1,024
Views
14
CrossRef citations to date
0
Altmetric
Review

Cheese Fortification: Review and Possible Improvements

ORCID Icon, ORCID Icon, &

References

  • Venugopal, V.;. Functional foods–an overview. In Marine Products for Healthcare–Functional and Bioactive Nutraceutical Compounds from the Ocean; CRC Press: Boca Raton, 2009; pp 1–22.
  • Ottaway, P. B.;. Ed. Food Fortification and Supplementation: Technological, Safety and Regulatory Aspects; Elsevier: Cambridge, 2008. pp 282.
  • Kumar, D. S.;. Herbal Bioactives and Food Fortification: Extraction and Formulation; CRC Press: Boca Raton, 2015; pp 252.
  • Dwyer, J. T.; Wiemer, K. L.; Dary, O.; Keen, C. L.; King, J. C.; Miller, K. B.; Philbert, M. A.; Tarasuk, V.; Taylor, C. L.; Gaine, P. C.; et al. Fortification and health: Challenges and opportunities. Adv. Nutr. 2015, 6(1), 124–131. DOI: 10.3945/an.114.007443.
  • Lindsay, A.; de Benoist, B.; Dary, O.; Hurrel, R. Guidelines on food fortification with micronutrients. FAO/WHO. 2006, 376.
  • Codex Alimentarius. Guidelines for use of nutrition and health claims (CAC/GL 23–1997). Codex. Alimentarius. 1997.
  • Venkatesh Mannar, M. G.; Hurrell, R. F. Eds. Food Fortification in a Globalized World; Academic Press: London, 2018. pp 414.
  • Dwyer, J. T.; Woteki, C.; Bailey, R.; Britten, P.; Carriquiry, A.; Gaine, P. C.; Miller, D.; Moshfegh, A.; Murphy, M. M.; Smith Edge, M. Fortification: New findings and implications. Nutr. Rev. 2014, 72(2), 127–141. DOI: 10.1111/nure.12086.
  • Venugopal, V.;. Marine nutraceuticals for food fortification and enrichment. In Marine Products for Healthcare—Functional and Bioactive Nutraceutical Compounds from the Ocean; CRC Press: Boca Raton, 2009; pp 405–425.
  • Robitaille, G.; Giroux, H. J.; Britten, M. Turbidity method to monitor the kinetics of rennet-induced coagulation of milk using a microplate reader. Milchwissenschaft. 2004, 59(9–10), 479–482.
  • Gillis, J. C.;. Definitions of cheese and standardisation. In Cheesemaking – From Science to Quality Assurance; Lavoiser Publishing: Paris, 2000; pp 788–790.
  • Watson, E.; Carvalho, A.; Green, R.; Britton, S.; Scott, S. Functional ingredients. Food Manuf. 2006, 81(11), IV–XIX.
  • Choi, H.-J.; Ahn, J.; Kim, N.-C.; Kwak, H.-S. The effects of microencapsulated chitooligosaccharide on physical and sensory properties of the milk. Asian Austral. J. Anim. 2006, 19(9), 1347–1353. DOI: 10.5713/ajas.2006.1347.
  • Lacroix, M.; Han, J.; Britten, M.; Champagne, C. P.; Fustier, P. Cheese fortification. In Handbook of Food Fortification and Health. Humana Press, New York, 2013; pp 71–86.
  • Law, B. A.;. Controlled and accelerated cheese ripening: The research base for new technology. Int. Dairy J. 2001, 11(4–7), 383–398. DOI: 10.1016/S0958-6946(01)00067-X.
  • Shahidi, F.; Han, X. Q. Encapsulation of food ingredients. ?Crit. Rev. Food Sci. Nutr. 1993, 33(6), 501–547. DOI: 10.1080/10408399309527645.
  • Sanguansri, L.; Augustin, M. A. Microencapsulation and delivery of omega-3 fatty acids. Funct. Food Ingredients Nutraceuticals Process. Technol. 2016, 373–408.
  • Shima, M.; Morita, Y.; Yamashita, M.; Adachi, S. Protection of lactobacillus acidophilus from the low ph of a model gastric juice by incorporation in a W/O/W emulsion. Food Hydrocoll. 2006, 20(8), 1164–1169. DOI: 10.1016/j.foodhyd.2006.01.001.
  • Boyaval, P.; Goulet, J. Optimal conditions for production of lactic acid from cheese whey permeate by ca-alginate-entrapped lactobacillus helveticus. Enzyme Microb. Technol. 1988, 10(12), 725–728. DOI: 10.1016/0141-0229(88)90116-0.
  • Madziva, H.; Kailasapathy, K.; Phillips, M. Evaluation of alginate–pectin capsules in cheddar cheese as a food carrier for the delivery of folic acid. ?LWT - Food Sci. Technol. 2006, 39(2), 146–151. DOI: 10.1016/j.lwt.2004.12.015.
  • Hanáková, Z.; Buňka, F.; Pavlínek, V.; Hudečková, L.; Janiš, R. The effect of selected hydrocolloids on the rheological properties of processed cheese analogues made with vegetable fats during the cooling phase. Int. J. Dairy Technol. 2013, 66(4), 484–489. DOI: 10.1111/1471-0307.12066.
  • Gaucheron, F.;. the minerals of milk. Reprod. Nutr. Dev. 2005, 45(4), 473–483. DOI: 10.1051/rnd:2005030.
  • Skikne, B. S.;. Current concepts in iron deficiency anemia. Food Rev. Int. 1988, 4(2), 137–173. DOI: 10.1080/87559128809540827.
  • Zhang, D.; Mahoney, A. W. Iron fortification of process cheddar cheese. J. Dairy Sci. 1991, 74(2), 353–358. DOI: 10.3168/jds.S0022-0302(91)78177-0.
  • Kwock, R. O.; Keen, C. L.; Hegenauer, J.; Saltman, P.; Hurley, L. S.; Lönnerdal, B. Retention and distribution of iron added to cow’s milk and human milk as various salts and chelates. J. Nutr. 1984, 114(8), 1454–1461. DOI: 10.1093/jn/114.8.1454.
  • Jackson, L. S.; Lee, K. The effect of dairy products on iron availability. Crit. Rev. Food Sci. Nutr. 1992, 31(4), 259–270. DOI: 10.1080/10408399209527573.
  • Gaucheron, F.;. Iron fortification in dairy industry. Trends Food Sci. Tech. 2000, 11(11), 403–409. DOI: 10.1016/S0924-2244(01)00032-2.
  • Indumathi, K. P.; Kaushik, R.; Arora, S.; Wadhwa, B. K. Evaluation of iron fortified gouda cheese for sensory and physicochemical attributes. Int. J. Food Sci. Tech. 2015, 52(1), 493–499. DOI: 10.1007/s13197-013-1006-y.
  • Zhang, D.; Mahoney, A. W. Effect of iron fortification on quality of cheddar cheese. J. Dairy Sci. 1989, 72(2), 322–332. DOI: 10.3168/jds.S0022-0302(89)79113-X.
  • Zhang, D.; Mahoney, A. W. Effect of iron fortification on quality of cheddar cheese. 2. effects of aging and fluorescent light on pilot scale cheeses. J. Dairy Sci. 1990, 73(9), 2252–2258. DOI: 10.3168/jds.S0022-0302(90)78905-9.
