411
Views
3
CrossRef citations to date
0
Altmetric
Review

Overview of Polyphenols and Polyphenol-rich Extracts as Modulators of Inflammatory Response in Dry Eye Syndrome

, , &

References

  • Craig, J. P.; Nichols, K. K.; Akpek, E. K.; Caffery, B.; Dua, H. S.; Joo, C. K.; Liu, Z.; Nelson, J. D.; Nichols, J. J.; Tsubota, K.;, et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15(3), 276–283. DOI: 10.1016/j.jtos.2017.05.008.
  • Kanellopoulos, A. J.; Asimellis, G. In Pursuit of Objective Dry Eye Screening Clinical Techniques. Eye Vis. 2016, 3(1). DOI: 10.1186/s40662-015-0032-4.
  • Rouen, P. A.; White, M. L. Dry Eye Disease: Prevalence, Assessment, and Management. Home Healthc. Now. 2018, 36(2), 74–83. DOI: 10.1097/NHH.0000000000000652.
  • Marshal, L. L.; Roach, J. M. Treatment of Dry Eye Disease. Consult. Pharm. 2016, 31(2), 96–106. DOI: 10.4140/TCP.n.2016.96.
  • Stapleton, F.; Alves, M.; Bunya, V. Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J.;, et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15(3), 334–365. DOI: 10.1016/j.jtos.2017.05.003.
  • Bron, A. J.; dePaiva, C. S.; Chauhan, S. K.; Bonini, S.; Gabison, E. E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.;, et al. TFOS DEWS II Pathophysiology Report. Ocul. Surf. 2017, 15(3), 438–510. DOI: 10.1016/j.jtos.2017.05.011.
  • Tavakoli, A.; Flanagan, J. L. The Case for a More Holistic Approach to Dry Eye Disease: Is It Time to Move beyond Antibiotics? Antibiotics. 2019, 8(3), 88. DOI: 10.3390/antibiotics8030088.
  • Pescosolido, N.; Giannotti, R.; Plateroti, A. M.; Pascarella, A.; Nebbioso, M. Curcumin: Therapeutical Potential in Ophthalmology. Planta Med. 2014, 80(4), 249–254. DOI: 10.1055/s-0033-1351074.
  • Lee, H. S.; Choi, J.-H.; Cui, L.; Li, Y.; Yang, J. M.; Yun, -J.-J.; Jung, J. E.; Choi, W.; Yoon, K. C. Anti-Inflammatory and Antioxidative Effects of Camellia Japonica on Human Corneal Epithelial Cells and Experimental Dry Eye: In Vivo and in Vitro Study. Invest. Ophthalmol. Vis. Sci. 2017, 58(2), 1196–1207. DOI: 10.1167/iovs.16-20634.
  • Abengózar-Vela, A.; Schaumburg, C. S.; Stern, M. E.; Calonge, M.; Enríquez-de-Salamanca, A.; González-García, M. J. Topical Quercetin and Resveratrol Protect the Ocular Surface in Experimental Dry Eye Disease. Ocul. Immunol. Inflamm. 2019, 27(6), 1023–1032. DOI: 10.1080/09273948.2018.1497664.
  • Liu, P.-L.; Chong, I.-W.; Lee, Y.-C.; Tsai, J.-R.; Wang, H.-M.; Hsieh, -C.-C.; Kuo, H.-F.; Liu, W.-L.; Chen, Y.-H.; Chen, H.-L. Anti-inflammatory Effects of Resveratrol on Hypoxia/Reoxygenation-Induced Alveolar Epithelial Cell Dysfunction. J. Agric. Food Chem. 2015, 63(43), 9480–9487. DOI: 10.1021/acs.jafc.5b01168.
  • Owczarek, K.; Hrabec, E.; Fichna, J.; Sosnowska, D.; Koziołkiewicz, M.; Szymański, J.; Lewandowska, U. Inhibition of Nuclear Factor-KappaB, Cyclooxygenase-2, and Metalloproteinase-9 Expression by Flavanols from Evening Primrose (Oenothera Paradoxa) in Human Colon Cancer SW-480 Cells. J. Funct. Foods. 2017, 37, 553–563. DOI: 10.1016/j.jff.2017.08.029.
  • Owczarek, K.; Hrabec, E.; Fichna, J.; Sosnowska, D.; Koziołkiewicz, M.; Szymański, J.; Lewandowska, U. Flavanols from Japanese Quince (Chaenomeles Japonica) Fruit Suppress Expression of Cyclooxygenase-2, Metalloproteinase-9, and Nuclear Factor-KappaB in Human Colon Cancer Cells. Acta Biochim. Pol. 2017, 64(3), 567–576. DOI: 10.18388/abp.2017_1599.
