011 pp 484–493 doi:10.1016/B978-0-12-374407-4.00313-7.
  • Lee, -Y.-Y.; Tang, T.-K.; Phuah, E.-T.; Alitheen, N. B. M.; Tan, C.-P.; Lai, O.-M. New Functionalities of Maillard Reaction Products as Emulsifiers and Encapsulating Agents, and the Processing Parameters: A Brief Review. J. Sci. Food Agric. 2017, 97(5), 1379–1385. doi: 10.1002/jsfa.8124.
  • Zhu, D.; Damodaran, S.; Lucey, J. A. Physicochemical and Emulsifying Properties of Whey Protein Isolate (Wpi)−dextran Conjugates Produced in Aqueous Solution. J. Agric. Food Chem. 2010, 58(5), 2988–2994. doi: 10.1021/jf903643p.
  • Wang, W.; Bao, Y.; Chen, Y. Characteristics and Antioxidant Activity of Water-Soluble Maillard Reaction Products from Interactions in a Whey Protein Isolate and Sugars System. Food Chem. 2013, 139(1–4), 355–361. doi: 10.1016/J.FOODCHEM.2013.01.072.
  • Faist, V.; Erbersdobler, H. F. Metabolic Transit and in Vivo Effects of Melanoidins and Precursor Compounds Deriving from the Maillard Reaction. Ann. Nutr. Metab. 2001, 45(1), 1–12. doi: 10.1159/000046699.
  • Ren, Y.; Xie, H.; Liu, X.; Bao, J.; Yu, W.; Ma, X. Comparative Investigation of the Binding Characteristics of Poly-L-Lysine and Chitosan on Alginate Hydrogel. Int. J. Biol. Macromol. 2016, 84, 135–141. doi: 10.1016/j.ijbiomac.2015.12.008.
  • Kavousi, H. R.; Fathi, M.; Goli, S. A. H. Novel Cress Seed Mucilage and Sodium Caseinate Microparticles for Encapsulation of Curcumin: An Approach for Controlled Release. Food Bioprod. Process. 2018, 110, 126–135. doi: 10.1016/j.fbp.2018.05.004.
  • Amakiri, A. C.; Kalombo, L.; Thantsha, M. S. Lyophilised Vegetal BM 297 ATO-Inulin Lipid-based Synbiotic Microparticles Containing Bifidobacterium Longum LMG 13197: Design and Characterisation. J. Microencapsulation. 2015, 32(8), 820–827. doi: 10.3109/02652048.2015.1094534.
  • Loyeau, P. A.; Spotti, M. J.; Vanden Braber, N. L.; Rossi, Y. E.; Montenegro, M. A.; Vinderola, G.; Carrara, C. R. Microencapsulation of Bifidobacterium Animalis Subsp . Lactis INL1 Using Whey Proteins and Dextrans Conjugates as Wall Materials. Food Hydrocolloids. June 2018, 85, 129–135. doi: 10.1016/j.foodhyd.2018.06.051.
  • Boerekamp, D. M. W.; Andersen, M. L.; Jacobsen, C.; Chronakis, I. S.; García-Moreno, P. J.; Permeability, O. Oxidative Stability of Fish Oil-Loaded Electrosprayed Capsules Measured by Electron Spin Resonance: Effect of Dextran and Glucose Syrup as Main Encapsulating Materials. Food Chem. 2019, 287, 287–294. doi: 10.1016/J.FOODCHEM.2019.02.096.
  • Chen, L.; Yang, T.; Song, Y.; Shu, G.; Chen, H. Effect of Xanthan-Chitosan-Xanthan Double Layer Encapsulation on Survival of Bifidobacterium BB01 in Simulated Gastrointestinal Conditions, Bile Salt Solution and Yogurt. LWT - Food Sci. Technol. 2017, 81, 274–280. doi: 10.1016/j.lwt.2017.04.005.
  • Akter, S.; Park, J. H.; Jung, H. K. Potential Health-Promoting Benefits of Paraprobiotics, Inactivated Probiotic Cells. J. Microbiol. Biotechnol. 2020, 30(4), 477–481. doi: 10.4014/JMB.1911.11019.