  • Rice, W. H.; McMahon, D. J. Chemical, physical, and sensory characteristics of mozzarella cheese fortified using protein-chelated iron or ferric chloride. J. Dairy Sci. 1998, 81(2), 318–326. DOI: 10.3168/jds.S0022-0302(98)75580-8.
  • Salmieri, S.; Lacroix, M. Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. J. Agric. Food Chem. 2006, 54(26), 10205–10214. DOI: 10.1021/jf062127z.
  • Salgueiro, M. J.; Zubillaga, M.; Lysionek, A.; Caro, R.; Weill, R.; Boccio, J. Fortification strategies to combat zinc and iron deficiency. Nutr. Rev. 2002, 60(2), 52–58. DOI: 10.1301/00296640260085958.
  • Gulbas, S. Y.; Saldamli, I. The effect of selenium and zinc fortification on the quality of turkish white cheese. Int. J. Food Sci. Nutr. 2005, 56(2), 141–146. DOI: 10.1080/09637480500082579.
  • Kahraman, O.; Ustunol, Z. Effect of zinc fortification on cheddar cheese quality. J. Dairy Sci. 2012, 95(6), 2840–2847. DOI: 10.3168/jds.2011-4945.
  • Salgueiro, M. J.; Zubillaga, M.; Lysionek, A.; Sarabia, M. I.; Caro, R.; De Paoli, T.; Hager, A.; Weill, R.; Boccio, J. Zinc as an essential micronutrient: a Review. Nutr. Res. 2000, 20(5), 737–755. DOI: 10.1016/S0271-5317(00)00163-9.
  • Ibs, K. H.; Rink, L. Zinc-altered immune function. J. Nutr. 2003, 133(5), 1452S–1456S. DOI: 10.1093/jn/133.5.1452S.
  • Ocak, E.; Rajendram, R. Fortification of milk with mineral elements. In Handbook of Food Fortification and Health; Humana Press: New York, NY, 2013; pp 213–224.
  • Hotz, C.; DeHaene, J.; Woodhouse, L. R.; Villalpando, S.; Rivera, J. A.; King, J. C. Zinc Absorption from Zinc Oxide, Zinc Sulfate, Zinc Oxide+ EDTA, or Sodium-zinc EDTA Does Not Differ When Added as Fortificants to Maize Tortillas. J. Nutr. 2005, 135(5), 1102–1105. DOI: 10.1093/jn/135.5.1102.
  • Keast, R. S.; Canty, T. M.; Breslin, P. A. Oral Zinc Sulfate Solutions inhibit sweet taste perception. Chem. Senses. 2004, 29(6), 513–521. DOI: 10.1093/chemse/bjh053.
  • Čmejlová, K.; Panovská, Z.; Váchová, A.; Lukešová, D. Time-intensity studies of sweeteners. Czech J. Food Sci. 2009, 27, S327–S329. DOI: 10.17221/916-CJFS.
  • Hrncirik, K.;. Stability of fat‐soluble vitamins and PUFA in simulated shallow‐frying. Lipid Technol. 2010, 22(5), 107–109. DOI: 10.1002/lite.201000018.
  • Abd-Rabou, N.-S.; Zaghloul, A.-H.; Seleet, F.-L.; El-Hofi, M.-A. Properties of edam cheese fortified by dietary zinc salts. Am. J. Sci. 2010, 6(10), 441–446.
  • Moschini, M.; Battaglia, M.; Beone, G. M.; Piva, G.; Masoero, F. Iodine and Selenium carry over in milk and cheese in dairy cows: Effect of diet supplementation and milk yield. Animal. 2010, 4(1), 147–155. DOI: 10.1017/S175173110999098X.
  • Muñiz-Naveiro, Ó.; Domínguez-González, R.; Bermejo-Barrera, A.; Bermejo-Barrera, P.; Cocho, J. A.; Fraga, J. M. Study of the bioavailability of selenium in cows’ milk after a supplementation of cow feed with different forms of selenium. Anal. Bioanal. Chem. 2006, 385(1), 189–196. DOI: 10.1007/s00216-006-0364-y.
  • Rooke, J. A.; Flockhart, J. F.; Sparks, N. H. The potential for increasing the concentrations of micro-nutrients relevant to human nutrition in meat, milk and eggs. J. Agric. Sci. 2010, 148(5), 603–614. DOI: 10.1017/S002185961000047X.
  • Eurola, M.; Ekholm, P.; Venäläinen, E. J. Selenium supplemented fertilization-effects on the selenium content of foods and the selenium intake in Finland. Rit. LBHÌ. 2005, 3, 49–51. DOI: 10.1080/00015128909438526.
  • Calamari, L.; Petrera, F.; Bertin, G. Effects of either Sodium Selenite or Se Yeast (Sc CNCM I-3060) Supplementation on Selenium Status and Milk Characteristics in dairy cows. Livest. Sci. 2010, 128(1–3), 154–165. DOI: 10.1016/j.livsci.2009.12.005.
  • Ceballos, A.; Sánchez, J.; Stryhn, H.; Montgomery, J. B.; Barkema, H.-W.; Wichtel, -J.-J. Meta-analysis of the effect of oral Selenium supplementation on milk Selenium concentration in cattle. J. Dairy Sci. 2009, 92(1), 324–342. DOI: 10.3168/jds.2008-1545.
  • Surai, P. F.;. Selenium in Nutrition and Health; Nottingham University Press: Nottingham, 2006; Vol. 974.
  • Ianni, A.; Bennato, F.; Martino, C.; Innosa, D.; Grotta, L.; Martino, G. Effects of Selenium supplementation on chemical composition and Aromatic profiles of cow milk and its derived cheese. J. Dairy Sci. 2019, 102(8), 6853–6862. DOI: 10.3168/jds.2019-16382.
  • Schröder, M. J. A.;. Effect of Oxygen on the keeping quality of milk: I. Oxidized flavour development and Oxygen uptake in milk in relation to Oxygen availability. J. Dairy Res. 1982, 49(3), 407–424. DOI: 10.1017/S002202990002255X.
  • Guetouache, M.; Guessas, B.; Medjekal, S. Composition and Nutritional value of raw milk. Ibspr. 2014, 2(10), 115–122. DOI: 10.15739/ibspr.005.
  • Coultate, T.-P.;. Food: The Chemistry of Its Components;5th ed.; Royal Society of Chemistry: Cambridge, 2009; pp 501.
  • Talbot-Walsh, G.; Kannar, D.; Selomulya, C. A review on technological parameters and recent advances in the fortification of processed cheese. Trends Food Sci. Technol. 2018, 81, 193–202. DOI: 10.1016/j.tifs.2018.09.023.
  • Hicks, T.; Hansen, A. P.; Rushing, J. E. Procedures used by north carolina dairies for vitamins a and d fortification of milk. J. Dairy Sci. 1996, 79(2), 329–333. DOI: 10.3168/jds.S0022-0302(96)76367-1.
  • Wagner, D.; Sidhom, G.; Whiting, S. J.; Rousseau, D.; Vieth, R. The bioavailability of vitamin D from fortified cheeses and supplements is equivalent in adults. J. Nutr. 2008, 138(7), 1365–1371. DOI: 10.1093/jn/138.7.1365.