  • Li, T.; Li, F.; Liu, X.; Liu, J.; Li, D. Synergistic Anti-Inflammatory Effects of Quercetin and Catechin via Inhibiting Activation of TLR4-MyD88-mediated NF-κB and MAPK Signaling Pathways. Phytother. Res. 2019, 33(3), 756–767. DOI: 10.1002/ptr.6268.
  • Caban, M.; Chojnacka, K.; Owczarek, K.; Laskowska, J.; Fichna, J.; Podsędek, A.; Sosnowska, D.; Lewandowska, U. The Spent Hops (Humulus Lupulus L.) Extract as Modulator of Inflammatory Response in Mouse Macrophage RAW 264.7 Cells. J. Physiol. Pharmacol. 2020, 71, 67–78. DOI: 10.26402/jpp.2020.1.05.
  • Zielińska, M.; Lewandowska, U.; Podsędek, A.; Cygankiewicz, A.; Jacenik, D.; Sałaga, M.; Kordek, R.; Krajewska, W. M.; Fichna, J. Orally Available Extract from Brassica Oleracea Var. Capitata Rubra Attenuates Experimental Colitis in Mouse Models of Inflammatory Bowel Diseases. J. Funct. Foods. 2015, 17, 587–599. DOI: 10.1016/j.jff.2015.05.046.
  • Fu, M.; Fu, S.; Ni, S.; Zou, L.; Liu, Y.; Hong, T. Anti-inflammatory Effect of Epigallocatechin Gallate in a Mouse Model of Ovalbumin-Induced Allergic Rhinitis. Int. Immunopharmacol. 2017, 49, 102–108. DOI: 10.1016/j.intimp.2017.05.030.
  • Sevastre-Berghian, A. C.; Toma, V. A.; Sevastre, B.; Hanganu, D.; Vlase, L.; Benedec, D.; Oniga, I.; Baldea, I.; Olteanu, D.; Moldovan, R.;, et al. Characterization and Biological Effects of Hypericum Extracts on Experimentally-Induced - Anxiety, Oxidative Stress and Inflammation in Rats. J. Physiol. Pharmacol. 2018, 69, 789–800. DOI: 10.26402/jpp.2018.5.13.
  • Guo, R.; Zhou, F.-M.; Su, C.-J.; Liu, -T.-T.; Zhou, Y.; Fan, L.; Wang, Z.-H.; Liu, X.; Huang, Y.; Liu, T.;, et al. Epigallocatechin-3-gallate Attenuates Acute and Chronic Psoriatic Itch in Mice: Involvement of Antioxidant, Anti-Inflammatory Effects and Suppression of ERK and Akt Signaling Pathways. Biochem. Biophys. Res. Commun. 2018, 496(4), 1062–1068. DOI: 10.1016/j.bbrc.2018.01.122.
  • Lv, C.; Zhang, Y.; Shen, L. Preliminary Clinical Effect Evaluation of Resveratrol in Adults with Allergic Rhinitis. Int. Arch. Allergy Immunol. 2018, 175(4), 231–236. DOI: 10.1159/000486959.
  • Nikpayam, O.; Roshan, H.; Sohrab, G.; Sedaghat, M. Effects of Green Coffee Extract Supplementation on Oxidative Stress, Systemic and Vascular Inflammation in Patients with Metabolic Syndrome: A Randomized Clinical Trial. Iran. Red. Crescent. Med. J. 2018, 20(6). DOI: 10.5812/ircmj.67971.
  • Chew, B.; Mathison, B.; Kimble, L.; McKay, D.; Kaspar, K.; Khoo, C.; Chen, C.-Y. O.; Blumberg, J. Chronic Consumption of A Low Calorie, High Polyphenol Cranberry Beverage Attenuates Inflammation and Improves Glucoregulation and HDL Cholesterol in Healthy Overweight Humans: A Randomized Controlled Trial. Eur. J.Nutr. 2019, 58(3), 1223–1235. DOI: 10.1007/s00394-018-1643-z.
  • Saraf-Bank, S.; Ahmadi, A.; Paknahad, Z.; Maracy, M.; Nourian, M. Effects of Curcumin Supplementation on Markers of Inflammation and Oxidative Stress among Healthy Overweight and Obese Girl Adolescents: A Randomized Placebo-Controlled Clinical Trial. Phytother. Res. 2019, 33, 2015–2022. DOI: 10.1002/ptr.6370.
  • Li, D.-Q.; Luo, L.; Chen, Z.; Kim, H.-S.; Song, X. J.; Pflugfelder, S. C. JNK and ERK MAP Kinases Mediate Induction of IL-1beta, TNF-alpha and IL-8 following Hyperosmolar Stress in Human Limbal Epithelial Cells. Exp. Eye Res. 2006, 82(4), 588–596. DOI: 10.1016/j.exer.2005.08.019.