  • Amakiri, A. C.; Thantsha, M. S. Survival of Bifidobacterium Longum LMG 13197 Microencapsulated in Vegetal or Vegetal-Inulin Matrix in Simulated Gastrointestinal Fluids and Yoghurt. SpringerPlus. 2016, 5(1). doi: 10.1186/s40064-016-3010-y.
  • Li, M.; Jin, Y.; Wang, Y.; Meng, L.; Zhang, N.; Sun, Y.; Hao, J.; Fu, Q.; Sun, Q. Preparation of Bifidobacterium Breve Encapsulated in Low Methoxyl Pectin Beads and Its Effects on Yogurt Quality. J. Dairy Sci. 2019, 102(6), 4832–4843. doi: 10.3168/jds.2018-15597.
  • Ramos, P. E.; Silva, P.; Alario, M. M.; Pastrana, L. M.; Teixeira, J. A.; Cerqueira, M. A.; Vicente, A. A. Effect of Alginate Molecular Weight and M/G Ratio in Beads Properties Foreseeing the Protection of Probiotics. Food Hydrocolloids. 2018, 77, 8–16. doi: 10.1016/j.foodhyd.2017.08.031.
  • Thu, B.; Bruheim, P.; Espevik, T.; Smidsrød, O.; Soon-Shiong, P.; Skjåk-Bræk, G. Alginate Polycation Microcapsules: I. Interaction between Alginate and Polycation. Biomaterials. 1996, 17(10), 1031–1040. doi: 10.1016/0142-9612(96)84680-1.
  • Kavitake, D.; Kandasamy, S.; Devi, P. B.; Shetty, P. H. Recent Developments on Encapsulation of Lactic Acid Bacteria as Potential Starter Culture in Fermented Foods – A Review. Food Biosci. 2018. 21 Nov 2017 34–44 doi:10.1016/j.fbio.2017.11.003.
  • Muzzarelli, R. A. A.; Muzzarelli, C. Chitin and Chitosan Hydrogels. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G. O., Williams, P. A., Eds. Woodhead Publishing: Cambridge, UK, 2009; pp 849–888.
  • Williams, P. A.; Phillips, G. O. Gum Arabic. In Handbook of Hydrocolloids: Second Edition; Phillips, G. O., Williams, P. A., Eds. Woodhead Publishing: Cambridge, UK, 2009; pp 252–273. doi:10.1533/9781845695873.252
  • da Silva, M.; Jacob Lopes, T.; Codevilla, E.; Cichoski, C. F.; Floresé. M. de M, A. J.; Motta, M. H.; da Silva, C. D. B.; Grosso, C. R. F.; de Menezes, C. R. Development and Characterization of Microcapsules Containing Bifidobacterium Bb-12 Produced by Complex Coacervation Followed by Freeze Drying. LWT - Food Sci. Technol. 2018, 90, 412–417. doi: 10.1016/J.LWT.2017.12.057.
  • Taggart, P.; Mitchell, J. R. Starch. In Handbook of Hydrocolloids, second edition; Phillips, G. O., Williams, P. A., Eds. Woodhead Publishing: Cambridge, UK, 2009; pp pp 108–141
  • Xanthan Gum, S. G.;. Handbook of Hydrocolloids: Second Edition; Phillips, G. O., Williams, P. A., Eds. Woodhead Publishing: Cambridge, UK, 2009, 186–203. doi:10.1533/9781845695873.186
  • Imeson, A. P. Carrageenan and Furcellaran. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G. O., Williams, P. A., Eds. Woodhead Publishing: Cambridge, UK, 2009; pp 164–185. doi:10.1533/9781845695873.164
  • Haug, I. J.; Draget, K. I. Gelatin. In Handbook of Hydrocolloids, second edition; Phillips, G. O., Williams, P. A., Eds. Woodhead Publishing: Cambridge, UK, 2009; pp pp 142–163.