  • Giroux, H. J.; Constantineau, S.; Fustier, P.; Champagne, C. P.; St-Gelais, D.; Lacroix, M.; Britten, M. Cheese fortification using water-in-oil-in-water double emulsions as carrier for water soluble nutrients. Int. Dairy J. 2013, 29(2), 107–114. DOI: 10.1016/j.idairyj.2012.10.009.
  • Stratulat, I.; Britten, M.; Salmieri, S.; Fustier, P.; St-Gelais, D.; Champagne, C. P.; Lacroix, M. Enrichment of cheese with bioactive lipophilic compounds. J. Funct. Foods. 2014, 6, 48–59. DOI: 10.1016/j.jff.2013.11.023.
  • Sweeney, M. A.; Ashoor, S. H. Fortification of cottage cheese with Vitamins A and C. J. Dairy Sci. 1989, 72(3), 587–590. DOI: 10.3168/jds.S0022-0302(89)79148-7.
  • Mortensen, A.; Skibsted, L. H.; Sampson, J.; Rice-Evans, C.; Everett, S. A. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett. 1997, 418(1–2), 91–97. DOI: 10.1016/s0014-5793(97)01355-0.
  • Tokuşoğlu, Ö.;. The physicochemical, microbiological, organoleptic properties and antioxidant activities of functional cream cheeses fortified with Lutein. Int. J. Dairy Technol. 2013, 66(4), 527–534. DOI: 10.1111/1471-0307.12070.
  • Alves-Rodrigues, A.; Shao, A. The science behind lutein. Toxicol. Lett. 2004, 150(1), 57–83. DOI: 10.1016/j.toxlet.2003.10.031.
  • Han, J.; Britten, M.; St-Gelais, D.; Champagne, C. P.; Fustier, P.; Salmieri, S.; Lacroix, M. Polyphenolic compounds as functional ingredients in cheese. Food Chem. 2011, 124(4), 1589–1594. DOI: 10.1016/j.foodchem.2010.08.021.
  • Jaenicke, R.;. Protein stability and molecular adaptation to extreme conditions. In EJB Reviews; Springer: Berlin, Heidelberg, 1991; pp 291–304.
  • Martini, S.; Thurgood, J. E.; Brothersen, C.; Ward, R.; McMahon, D. J. fortification of reduced-fat cheddar cheese with n-3 fatty acids: effect on off-flavor generation. J. Dairy Sci. 2009, 92(5), 1876–1884. DOI: 10.3168/jds.2008-1871.
  • Bermúdez-Aguirre, D.; Barbosa-Cánovas, G. V. Fortification of queso fresco, cheddar and mozzarella cheese using selected sources of omega-3 and some nonthermal approaches. Food Chem. 2012, 133(3), 787–797. DOI: 10.1016/j.foodchem.2012.01.093.
  • Kazmi, S. A.; Vieth, R.; Rousseau, D. Vitamin D3 fortification and quantification in processed dairy products. Int. Dairy J. 2007, 17(7), 753–759. DOI: 10.1016/j.idairyj.2006.09.009.
  • Wang, Q.; Allen, J. C.; Swaisgood, H. E. Binding of Vitamin D and cholesterol to β-lactoglobulin. J. Dairy Sci. 1997, 80(6), 1054–1059. DOI: 10.3168/jds.S0022-0302(97)76030-2.
  • Forrest, S. A.; Yada, R. Y.; Rousseau, D. Interactions of Vitamin D3 with bovine β-lactoglobulin a and β-casein. J. Agric. Food Chem. 2005, 53(20), 8003–8009. DOI: 10.1021/jf050661l.
  • Stratulat, I.; Britten, M.; Salmieri, S.; Fustier, P.; St-Gelais, D.; Champagne, C. P.; Lacroix, M. Enrichment of cheese with Vitamin D3 and vegetable Omega-3. J. Funct. Foods. 2015, 13, 300–307. DOI: 10.1016/j.jff.2015.01.004.
  • Banville, C.; Vuillemard, J. C.; Lacroix, C. Comparison of different methods for fortifying cheddar cheese with Vitamin D. Int. Dairy J. 2000, 10(5–6), 375–382. DOI: 10.1016/S0958-6946(00)00054-6.
  • Upreti, P.; Mistry, V. V.; Warthesen, J. J. Estimation and fortification of Vitamin D3 in pasteurized processcheese. J. Dairy Sci. 2002, 85(12), 3173–3181. DOI: 10.3168/jds.S0022-0302(02)74405-6.
  • Maurya, V. K.; Bashir, K.; Aggarwal, M. Vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. 2020, 196, 105489. DOI: 10.1016/j.jsbmb.2019.105489.
  • Buchwald-Werner, S.; Gärtner, C.; Horlacher, P.; Schwarz, G. Fortification with substances other than Vitamins and Minerals (Polyphenols, Carotenoids, Fatty Acids and Phytosterols). In Food Fortification and Supplementation. Technological, Safety and Regulatory Aspects; Elsevier: Amsterdam, 2008; pp 41–59.
  • Alves-Rodrigues, A.; Thomas, B. The role of lutein in the prevention of atherosclerosis. J. Am. Coll. Cardiol. 2002, 40(4), 835. DOI: 10.1016/S0735-1097(02)02023-5.
  • Jones, S. T.; Aryana, K. J.; Losso, J. N. Storage stability of lutein during ripening of cheddar cheese. J. Dairy Sci. 2005, 88(5), 1661–1670. DOI: 10.3168/jds.S0022-0302(05)72838-1.
  • Singla, R. K.; Dubey, A. K.; Garg, A.; Sharma, R. K.; Fiorino, M.; Ameen, S. M.; Haddad, M. A.; Al-Hiary, M. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 2019. 2019, 102(5), 1397–1400. DOI: 10.5740/jaoacint.19-0133.
  • Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8(9), 950–988. DOI: 10.3390/i8090950.
  • Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F. J.; Queipo-Ortuño, M. I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24(8), 1415–1422. DOI: 10.1016/j.jnutbio.2013.05.001.
  • Perez-Gregorio, M. R.; Simal-Gándara, J. A critical review of the characterization of polyphenol-protein interactions and of their potential use for improving food quality. Curr. Pharm. Des. 2017, 23(19), 2742–2753. DOI: 10.2174/1381612823666170202112530.
  • Abdel-Shafy, H.-I.; Mansour, -M.-S.-M. Polyphenols: Properties, occurrence, content in food, potential effects. Environ. Sci. & Engg. 2017, 6, 232–261.
  • Han, J.; Britten, M.; St-Gelais, D.; Champagne, C. P.; Fustier, P.; Salmieri, S.; Lacroix, M. Effect of polyphenolic ingredients on physical characteristics of cheese. Food Res. Int. 2011, 44(1), 494–497. DOI: 10.1016/j.foodres.2010.10.026.
  • Iafelice, G.; Caboni, M. F.; Cubadda, R.; Di Criscio, T.; Trivisonno, M. C.; Marconi, E. Development of functional spaghetti enriched with long chain Omega‐3 Fatty Acids. Cereal Chem. 2008, 85(2), 146–151. DOI: 10.1094/cchem-85-2-0146.
  • Parodi, P. W.;. Conjugated Octadecadienoic acids of milk fat. J. Dairy Sci. 1977, 60(10), 1550–1553. DOI: 10.3168/jds.S0022-0302(77)84068-X.