  • Luo, L.; Li, D.-Q.; Pflugfelder, S. C. Hyperosmolarity-induced Apoptosis in Human Corneal Epithelial Cells Is Mediated by Cytochrome C and MAPK Pathways. Cornea. 2007, 26(4), 452–460. DOI: 10.1097/ICO.0b013e318030d259.
  • Cavet, M. E.; Harrington, K. L.; Vollmer, T. R.; Ward, K. W.; Zhang, J.-Z. Anti-inflammatory and Anti-Oxidative Effects of the Green Tea Polyphenol Epigallocatechin Gallate in Human Corneal Epithelial Cells. Mol. Vis. 2011, 17, 533–542.
  • Deng, R.; Su, Z.; Hua, X.; Zhang, Z.; Li, D.-Q.; Pflugfelder, S. C. Osmoprotectants Suppress the Production and Activity of Matrix Metalloproteinases Induced by Hyperosmolarity in Primary Human Corneal Epithelial Cells. Mol. Vis. 2014, 20, 1243–1252.
  • Lestari, M. L. A. D.; Indrayanto, G. Curcumin. Profiles Drug Subst. Excip. Relat. Methodol. 2014, 39, 113–204. DOI: 10.1016/B978-0-12-800173-8.00003-9.
  • Nelson, K. M.; Dahlin, J. L.; Bisson, J.; Graham, J.; Pauli, G. F.; Walter, M. A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60(5), 1620–1637. DOI: 10.1021/acs.jmedchem.6b00975.
  • Tsuda, T.;. Curcumin as a Functional Food-Derived Factor: Degradation Products, Metabolites, Bioactivity, and Future Perspectives. Food Funct. 2018, 9(2), 705–714. DOI: 10.1039/c7fo01242j.
  • Liu, X.-F.; Hao, J.-L.; Xie, T.; Mukhtar, N. J.; Zhang, W.; Malik, T. H.; Lu, C.-W.; Zhou, -D.-D. Curcumin, A Potential Therapeutic Candidate for Anterior Segment Eye Diseases: A Review. Front. Pharmacol. 2017, 8. DOI: 10.3389/fphar.2017.00066.
  • Radomska-Leśniewska, D. M.; Osiecka-Iwan, D.; Hyc, A.; Góźdź, A.; Dąbrowska, A. M.; Skopiński, P. Therapeutic Potential of Curcumin in Eye Diseases. Cent. Eur. J. Immunol. 2019, 44(2), 181–189. DOI: 10.5114/ceji.2019.87070.
  • Chen, M.; Hu, D.-N.; Pan, Z.; Lu, C.-W.; Xue, C.-Y.; Aass, I. Curcumin Protects against Hyperosmoticity-induced IL-1beta Elevation in Human Corneal Epithelial Cell via MAPK Pathways. Exp. Eye Res. 2010, 90(3), 437–443. DOI: 10.1016/j.exer.2009.12.004.
  • Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. Biomed. Res. Int. 2017, 2017, 1–9. DOI: 10.1155/2017/5615647.
  • Reygaert, W. C.;. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed. Res. Int. 2018, 2018, 1–9. DOI: 10.1155/2018/9105261.
  • Gulias-Canizo, R.; Lagunes-Giullen, A.; Gonzalez-Robles, A.; Sanchez-Guzman, E.; Castro-Munozledo, F. (-)-epigallocatechin-3-gallate, Reduces Corneal Damage Secondary from Experimental Grade II Alkali Burns in Mice. Burns. 2019, 45, 398–412. DOI: 10.1016/j.burns.2018.08.021.
  • Lee, H. S.; Jun, J.-H.; Jung, E.-H.; Koo, B. A.; Kim, Y. S. Epigalloccatechin-3-gallate Inhibits Ocular Neovascularization and Vascular Permeability in Human Retinal Pigment Epithelial and Human Retinal Microvascular Endothelial Cells via Suppression of MMP-9 and VEGF Activation. Molecules. 2014, 19(8), 12150–12172. DOI: 10.3390/molecules190812150.
  • Seen, S.; Tong, L. Dry Eye Disease and Oxidative Stress. Acta Ophthalmol. 2018, 96(4), e412–e420. DOI: 10.1111/aos.13526.
  • Dogru, M.; Kojima, T.; Simsek, C.; Tsubota, K. Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Invest. Ophthalmol. Vis. Sci. 2018, 59(14), 163–168. DOI: 10.1167/iovs.17-23402.