  • Estevinho, B. N.; Rocha, F. Application of Biopolymers in Microencapsulation Processes. Biopolymers for Food Design 2018, 191–222. doi: 10.1016/B978-0-12-811449-0.00007-4.
  • de Liz, G. R.; Verruck, S.; Canella, M. H. M.; Dantas, A.; Garcia, S. G.; Maran, B. M.; Murakami, F. S.; Prudencio, E. S. Stability of Bifidobacteria Entrapped in Goat’s Whey Freeze Concentrate and Inulin as Wall Materials and Powder Properties. Food Res. Int. 2020. 127 October 2019 doi:10.1016/j.foodres.2019.108752.
  • Riaz, T.; Iqbal, M. W.; Saeed, M.; Yasmin, I.; Hassanin, H. A. M.; Mahmood, S.; Rehman, A. In Vitro Survival of Bifidobacterium Bifidum Microencapsulated in Zein-Coated Alginate Hydrogel Microbeads. J. Microencapsulation. 2019, 36(2), 192–203. doi: 10.1080/02652048.2019.1618403.
  • van der Ark, K. C. H.; Nugroho, A. D. W.; Berton-Carabin, C.; Wang, C.; Belzer, C.; de Vos, W. M.; Schroen, K. Encapsulation of the Therapeutic Microbe Akkermansia Muciniphila in a Double Emulsion Enhances Survival in Simulated Gastric Conditions. Food Res. Int. 2017, 102, 372–379. doi: 10.1016/j.foodres.2017.09.004.
  • Raise, A.; Dupont, S.; Iaconelli, C.; Caliri, C.; Charriau, A.; Gervais, P.; Chambin, O.; Beney, L. Comparison of Two Encapsulation Processes to Protect the Commensal Gut Probiotic Bacterium Faecalibacterium Prausnitzii from the Digestive Tract. J. Drug Delivery Sci. Technol. 101608, 2020(56). doi: 10.1016/j.jddst.2020.101608.
  • Kailasapathy, K.; Chin, J.; Survival and Therapeutic Potential of Probiotic Organisms with Reference to Lactobacillus Acidophilus and Bifidobacterium Spp. Immunology & Cell Biology. 2000, 781, 80–88. doi:10.1046/j.1440-1711.2000.00886.x.
  • Andrade, J. C.; Almeida, D.; Domingos, M.; Seabra, C. L.; Machado, D.; Freitas, A. C.; Gomes, A. M.; Commensal Obligate Anaerobic Bacteria and Health: Production, Storage, and Delivery Strategies. Frontiers in Bioengineering and Biotechnology. 2020, 8June, 1–23. doi:10.3389/fbioe.2020.00550.
  • Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7(JUN). doi: 10.3389/fmicb.2016.00979.
  • Verhoog, S.; Taneri, P. E.; Díaz, Z. M. R.; Marques-Vidal, P.; Troup, J. P.; Bally, L.; Franco, O. H.; Glisic, M.; Muka, T. Dietary Factors and Modulation of Bacteria Strains of Akkermansia Muciniphila and Faecalibacterium Prausnitzii: A Systematic Review. Nutrients. 2019, 11(7), 1–20. doi: 10.3390/nu11071565.
  • Jayachandran, M.; Chung, S. S. M.; Xu, B. A Critical Review of the Relationship between Dietary Components, the Gut Microbe Akkermansia Muciniphila, and Human Health. Crit. Rev. Food Sci. Nutr. 2020, 60(13), 2265–2276. doi: 10.1080/10408398.2019.1632789.
  • Zhai, Q.; Feng, S.; Arjan, N.; Chen, W. A Next Generation Probiotic, Akkermansia Muciniphila. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3227–3236. doi: 10.1080/10408398.2018.1517725.
  • Miquel, S.; Martin, R.; Bridonneau, C.; Robert, V.; Sokol, H.; Bermúdez-Humarán, L. G.; Thomas, M.; Langella, P. Ecology and Metabolism of the Beneficial Intestinal Commensal Bacterium. Faecalibacterium prausnitzii. Gut Microbes. 2014, 5, 2. doi:10.4161/gmic.27651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.