  • Werner, S. A.; Luedecke, L. O.; Shultz, T. D. Determination of conjugated linoleic acid content and isomer distribution in three cheddar-type cheeses: Effects of cheese cultures, processing, and aging. J. Agric. Food Chem. 1992, 40(10), 1817–1821. DOI: 10.1021/jf00022a017.
  • Lavillonnière, F.; Martin, J. C.; Bougnoux, P.; Sébédio, J. L. Analysis of conjugated linoleic acid isomers and content in french cheeses. J. Am. Oil Chem. 1998, 75(3), 343–352. DOI: 10.1007/s11746-998-0051-6.
  • Sehat, N.; Rickert, R.; Mossoba, M. M.; Kramer, J. K. G.; Yurawecz, M.; Roach, P. J. A.; Adlof, R. O.; Morehouse, K. M.; Fritsche, J.; Eulitz, K. D.; et al. Improved separation of conjugated Fatty Acid Methyl Esters by Silver Ion-high-performance liquid chromatography. Lipids. 1999, 34, 407–413. DOI: 10.1007/s11745-999-0379-3.
  • Rodríguez-Alcalá, L. M.; Fontecha, J. Hot topic: Fatty Acid and Conjugated Linoleic Acid (CLA) isomer composition of commercial CLA-fortified dairy products: Evaluation after processing and storage. J. Dairy Sci. 2007, 90(5), 2083–2090. DOI: 10.3168/jds.2006-693.
  • Lucera, A.; Costa, C.; Marinelli, V.; Saccotelli, M.; Del Nobile, M.; Conte, A. Fruit and vegetable by-products to fortify spreadable cheese. ‎Antioxid. 2018, 7(5), 61–71. DOI: 10.3390/antiox7050061.
  • Ayala-Zavala, J.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.-A.; Siddiqui, M.-W.; Dávila-Aviña, J.-E.; González-Aguilar, G.-A. Agro-industrial potential of exotic fruit by-products as a source of food additives. Food Res. Int. 2011, 44(7), 1866–1874. DOI: 10.1016/j.foodres.2011.02.021.
  • Sharma, S. K.; Bansal, S.; Mangal, M.; Dixit, A. K.; Gupta, R. K.; Mangal, A. K. Utilization of food processing by-products as dietary, functional, and novel fiber: A review. Crit. Rev. Food Sci. Nutr. 2016, 56(10), 1647–1661. DOI: 10.1080/10408398.2013.794327.
  • Iriondo-DeHond, M.; Miguel, E.; Del Castillo, M. D. food by-products as sustainable ingredients for innovative and healthy dairy foods. Nutrients. 2018, 10(10), 1358–1382. DOI: 10.3390/nu10101358.
  • Herr, B.;. Types and functions of additives in dairy products. In Encyclopedia of Dairy Sciences; Elsevier Ltd.: Atlanta, 2011; pp 34–40.
  • Shan, B.; Cai, Y. Z.; Brooks, J. D.; Corke, H. Potential application of spice and herb extracts as natural preservatives in cheese. J. Med. Food. 2011, 14(3), 284–290. DOI: 10.1089/jmf.2010.0009.
  • Kaur, D.; Wani, A. A.; Singh, D. P.; Sogi, D. S. Shelf life enhancement of butter, ice-cream, and mayonnaise by addition of Lycopene. Int. J. Food Prop. 2011, 14(6), 1217–1231. DOI: 10.1080/10942911003637335.
  • Ariza, M. T.; Reboredo-Rodríguez, P.; Cervantes, L.; Soria, C.; Martínez-Ferri, E.; González-Barreiro, C.; Cancho-Grande, B.; Battino, M.; Simal-Gándara, J. Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs. Food Chem. 2018, 248, 155–165. DOI: 10.1016/j.foodchem.2017.11.105.
  • Phan-Thi, H.; Durand, P.; Prost, M.; Prost, E.; Waché, Y. Effect of heat-processing on the antioxidant and prooxidant activities of β-carotene from natural and synthetic origins on red blood cells. Food Chem. 2016, 190, 1137–1144. DOI: 10.1016/j.foodchem.2015.06.088.
  • Ersöz, E.; Kinik, Ö.; Yerlikaya, O.; Açu, M. Effect of phenolic compounds on characteristics of strained yoghurts produced from sheep milk. Afr. J. Agric. Res. 2011, 6(23), 5351–5359. DOI: 10.5897/AJAR11.1012.
  • Frumento, D.; Do Espirito Santo, A. P.; Aliakbarian, B.; Casazza, A. A.; Gallo, M.; Converti, A.; Perego, P. Development of milk fermented with lactobacillus acidophilus fortified with vitis vinifera marc flour. Food Technol. Biotechnol. 2013, 51(3), 370–375.
  • Aliakbarian, B.; Casale, M.; Paini, M.; Casazza, -A.-A.; Lanteri, S.; Perego, P. Production of a novel fermented milk fortified with natural antioxidants and its analysis by NIR spectroscopy. LWT-Food Sci. Technol. 2015, 62(1), 376–383. DOI: 10.1016/j.lwt.2014.07.037.
  • Sah, B. N. P.; Vasiljevic, T.; McKechnie, S.; Donkor, O. N. Effect of refrigerated storage on probiotic viability and the production and stability of antimutagenic and antioxidant peptides in yogurt supplemented with pineapple peel. J. Dairy Sci. 2015, 98(9), 5905–5916. DOI: 10.3168/jds.2015-9450.
  • Vasavada, P. C.;. Pathogenic bacteria in milk–a review. J. Dairy Sci. 1988, 71(10), 2809–2816. DOI: 10.3168/jds.S0022-0302(88)79876-8.
  • Cowan, -M.-M.;. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999, 12(4), 564–582. DOI: 10.1128/CMR.12.4.564.
  • Daglia, M.;. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23(2), 174–181. DOI: 10.1016/j.copbio.2011.08.007.
  • Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A. S. Utilization of by-products and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49(3), 278–293. DOI: 10.1007/s13197-011-0290-7.
  • Zhong, J.; Yang, R.; Cao, X.; Liu, X.; Qin, X. Improved physicochemical properties of yogurt fortified with fish oil/γ-oryzanol by nanoemulsion technology. Molecules. 2018, 23(1), 56–67. DOI: 10.3390/molecules23010056.
  • Ghorbanzade, T.; Jafari, S. M.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2017, 216, 146–152. DOI: 10.1016/j.foodchem.2016.08.022.
  • Lamothe, S.; Azimy, N.; Bazinet, L.; Couillard, C.; Britten, M. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct. 2014, 5(10), 2621–2631. DOI: 10.1039/c4fo00203b.
  • Khalifa, S. A.; Wahdan, K. M. Improving the quality characteristics of white soft cheese using cranberry (vaccinium macrocarpon) fruit extract. Int. Food Res. J. 2015, 22(6), 2203.
  • Costa, C.; Lucera, A.; Marinelli, V.; Del Nobile, M. A.; Conte, A. Influence of different by-products addition on sensory and physicochemical aspects of primosale cheese. J. Food Sci. Technol. 2018, 55(10), 4174–4183. DOI: 10.1007/s13197-018-3347-z.