  • Wang, P.; Sang, S. Metabolism and Pharmacokinetics of Resveratrol and Pterostilbene. Biofactors. 2018, 44, 16–25. DOI: 10.1002/biof.1410.
  • Xue, E. X.; Lin, J. P.; Zhang, Y.; Sheng, S. R.; Liu, H. X.; Zhou, Y. L.; Xu, H. Pterostilbene Inhibits Inflammation and ROS Production in Chondrocytes by Activating Nrf2 Pathway. Oncotarget. 2017, 8, 41988–42000. DOI: 10.18632/oncotarget.16716.
  • Chen, R. J.; Kuo, H. C.; Cheng, L. H.; Lee, Y. H.; Chang, W. T.; Wang, B. J.; Wang, Y. J.; Cheng, H. C. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer. Int. J. Mol. Sci. 2018, 19. DOI: 10.3390/ijms19010287.
  • Wen, W.; Lowe, G.; Roberts, C. M.; Finlay, J.; Han, E. S.; Glackin, C. A.; Dellinger, T. H. Pterostilbene Suppresses Ovarian Cancer Growth via Induction of Apoptosis and Blockade of Cell Cycle Progression Involving Inhibition of the STAT3 Pathway. Int. J. Mol. Sci. 2018, 19, 1983. DOI: 10.3390/ijms19071983.
  • Shen, H.; Rong, H. Pterostilbene Impact on Retinal Endothelial Cells under High Glucose Environment. Int. J. Clin. Exp. Pathol. 2015, 8, 12589–12594.
  • Li, J.; Deng, R.; Hua, X.; Zhang, L.; Lu, F.; Coursey, T. G.; Pflugfelder, S. C.; Li, D. Q. Blueberry Component Pterostilbene Protects Corneal Epithelial Cells from Inflammation via Anti-oxidative Pathway. Sci. Rep. 2016, 6. DOI: 10.1038/srep19408.
  • Yang, T.; Zhang, A.; Honeggar, M.; Kohan, D. E.; Mizel, D.; Sanders, K.; Hoidal, J. R.; Briggs, J. P.; Schnermann, J. B. Hypertonic Induction of COX-2 in Collecting Duct Cells by Reactive Oxygen Species of Mitochondrial Origin. J. Biol. Chem. 2005, 280, 34966–34973. DOI: 10.1074/jbc.M502430200.
  • Li, N.; He, J.; Schwartz, C. E.; Gjorstrup, P.; Bazan, H. E. P. Resolvin E1 Improves Tear Production and Decreases Inflammation in a Dry Eye Mouse Model. J. Ocul. Pharmacol. Ther. 2010, 26, 431–439. DOI: 10.1089/jop.2010.0019.
  • Behndig, A.; Karlsson, K.; Johansson, B. O.; Brannstrom, T.; Marklund, S. L. Superoxide Dismutase Isoenzymes in the Normal and Diseased Human Cornea. Invest. Ophthalmol. Vis. Sci. 2001, 42, 2293–2296.
  • McKay, T. B.; Karamichos, D. Quercetin and the Ocular Surface: What We Know and Where We are Going. Exp. Biol. Med. 2017, 242, 565–572. DOI: 10.1177/1535370216685187.
  • Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schafer, B.; Hirsch-Ernst, K. I.; Lampen, A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. DOI: 10.1002/mnfr.201700447.
  • Abengózar-Vela, A.; Calonge, M.; Stern, M. E.; Gonzalez-Garcia, M. J.; Enriquez-de-Salamanca, A. Quercetin and Resveratrol Decrease the Inflammatory and Oxidative Responses in Human Ocular Surface Epithelial Cells. Invest. Ophthalmol. Vis. Sci. 2015, 56, 2709–2719. DOI: 10.1167/iovs.15-16595.
  • Enriquez-de-Salamanca, A.; Castellanos, E.; Stern, M. E.; Fernandez, I.; Carreno, E.; Garcia-Vazquez, C.; Herreras, J. M.; Calonge, M. Tear Cytokine and Chemokine Analysis and Clinical Correlations in Evaporative-Type Dry Eye Disease. Mol. Vis. 2010, 16, 862–873.
  • Philipp, W.; Speicher, L.; Humpel, C. Expression of Vascular Endothelial Growth Factor and Its Receptors in Inflamed and Vascularized Human Corneas. Invest. Ophthalmol. Vis. Sci. 2000, 41, 2514–2522.
  • Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. DOI: 10.18388/abp.2018_2749.
  • Malaguarnera, L.;. Influence of Resveratrol on the Immune Response. Nutrients. 2019, 11, 946. DOI: 10.3390/nu11050946.
  • Lancon, A.; Frazzi, R.; Latruffe, N. Anti-Oxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Resveratrol in Ocular Diseases. Molecules. 2016, 21, 304. DOI: 10.3390/molecules21030304.
  • Abu-Amero, K. K.; Kondkar, A. A.; Chalam, K. V. Resveratrol and Ophthalmic Diseases. Nutrients. 2016, 8, 200. DOI: 10.3390/nu8040200.
  • Tsai, T.-Y.; Chen, T.-C.; Wang, I.-J.; Yeh, C.-Y.; Su, M.-J.; Chen, R.-H.; Tsai, T.-H.; Hu, F.-R. The Effect of Resveratrol on Protecting Corneal Epithelial Cells from Cytotoxicity Caused by Moxifloxacin and Benzalkonium Chloride. Invest. Ophthalmol. Vis. Sci. 2015, 56, 1575–1584. DOI: 10.1167/iovs.14-15708.
  • Baudouin, C.; Labbe, A.; Liang, H.; Pauly, A.; Brignole-Baudouin, F. Preservatives in Eye Drops: The Good, the Bad and the Ugly. Prog. Retin. Eye Res. 2010, 29, 312–334. DOI: 10.1016/j.preteyeres.2010.03.001.
  • Rosin, L. M.; Bell, N. P. Preservative Toxicity in Glaucoma Medication: Clinical Evaluation of Benzalkonium Chloride-Free 0.5% Timolol Eye Drops. Clin. Ophthalmol. 2013, 7, 2131–2135. DOI: 10.2147/OPTH.S41358.
  • Gomes, J. A. P.; Azar, D. T.; Baudouin, C.; Efron, N.; Hirayama, M.; Horwath-Winter, J.; Kim, T.; Mehta, J. S.; Messmer, E. M.; Pepose, J. S.;, et al. TFOS DEWS II Iatrogenic Dry Eye Report. Ocul. Surf. 2017, 15, 511–538. DOI: 10.1016/j.jtos.2017.05.004.
  • Li, Y.-J.; Luo, L.-J.; Harroun, S. G.; Wei, S.-C.; Unnikrishnan, B.; Chang, H.-T.; Huang, Y.-F.; Lai, J.-Y.; Huang, -C.-C. Synergistically Dual-functional Nano Eye-drops for Simultaneous Anti-Inflammatory and Anti-Oxidative Treatment of Dry Eye Disease. Nanoscale. 2019, 11, 5580–5594. DOI: 10.1039/c9nr00376b.
  • Seo, M. J.; Kim, J. M.; Lee, M. J.; Sohn, Y. S.; Kang, K. K.; Yoo, M. The Therapeutic Effect of DA-6034 on Ocular Inflammation via Suppression of MMP-9 and Inflammatory Cytokines and Activation of the MAPK Signaling Pathway in an Experimental Dry Eye Model. Curr. Eye Res. 2010, 35, 165–175. DOI: 10.3109/02713680903453494.
  • Xiao, F.; Cui, H.; Zhong, X. Beneficial Effect of Daidzin in Dry Eye Rat Model through the Suppression of Inflammation and Oxidative Stress in the Cornea. Saudi J. Biol. Sci. 2018, 25, 832–837. DOI: 10.1016/j.sjbs.2016.11.016.
  • Tseng, C.-L.; Hung, Y.-J.; Chen, Z.-Y.; Fang, H.-W.; Chen, K.-H. Synergistic Effect of Artificial Tears Containing Epigallocatechin Gallate and Hyaluronic Acid for the Treatment of Rabbits with Dry Eye Syndrome. PLoS One. 2016, 11, e0157982. DOI: 10.1371/journal.pone.0157982.
  • Luo, L.-J.; Lai, J.-Y. Epigallocatechin Gallate-Loaded Gelatin-g-Poly(N-Isopropylacrylamide) as a New Ophthalmic Pharmaceutical Formulation for Topical Use in the Treatment of Dry Eye Syndrome. Sci. Rep. 2017, 7. DOI: 10.1038/s41598-017-09913-8.
  • Huang, H.-Y.; Wang, M.-C.; Chen, Z.-Y.; Chiu, W.-Y.; Chen, K.-H.; Lin, I.-C.; Yang, W.-C. V.; Wu, -C.-C.; Tseng, C.-L. Gelatin-epigallocatechin Gallate Nanoparticles with Hyaluronic Acid Decoration as Eye Drops Can Treat Rabbit Dry-Eye Syndrome Effectively via Inflammatory Relief. Int. J. Nanomedicine. 2018, 13, 7251–7273. DOI: 10.2147/IJN.S173198.