  • Sharma, K. D.; Stähler, K.; Smith, B.; Melton, L. Antioxidant capacity, polyphenolics and pigments of broccoli-cheese powder blends. J. Food Sci. Technol. 2011, 48(4), 510–514. DOI: 10.1007/s13197-010-0211-1.
  • Bermudez-Beltrán, K. A.; Marzal-Bolaño, J. K.; Olivera-Martínez, A. B.; Espitia, P. J. Cape gooseberry petit suisse cheese incorporated with moringa leaf powder and gelatin. LWT - Food Sci. Technol. 2020, 123, 109101. DOI: 10.1016/j.lwt.2020.109101.
  • Masmoudi, M.; Ammar, I.; Ghribi, H.; Attia, H. Physicochemical, radical scavenging activity and sensory properties of a soft cheese fortified with arbutus unedo l. extract. Food Biosci. 2020, 100579. DOI: 10.1016/j.fbio.2020.100579.
  • Solhi, P.; Azadmard‐Damirchi, S.; Hesari, J.; Hamishehkar, H. Effect of fortification with asparagus powder on the qualitative properties of processed cheese. Int. J. Dairy Technol. 2020, 73(1), 226–233. DOI: 10.1111/1471-0307.12635.
  • Osorio-Arias, J.; Pérez-Martínez, A.; Vega-Castro, O.; Martínez-Monteagudo, S. I. Rheological, texture, structural, and functional properties of greek-style yogurt fortified with cheese whey-spent coffee ground powder. LWT-Food Sci. Technol. 2020, 109523. DOI: 10.1016/j.lwt.2020.109523.
  • Badmos, A. A.; Adeyemi, K. D.; Oyeyinka, S. A.; Ahmed, R. N.; Akande, F. T.; Lawal, A. O. Effect of parkia biglobosa husk extracts and honey blend on the chemical, sensory and bacterial attributes of traditional West African soft cheese. Hrvat. Cas. Prehrambenu Tehnol. Biotehnol. Nutr. 2018, 13(1–2), 19–23. DOI: 10.31895/hcptbn.13.1-2.5.
  • Aktypis, A.; Christodoulou, E. D.; Manolopoulou, E.; Georgala, A.; Daferera, D.; Polysiou, M. Fresh ovine cheese supplemented with saffron (crocus sativus l.): impact on microbiological, physicochemical, antioxidant, color and sensory characteristics during storage. Small Ruminant Res. 2018, 167, 32–38. DOI: 10.1016/j.smallrumres.2018.07.016.
  • Torri, L.; Piochi, M.; Marchiani, R.; Zeppa, G.; Dinnella, C.; Monteleone, E. A sensory-and consumer-based approach to optimize cheese enrichment with grape skin powders. J. Dairy Sci. 2016, 99(1), 194–204. DOI: 10.3168/jds.2015-9922.
  • Muñoz-Tébar, N.; De la Vara, J. A.; de Elguea-culebras, G. O.; Cano, E. L.; Molina, A.; Carmona, M.; Berruga, M. I. Enrichment of sheep cheese with Chia (salvia hispanica l.) oil as a source of Omega-3. LWT - Food Sci. Technol. 2019, 108, 407–415. DOI: 10.1016/j.lwt.2019.03.092.
  • Balogun, M. A.; Kolawole, F. L.; Joseph, J. K.; Adebisi, T. T.; Ogunleye, O. T. Effect of fortification of fresh cow milk with coconut milk on the proximate composition and yield of Warankashi, a traditional cheese. Croat. J. Food Sci. Technol. 2016, 8(1), 10–14. DOI: 10.17508/CJFST.2016.8.1.02.
  • Farrag, A. F.; Bayoumi, H. M.; Ibrahim, W. A.; El-Sheikh, M. M.; Eissa, H. A. Characteristics of white soft cheese fortified with hibiscus soft drink as antimicrobial and hypertension treatment. Sci. 2017, 12(2), 122–129. DOI: 10.3923/ijds.2017.122.129.
  • Khan, I. T.; Nadeem, M.; Imran, M.; Ajmal, M.; Ali, S. antioxidant activity, fatty acids characterization and oxidative stability of gouda cheese fortified with mango (mangifera indica l.) kernel fat. J. Food Sci. Technol. 2018, 55(3), 992–1002. DOI: 10.1007/s13197-017-3012-y.
  • Solhi, P.; Azadmard-Damirchi, S.; Hesari, J.; Hamishehkar, H. Production of the processed cheese containing tomato powder and evaluation of its rheological, chemical and sensory characteristics. J. Food Sci. Technol. 2020, 1–8. DOI: 10.1007/s13197-020-04256-1.
  • Frühbauerová, M.; Červenka, L.; Hájek, T.; Salek, R. N.; Velichová, H.; Buňka, F. Antioxidant properties of processed cheese spread after freeze-dried and oven-dried grape skin powder addition. Potr. S. J. F. Sci. 2020, 14, 230–238. DOI: 10.5219/1310.
  • El‐Sayed, S. M.; Ibrahim, O. A.; Kholif, A. M. Characterization of Novel Ras Cheese Supplemented with Jalapeno Red Pepper. J. Food Process. Pres. 2020, e14535. DOI: 10.1111/jfpp.14535.
  • Del Olmo, A.; López-Pérez, O.; Picon, A.; Gaya, P.; Nuñez, M. Cheese supplementation with five species of edible seaweeds: Effect on proteolysis, lipolysis and volatile compounds. Int. Dairy J. 2019, 90, 104–113. DOI: 10.1016/j.idairyj.2018.04.004.
  • Miwada, I. N. S.; Sutama, I. N. S.; Sukada, I. K.; Doloksaribu, L. Fortification of goat milk with purple sweet potato (Ipomea Batatas L.) extract and its effects on functional cheese. Int. J. Life Sci. 2019, 3(2), 8–13. DOI: 10.29332/ijls.v3n2.294.
  • Lee, N. K.; Jeewanthi, R. K. C.; Park, E. H.; Paik, H. D. Physicochemical and antioxidant properties of cheddar-type cheese fortified with inula britannica extract. J. Dairy Sci. 2015, 99(1), 83–88. DOI: 10.3168/jds.2015-9935.
  • Mahajan, D.; Bhat, Z. F.; Kumar, S. Pine needles (cedrus deodara (roxb.) loud.) extract as a novel preservative in cheese. Food Packag. Shelf Life. 2016, 7, 20–25. DOI: 10.1016/j.fpsl.2016.01.001.
  • Caleja, C.; Barros, L.; Antonio, A. L.; Ciric, A.; Barreira, J. C. M.; Sokovic, M.; Oliveira, M. B. P. P.; Santos-Buelga, C.; Ferreira, I. C. F. R. Development of a functional dairy food: Exploring bioactive and preservation effects of chamomile (Matricaria Recutita L.). J. Funct. Foods. 2015, 16, 114–124. DOI: 10.1016/j.jff.2015.04.033.
  • El-Sayed, S. M.; El-Sayed, H. S. Production of UF-soft cheese using probiotic bacteria and aloe vera pulp as a good source of nutrients. Ann. Agric. Sci. 2020, 65(1), 13–20.
  • FAO/WHO. Guidelines for the Evaluation of Probiotics in Food. Food and Agricultural Organization of the United Nations and World Health Organization. Working Group Report B 2002, London – Ontario, 11.