  • Chen, H.-C.; Chen, Z.-Y.; Wang, T.-J.; Drew, J. V.; Tseng, C.-L.; Fang, H.-W.; Lin, F.-H. Herbal Supplement in a Buffer for Dry Eye Syndrome Treatment. Int. J. Mol. Sci. 2017, 18(8), 1697. DOI: 10.3390/ijms18081697.
  • Spoler, F.; Frentz, M.; Schrage, N. F. Towards a New in Vitro Model of Dry Eye: The Ex Vivo Eye Irritation Test. Dev. Ophthalmol. 2010, 45, 93–107. DOI: 10.1159/000315023.
  • Bernatonienie, J.; Kopustinskiene, D. M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules. 2018, 23, 965. DOI: 10.3390/molecules23040965.
  • Fan, F.-Y.; Sang, L.-X.; Jiang, M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules. 2017, 22, 484. DOI: 10.3390/molecules22030484.
  • Pan, Z.; Zhou, Y.; Luo, X.; Ruan, Y.; Zhou, L.; Wang, Q.; Yan, Y. J.; Liu, Q.; Chen, J. Against NF-κB/thymic Stromal Lymphopoietin Signaling Pathway, Catechin Alleviates the Inflammation in Allergic Rhinitis. Int. Immunopharmacol. 2018, 61, 241–248. DOI: 10.1016/j.intimp.2018.06.011.
  • Chen, A.-W.; Tan, X.; Sun, J.-Y.; Gu, C.-M.; Liu, C.; Guo, X. Catechin Attenuates TNF-α Induced Inflammatory Response via AMPK-SIRT1 Pathway in 3T3-L1 Adipocytes. PLoSOne. 2019, 14. DOI: 10.1371/journal.pone.0217090.
  • Lee, H.; Shim, W.; Kim, C. E.; Choi, S. Y.; Lee, H.; Yang, J. Therapeutic Efficacy of Nanocomplex of Poly(Ethylene Glycol) and Catechin for Dry Eye Disease in a Mouse Model. Invest. Ophthalmol. Vis. Sci. 2017, 58, 1682–1691. DOI: 10.1167/iovs.16-20843.
  • Shim, W.; Kim, C. E.; Lee, M.; Lee, S. H.; Park, J.; Do, M.; Yang, J.; Lee, H. Catechin Solubilization by Spontaneous Hydrogen Bonding with Poly(ethylene Glycol) for Dry Eye Therapeutics. J. Control. Release. 2019, 307, 413–422. DOI: 10.1016/j.jconrel.2019.04.016.
  • Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of Metabolism and Bioavailability Enhancement of Polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. DOI: 10.1021/jf404439b.
  • Yamaguchi, T.;. Inflammatory Response in Dry Eye. Invest. Ophthalmol. Vis. Sci. 2018, 59, 192–199. DOI: 10.1167/iovs.17-23651.
  • Chung, S.-H.; Choi, S. H.; Choi, J. A.; Chuck, R. S.; Joo, C.-K. Curcumin Suppresses Ovalbumin-Induced Allergic Conjunctivitis. Mol. Vis. 2012, 18, 1966–1972.
  • Lee, H. S.; Chauhan, S. K.; Okanobo, A.; Nallasamy, N.; Dana, R. Therapeutic Efficacy of Topical Epigallocatechin Gallate in Murine Dry Eye. Cornea. 2011, 30, 1465–1472. DOI: 10.1097/ICO.0b013e31821c9b5a.
  • Oh, H. N.; Kim, C. E.; Lee, J. H.; Yang, J. W. Effects of Quercetin in a Mouse Model of Experimental Dry Eye. Cornea. 2015, 34, 1130–1136. DOI: 10.1097/ICO.0000000000000543.
  • Doughty, M. J.;. Tear Film Stability and Tear Break up Time (TBUT) in Laboratory Rabbits-A Systematic Review. Curr. Eye Res. 2018, 43, 961–964. DOI: 10.1080/02713683.2018.1457164.
  • Raimondi, S.; Roncaglia, L.; De Lucia, M.; Amaretti, A.; Leonardi, A.; Pagnoni, U. M.; Rossi, M. Bioconversion of Soy Isoflavones Daidzin and Daidzein by Bifidobacterium Strains. Appl. Microbiol. Biotechnol. 2009, 81, 943–950. DOI: 10.1007/s00253-008-1719-4.
  • Woźniak, A.; Paduch, R. Aloe Vera Extract Activity on Human Corneal Cells. Pharm. Biol. 2012, 50, 147–154. DOI: 10.3109/13880209.2011.579980.
  • Nejatzadeh-Barandozi, F.;. Antibacterial Activities and Antioxidant Capacity of Aloe Vera. Org. Med. Chem. Lett. 2013, 3, 5. DOI: 10.1186/2191-2858-3-5.