  • Sanders, M. E.;. Probiotics: Definition, Sources, Selection, and Uses. Clin. Infect. Dis. 2008, 46(S2), S58–S61. DOI: 10.1086/523341.
  • Holzapfel, W. H.; Haberer, P.; Geisen, R.; Björkroth, J.; Schillinger, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 2001, 73(2), 365s–373s. DOI: 10.1093/ajcn/73.2.365s.
  • Peláez, C.; Requena, T. Exploiting the potential of bacteria in the cheese ecosystem. Int. Dairy J. 2005, 15(6–9), 831–844. DOI: 10.1016/j.idairyj.2004.12.001.
  • Gould, G. W.;. History of Science–spores: Lewis B perry memorial lecture 2005. J. Appl. Microbiol. 2006, 101(3), 507–513. DOI: 10.1111/j.1365-2672.2006.02888.x.
  • Zendeboodi, F.; Khorshidian, N.; Mortazavian, A. M.; da Cruz, A. G. Probiotic: Conceptualization from a new approach. Curr. Opin. Food Sci. 2020, 32, 103–123. DOI: 10.1016/j.cofs.2020.03.009.
  • Minj, J.; Dogra, S. Significance of fortification of beneficial natural ingredients in milk and milk products. In Dairy Processing: Advanced Research to Applications; Springer: Singapore, 2020; pp 87–118.
  • Roobab, U.; Batool, Z.; Manzoor, M. F.; Shabbir, M. A.; Khan, M. R.; Aadil, R. M. Sources, formulations, advanced delivery and health benefits of probiotics. Curr. Opin. Food Sci. 2020, 32, 17–28. DOI: 10.1016/j.cofs.2020.01.003.
  • Behera, S. S.; Panda, S. K. Ethnic and industrial probiotic foods and beverages: efficacy and acceptance. Curr. Opin. Food Sci. 2020, 32, 29–36. DOI: 10.1016/j.cofs.2020.01.006.
  • Roy, D.;. Technological Aspects Related to the Use of Bifidobacteria in Dairy Products. Le Lait. 2005, 85(1–2), 39–56. DOI: 10.1051/lait:2004026.
  • Lacroix, C.; Yildirim, S. Fermentation technologies for the production of probiotics with high viability and functionality. Curr. Opin. Biotechnol. 2007, 18(2), 176–183. DOI: 10.1016/j.copbio.2007.02.002.
  • Williams, N. T.;. Probiotics. Am. J. Health Syst. Pharm. 2010, 67(6), 449–458. DOI: 10.2146/ajhp090168.
  • Goldin, B. R.;. Health benefits of probiotics. Br. J. Nutr. 1998, 80(S2), S203–S207. DOI: 10.1017/S0007114500006036.
  • Ziemer, C. J.; Gibson, G. R. An overview of probiotics, prebiotics and symbiotic in the functional food concept: Perspectives and future strategies. Int. Dairy J. 1998, 8(5–6), 473–479. DOI: 10.18006/2016.4(3S).273.278.
  • Lee, Y. K.; Salminen, S. The coming of age of probiotics. Trends Food Sci. Technol. 1995, 6(7), 241–245. DOI: 10.1016/S0924-2244(00)89085-8.
  • Anukam, K.-C.; Reid, G. Probiotics: 100 Years (1907–2007) after Elie Metchnikoff’s observation. Communicating Curr Res. Educ. Top. Trends Appl. Microbiol. 2007, 1, 466–474.
  • Sanders, M. E.; Merenstein, D. J.; Reid, G.; Gibson, G. R.; Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 1–12. DOI: 10.1038/s41575-019-0173-3.
  • Isolauri, E.; Salminen, S.; Ouwehand, A. C. Microbial-gut interactions in health and disease. probiotics. Best Pract. Res. Clin. Gastroenterol. 2004, 18(2), 299–313. DOI: 10.1016/j.bpg.2003.10.006.
  • Chugh, B.; Kamal-Eldin, A. Bioactive compounds produced by probiotics in food products. Curr. Opin. Food Sci. 2020, 32, 76–82. DOI: 10.1016/j.cofs.2020.02.003.
  • Tamime, A. Y.; Saarela, M.; Korslund Søndergaard, A.; Mistry, V. V.; Shah, N. P. Production and maintenance of viability of probiotic microorganisms in dairy products. Prob. Dairy Prod. 2005, 39–72. DOI: 10.1002/9780470995785.ch3.
  • Chow, J.;. Probiotics and prebiotics: A brief overview. J. Ren. Nutr. 2002, 12(2), 76–86. DOI: 10.1053/jren.2002.31759.
  • Amiri, S.; Mokarram, R. R.; Khiabani, M. S.; Bari, M. R.; Khaledabad, M. A. Exopolysaccharides production by Lactobacillus Acidophilus LA5 and Bifidobacterium animalis Subsp. Lactis BB12: Optimization of fermentation variables and characterization of structure and bioactivities. Int. J. Biol. Macromol. 2019, 123, 752–765. DOI: 10.1016/j.ijbiomac.2018.11.084.
  • Grattepanche, F.; Miescher-Schwenninger, S.; Meile, L.; Lacroix, C. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci. Technol. 2008, 88(4–5), 421–444. DOI: 10.1051/dst:2008013.
  • Castro, J.-M.; Tornadijo, M.-E.; Fresno, J.-M.; Sandoval, H. Biocheese: A food probiotic carrier. BioMed. Res. Int. 2015, 1–11. DOI: 10.1155/2015/723056.
  • Cook, M.-T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, -V.-V. Microencapsulation of probiotics for gastrointestinal delivery. J. Control Release. 2012, 162(1), 56–67. DOI: 10.1016/j.jconrel.2012.06.003.
  • Plessas, S.; Bosnea, L.; Alexopoulos, A.; Bezirtzoglou, E. Potential effects of probiotics in cheese and yogurt production: A review. Eng. Life Sci. 2012, 12(4), 433–440. DOI: 10.1002/elsc.201100122.
  • Stanton, C.; Gardiner, G.; Lynch, P. B.; Collins, J. K.; Fitzgerald, G.; Ross, R. P. Probiotic cheese. Int. Dairy J. 1998, 8(5–6), 491–496. DOI: 10.1016/S0958-6946(98)00080-6.
  • Songisepp, E.; Kullisaar, T.; Hütt, P.; Elias, P.; Brilene, T.; Zilmer, M.; Mikelsaar, M. A new probiotic cheese with antioxidative and antimicrobial activity. J. Dairy Sci. 2004, 87(7), 2017–2023. DOI: 10.3168/jds.S0022-0302(04)70019-3.
  • Ong, L.; Henriksson, A.; Shah, N. P. Development of probiotic cheddar cheese containing Lactobacillus Acidophilus, Lb. Casei, Lb. Paracasei and Bifidobacterium Spp. and the influence of these bacteria on proteolytic patterns and production of Organic Acid. Int. Dairy J. 2006, 16(5), 446–456. DOI: 10.1016/j.idairyj.2005.05.008.
  • Dabiza, N.; El-Deib, K. Biochemical evaluation and microbial quality of ras cheese supplemented with probiotic strains. Polish J. Food Nutr. Sci. 2007, 57(3), 295–300.