  • Choi, S.; Chung, M.-H. A Review on the Relationship between Aloe Vera Components and Their Biologic Effects. . Semin. Integr. Med. 2003, 1(1), 53–62. DOI: 10.1016/S1543-1150(03)00005-X.
  • Paduch, R.; Woźniak, A.; Niedziela, P.; Rejdak, R. Assessment of Eyebright (Euphrasia Officinalis L.) Extract Activity in Relation to Human Corneal Cells Using in Vitro Tests. Balkan. Med. J. 2014, 31, 29–36. DOI: 10.5152/balkanmedj.2014.8377.
  • West, A. L.; Fetters, M. D.; Hemmila, M. R.; Gorenflo, D. W.; Kiyota, A.; Moroi-Fetters, S. Herb and Vitamin Supplementation Use among a General Ophthalmology Practice Population. Am. J. Ophthalmol. 2005, 139, 522–529. DOI: 10.1016/j.ajo.2004.10.043.
  • Calixto, J. B.; Campos, M. M.; Otuki, M. F.; Santos, A. R. S. Anti-Inflammatory Compounds of Plant Origin. Part II. Modulation of Pro-Inflammatory Cytokines, Chemokines and Adhesion Molecules. Planta Med. 2004, 70, 93–103. DOI: 10.1055/s-2004-815483.
  • Shestakova, T. S.; Petrichenko, V. M.; Sukhinina, T. V. Elemental Composition of Euphrasia Brevipila Herbs and Extracts. Pharm. Chem. J. 2008, 42, 460–462. DOI: 10.1007/s11094-008-0149-z.
  • Paduch, R.; Woźniak, A. The Effect of Lamium Album Extract on Cultivated Human Corneal Epithelial Cells (10.014 pRSV-T). J Ophthalmic Vis. Res. 2015, 10(3), 229–237. DOI: 10.4103/2008-322X.170349.
  • Wójciak-Kosior, M.; Matysik, G.; Soczewiński, E. High-Performance Thin-Layer Chromatography Combined with Densitometry for Quantitative Analysis of Phenolic Acids in Complex Mixtures. J. Planar. Chromatogr. 2006, 19, 21–26. DOI: 10.1556/JPC.19.2006.1.4.
  • Trouillas, P.; Calliste, C.-A.; Allais, D.-P.; Simon, A.; Marfak, A.; Delage, C.; Duroux, J.-L. Antioxidant, Anti-Inflammatory and Antiproliferative Properties of Sixteen Water Plant Extracts Used in the Limousin Countryside as Herbal Teas. Food Chem. 2003, 80, 399–407. DOI: 10.1016/S0308-8146(02)00282-0.
  • Cui, L.; Lee, H. S.; Li, Y.; Choi, J. H.; Yun, J. J.; Jung, J. E.; Choi, W.; Yoon, K. C. Experimental and Clinical Applications of Chamaecyparis Obtusa Extracts in Dry Eye Disease. Oxid. Med. Cell. Longev. 2017, 2017, 1–12. DOI: 10.1155/2017/4523673.
  • Lee, H. S.; Choi, J. H.; Cui, L.; Li, Y.; Yang, J. M.; Yun, J. J.; Jung, J. E.; Choi, W.; Yoon, K. C. Anti-Inflammatory and Antioxidative Effects of Camellia Japonica on Human Corneal Epithelial Cells and Experimental Dry Eye: In Vivo and in Vitro Study. Invest. Ophthalmol. Vis. Sci. 2017, 58, 1196–1207. DOI: 10.1167/iovs.16-20634.
  • Onodera, K.-I.; Hanashiro, K.; Yasumoto, T. Camellianoside, a Novel Antioxidant Glycoside from the Leaves of Camellia Japonica. Biosci. Biotechnol. Biochem. 2017, 58(8), 1995–1998. DOI: 10.1271/bbb.60112.
  • Park, B.; Lee, I. S.; Hyun, S. W.; Jo, K.; Lee, T. G.; Kim, J. S.; Kim, C. S. The Protective Effect of Polygonum Cuspidatum (PCE) Aqueous Extract in a Dry Eye Model. Nutrients. 2018, 10. DOI: 10.3390/nu10101550.
  • Tsubota, K.; Yokoi, N.; Shimazaki, J.; Watanabe, H.; Dogru, M.; Yamada, M.; Kinoshita, S.; Kim, H.-M.; Tchah, H.-W.; Hyon, J. Y. New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society. Ocul. Surf. 2017, 15, 65–76. DOI: 10.1016/j.jtos.2016.09.003.