  • Burns, P.; Patrignani, F.; Serrazanetti, D.; Vinderola, G.-C.; Reinheimer, J.-A.; Lanciotti, R.; Guerzoni, M.-E. Probiotic crescenza cheese containing lactobacillus casei and lactobacillus acidophilus manufactured with high-pressure homogenized milk. J. Dairy Sci. 2008, 91(2), 500–512. DOI: 10.3168/jds.2007-0516.
  • Yerlikaya, O.; Ozer, E. Production of probiotic fresh white cheese using co-culture with streptococcus thermophilus. Food Sci. Technol. 2014, 34(3), 471–477. DOI: 10.1590/1678-457x.6365.
  • Niro, S.; Succi, M.; Cinquanta, L.; Fratianni, A.; Tremonte, P.; Sorrentino, E.; Panfili, G. Production of functional ricotta cheese. Agro Food Ind. Hi Tech. 2013, 24(6), 56–59.
  • Indira, M.; Venkateswarulu, T. C.; Peele, K. A.; Bobby, M. N.; Krupanidhi, S. Bioactive molecules of probiotic bacteria and their mechanism of action: A review. 3 Biotech. 2019, 9(8), 306. DOI: 10.1007/s13205-019-1841-2.
  • Chugh, B.; Kamal-Eldin, A. Bioactive compounds produced by probiotics in food products. Curr. Opin. Food Sci. 2020, 32, 76–82. DOI: 10.1016/j.cofs.2020.02.003.
  • Lopetuso, L. R.; Giorgio, M. E.; Saviano, A.; Scaldaferri, F.; Gasbarrini, A.; Cammarota, G. Bacteriocins and bacteriophages: therapeutic weapons for gastrointestinal diseases? Int. J. Mol. Sci. 2019, 20(1), 183. DOI: 10.3390/ijms20010183.
  • Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017, 9(9), 1021. DOI: 10.3390/nu9091021.
  • Baye, K.; Guyot, J. P.; Mouquet-Rivier, C. The unresolved role of dietary fibers on mineral absorption. Crit. Rev. Food Sci. Nutr. 2017, 57(5), 949–957. DOI: 10.1080/10408398.2014.953030.
  • Gill, P. A.; Van Zelm, M. C.; Muir, J. G.; Gibson, P. R. Short Chain Fatty Acids as Potential Therapeutic Agents in Human Gastrointestinal and Inflammatory Disorders. Aliment. Pharmacol. Ther. 2018, 48(1), 15–34. DOI: 10.1111/apt.14689.
  • Patel, A.; Shah, N.; Prajapati, J. B. Biosynthesis of Vitamins and Enzymes in fermented foods by lactic acid bacteria and related genera-a promising approach. Croatian J. Food Sci. Technol. 2013, 5(2), 85–91.
  • Gaisawat, M. B.; Iskandar, M. M.; MacPherson, C. W.; Tompkins, T. A.; Kubow, S. Probiotic supplementation is associated with increased antioxidant capacity and copper chelation in C. Difficile - infected fecal water. Nutrients. 2019, 11(9), 2007. DOI: 10.3390/nu11092007.
  • Boylston, T. D.; Vinderola, C. G.; Ghoddusi, H. B.; Reinheimer, J. A. Incorporation of bifidobacteria into cheeses: challenges and rewards. Int. Dairy J. 2004, 14(5), 375–387. DOI: 10.1016/j.idairyj.2003.08.008.
  • Özer, B.; Kirmaci, H. A.; Şenel, E.; Atamer, M.; Hayaloğlu, A. Improving THE VIABILITY OF Bifidobacterium Bifidum BB–12 and Lactobacillus Acidophilus LA–5 in white-brined cheese by microencapsulation. Int. Dairy J. 2009, 19(1), 22–29. DOI: 10.1016/j.idairyj.2008.07.001.
  • Godward, G.; Kailasapathy, K. Viability and survival of free and encapsulated probiotic bacteria in cheddar cheese. Milchwissenschaft. 2003, 58(11), 624–627.
  • Godward, Y.; Nga-Mun, G. Studies on enhancing the viability and survival of probiotic bacteria in dairy foods through strain selection and microencapsulation. MSc. Thesis 2000, University of Western Sydney, Australia
  • Silva, H. L. A.; Balthazar, C. F.; Esmerino, E. A.; Neto, R. P.; Rocha, R. S.; Moraes, J.; Cavalcanti, R. N.; Franco, R. M.; Tavares, M. I. B.; Santos, J. S.; et al. Partial substitution of NaCl by KCl and addition of flavor enhancers on probiotic prato cheese: A study covering manufacturing, ripening and storage time. Food Chem. 2018, 248, 192–200. DOI: 10.1016/j.foodchem.2017.12.064.
  • Vasconcelos, F. M.; Silva, H. L. A.; Poso, S. M. V.; Barroso, M. V.; Lanzetti, M.; Rocha, R. S.; Graça, J. S.; Esmerino, E. A.; Freitas, M. Q.; Silva, M. C.; et al. Probiotic prato cheese attenuates cigarette smoke-induced injuries in mice. Food Res. Int. 2019, 123, 697–703. DOI: 10.1016/j.foodres.2019.06.001.
  • Tomar, O.;. The effects of probiotic cultures on the organic acid content, texture profile and sensory attributes of tulum cheese. Int. J. Dairy Technol. 2019, 72(2), 218–228. DOI: 10.1111/1471-0307.12574.
  • de Almeida, J. D. S. O.; Dias, C. O.; Pinto, S. S.; Pereira, L. C.; Verruck, S.; Fritzen‐Freire, C. B.; Amante, E. R.; Prudêncio, E. S.; Amboni, R. D. M. C. Probiotic mascarpone‐type cheese: Characterisation and cell viability during storage and simulated gastrointestinal conditions. Int. J. Dairy Technol. 2017, 71, 195–203. DOI: 10.1111/1471-0307.12457.
  • Diniz-Silva, H. T.; Brandão, L. R.; de Sousa Galvão, M.; Madruga, M. S.; Maciel, J. F.; de Souza, E. L.; Magnani, M. Survival of lactobacillus acidophilus LA-5 and Escherichia Coli O157: H7 in minas frescal cheese made with oregano and rosemary essential oils. Food Microbiol. 2020, 86, 103348. DOI: 10.1016/j.fm.2019.103348.
  • Prezzi, L. E.; Lee, S. H. I.; Nunes, V. M. R.; Corassin, C. H.; Pimentel, T. C.; Rocha, R. S.; Rocha, R. S.; Ramos, G. L. P. A.; Guimarães, J. T.; Balthazar, C. F.; et al. Effect of Lactobacillus Rhamnosus on growth of Listeria Monocytogenes and Staphylococcus Aureus in a probiotic minas frescal cheese. Food Microbiol. 2020, 103557. DOI: 10.1016/j.fm.2020.103557.
  • Mazzette, R.; Colleo, M. M.; Riu, G.; Piras, G.; Piras, F.; Addis, M.; Pes, M.; Pirisi, A.; Meloni, D.; Mureddu, A.; et al. Production under controlled conditions of “Casu Marzu” Cheese: Effect of the Piophila Casei Colonization on microbial and chemical composition of the cheeses. Ital. J. Food Saf. 2010, 45–54. DOI: 10.4081/ijfs.2010.1102.
  • Melnyk, J. P.; Smith, A.; Scott-Dupree, C.; Marcone, M. F.; Hill, A. Identification of cheese mite species inoculated on mimolette and milbenkase cheese through cryogenic scanning electron microscopy. J. Dairy Sci. 2010, 93(8), 3461–3468. DOI: 10.3168/jds.2009-2937.
  • Brückner, A.; Heethoff, M. Scent of a mite: origin and chemical characterization of the lemon-like flavor of mite-ripened cheeses. Exp. Appl. Acarol. 2016, 69(3), 249–261. DOI: 10.1007/s10493-016-0040-7.
  • Curtis, R. F.; Hobson-Frohock, A.; Fenwick, G. R.; Berreen, J. M. Volatile compounds from the Mite Acarus Siro L. In food. J. Stored Prod. Res. 1981, 17(4), 197–203. DOI: 10.1016/0022-474X(81)90006-0.
  • Vasta, M. C.; Russo, A. Piophila Casei L. (Diptera: Piophilidae) monitoring in cheese ripening storehouses. IOBC/WPRS. Bulletin. J. 2004, 27, 109–114.
  • Tremblay, E.;. Entomologia Applicata; Liguori Editori: Napoli, 1994; Vol. 3, Part 2, pp 106–108.
  • Cole, F.-R.;. The Flies of Western North America; University of California Press: Berkeley and Los Angeles, 1969; pp 377–378.
  • Domenichini, G.;. Ricerche entomatiche e microbiologiche. In Agrobiotecnologie nei processi di valorizzazione dei prodotti e sottoprodotti agricoli. Consiglio Nazionale Ricerche, RAISA, Volterra, 1991; pp 689.
  • Domenichini, G.;. Protezione degli alimenti, contaminazione biologica e sanità ambientale nell’industria alimentare. Etas. libri. 1996, 124–125.
  • Ardö, Y. M.;. Blue mould cheese. In Encylopedia of Dairy Sciences; Fuquay, J., Fox, P. F., McSweeney, P., Eds.; Academic Press: London, UK, 2011; Vol. 1, pp 767–772.
  • Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C. C.; Paoletti, M. G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. F. 2013, 12(3), 296–313. DOI: 10.1111/1541-4337.12014.
  • Fox, P. F.; Guinee, T. P.; Cogan, T. M.; McSweeney, P. L. Factors that affect cheese quality. In Fundamentals of Cheese Science; Springer: Boston, 2017; pp 533–542.
  • Karaman, A. D.; Özer, B.; Pascall, M. A.; Alvarez, V. Recent advances in dairy packaging. Food Rev. Int. 2015, 31(4), 295–318. DOI: 10.1080/87559129.2015.1015138.
  • Pranoto, Y.; Rakshit, S. K.; Salokhe, V. M. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, Potassium Sorbate and Nisin. LWT-Food Sci. Technol. 2005, 38(8), 859–865. DOI: 10.1016/j.lwt.2004.09.014.
  • Cerqueira, M. A.; Bourbon, A. I.; Pinheiro, A. C.; Martins, J. T.; Souza, B. W. S.; Teixeira, J. A.; Vicente, A. A. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Tech. 2011, 22(12), 662–671. DOI: 10.1016/j.tifs.2011.07.002.
  • Moreira, M. D. R.; Pereda, M.; Marcovich, N. E.; Roura, S. I. Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: Assessment on carrot, cheese, and salami. J. Food Sci. 2011, 76(1), M54–M63. DOI: 10.1111/j.1750-3841.2010.01910.x.
  • Martins, J. T.; Cerqueira, M. A.; Souza, B. W.; Carmo Avides, M. D.; Vicente, A. A. Shelf life extension of ricotta cheese using coatings of Galactomannans from nonconventional sources incorporating Nisin against Listeria Monocytogenes. J. Agr. Food Chem. 2010, 58(3), 1884–1891. DOI: 10.1021/jf902774z.
  • Romanazzi, G.; Nigro, F.; Ippolito, A.; Divenere, D.; Salerno, M. Effects of pre‐and postharvest chitosan treatments to control storage grey mold of table grapes. J. Food Sci. 2002, 67(5), 1862–1867. DOI: 10.1111/j.1365-2621.2002.tb08737.x.
  • Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L. V. Molecular mechanisms of chitosan interactions with fungi and plants. Int. J. Mol. Sci. 2019, 20(2), 332. DOI: 10.3390/ijms20020332.
  • Dos Santos, N. S. T.; Aguiar, A. J. A. A.; de Oliveira, C. E. V.; de Sales, C. V.; E Silva, S. D. M.; da Silva, R. S.; Montenegro-Stamford, T. C.; de Souza, E. L. Efficacy of the application of a coating composed of chitosan and Origanum Vulgare L. essential oil to control Rhizopus Stolonifer and Aspergillus Niger in Grapes (Vitis Labrusca L.). Food Microbiol. 2012, 32(2), 345–353. DOI: 10.1016/j.fm.2012.07.014.
  • Šuput, D. Z.; Lazić, V. L.; Popović, S. Z.; Hromiš, N. M. Edible films and coatings: Sources, properties and application. Food Feed Res. 2015, 42(1), 11–22. DOI: 10.5937/FFR1501011S.
  • Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 2020, 1–29. DOI: 10.1080/87559129.2020.1737709.
  • Amjadi, S.; Emaminia, S.; Nazari, M.; Davudian, S. H.; Roufegarinejad, L.; Hamishehkar, H. Application of reinforced zno nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food Bioprocess. Tech. 2019, 12(7), 1205–1219. DOI: 10.1007/s11947-019-02286-y.
  • Youssef, A. M.; Assem, F. M.; Abdel-Aziz, M. E.; Elaaser, M.; Ibrahim, O. A.; Mahmoud, M.; Abd El-Salam, M. H. Development of bionanocomposite materials and its use in coating of ras cheese. Food Chem. 2019, 270, 467–475. DOI: 10.1016/j.foodchem.2018.07.114.
  • McCracken, C.; Dutta, P. K.; Waldman, W. J. Critical assessment of toxicological effects of ingested nanoparticles. Environ. Sci. Nano. 2016, 3(2), 256–282. DOI: 10.1039/C5EN00242G.
  • Schubert, C.; Van Langeveld, M. C.; Donoso, L. A. Innovations in 3D Printing: A 3D overview from optics to organs. Brit. J. Ophthalmol. 2014, 98(2), 159–161. DOI: 10.1136/bjophthalmol-2013-304446.
  • Baiano, A.;. 3D printed foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Rev. Int. 2020, 1–31. DOI: 10.1080/87559129.2020.1762091.
  • Sun, J.; Peng, Z.; Yan, L.; Fuh, J. Y. H.; Hong, G. S. 3D food printing an innovative way of mass customization in food fabrication. Int. J. Bioprint. 2015, 1(1), 27–38. DOI: 10.18063/IJB.2015.01.006.
  • Sun, J.; Peng, Z.; Zhou, W.; Fuh, J. Y.; Hong, G. S.; Chiu, A. A review on 3D printing for customized food fabrication. Procedia Manuf. 2015, 1, 308–319. DOI: 10.1016/j.promfg.2015.09.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.