  • Pflugfelder, S. C.; Bian, F.; De Paiva, C. Matrix Metalloproteinase-9 in the Pathophysiology and Diagnosis of Dry Eye Syndrome. Metalloproteinases Med. 2017, 4, 37–46. DOI: 10.2147/MNM.S107246.
  • Kim, Y.-H.; Oh, T. W.; Park, E.; Yim, N.-H.; Park, K. I.; Cho, W. K.; Ma, J. Y. Anti-Inflammatory and Anti-Apoptotic Effects of Acer Palmatum Thumb. Extract, KIOM-2015EW, in a Hyperosmolar-Stress-Induced in Vitro Dry Eye Model. Nutrients. 2018, 10. DOI: 10.3390/nu10030282.
  • Seo, C. S.; Lee, M. Y.; Shin, I. S.; Lee, J. A.; Ha, H.; Shin, H. K. Spirodela Polyrhiza (L.) Sch. Ethanolic Extract Inhibits LPS-induced Inflammation in RAW264.7 Cells. Immunopharmacol. Immunotoxicol. 2012, 34, 794–802. DOI: 10.3109/08923973.2012.656273.
  • Nam, T. G.; Lim, T. G.; Lee, B. H.; Lim, S.; Kang, H.; Eom, S. H.; Yoo, M.; Jang, H. W.; Kim, D. O. Comparison of Anti-Inflammatory Effects of Flavonoid-Rich Common and Tartary Buckwheat Sprout Extracts in Lipopolysaccharide-Stimulated RAW264.7 And Peritoneal Macrophages. Oxid. Med. Cell. Longev. 2017, 2017, 1–12. DOI: 10.1155/2017/9658030.
  • Gou, K. J.; Zeng, R.; Dong, Y.; Hu, Q. Q.; Hu, H. W.; Maffucci, K. G.; Dou, Q. L.; Yang, Q. B.; Qin, X. H.; Qu, Y. Anti-inflammatory and Analgesic Effects of Polygonum Orientale L. Extracts. Front. Pharmacol. 2017, 8. DOI: 10.3389/fphar.2017.00562.
  • Corrales, R. M.; Luo, L.; Chang, E. Y.; Pflugfelder, S. C. Effects of Osmoprotectants on Hyperosmolar Stress in Cultured Human Corneal Epithelial Cells. Cornea. 2008, 27, 574–579. DOI: 10.1097/ICO.0b013e318165b19e.
  • Foulks, G. N.;. Dews Report: A Mission Completed. Ocul. Surf. 2007, 5, 65–66. DOI: 10.1016/S1542-0124(12)70076-9.
  • Guha, M.; Mackman, N. LPS Induction of Gene Expression in Human Monocytes. Cell. Signal. 2001, 13, 85–94. DOI: 10.1016/s0898-6568(00)00149-2.
  • Mauro, M. D. D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M. G.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants. 2019, 8, 462. DOI: 10.3390/antiox8100462.
  • Olivieri, M.; Cristaldi, M.; Pezzino, S.; Rusciano, D.; Tomasello, B.; Anfuso, C. D.; Lupo, G. Phenotypic Characterization of the SIRC (Statens Seruminstitut Rabbit Cornea) Cell Line Reveals a Mixed Epithelial and Fibroblastic Nature. Exp. Eye Res. 2018, 172, 123–127. DOI: 10.1016/j.exer.2018.04.004.
  • Cristaldi, M.; Olivieri, M.; Lupo, G.; Anfuso, C. D.; Pezzino, S.; Rusciano, D. N-hydroxymethylglycinate with EDTA Isan Efficient Eye Drop Preservative with Very Low Toxicity: An in Vitro Comparative Study. Cutan. Ocul. Toxicol. 2018, 37, 71–76. DOI: 10.1080/15569527.2017.1347942.
  • Wróblewska, K.; Kucinska, M.; Murias, M.; Lulek, J. Characterization of New Eye Drops with Choline Salicylate and Assessment of Their Irritancy by in Vitro Short Time Exposure Tests. Saudi Pharm. J. 2015, 23, 407–412. DOI: 10.1016/j.jsps.2014.11.009.
  • Kim, K. A.; Hyun, L. C.; Jung, S. H.; Yang, S. J. The Leaves of Diospyros Kaki Exert Beneficial Effects on a Benzalkonium Chloride-Induced Murine Dry Eye Model. Mol. Vis. 2016, 22, 284–293.
  • Izuchi, R.; Takahashi, H.; Inada, Y. Preparing a Carotenoid Polyphenol-Enriched Extract from the Peel of Persimmon, Diospyros Kaki L.f. Biosci. Biotechnol. Biochem. 2009, 73, 2793–2795. DOI: 10.1271/bbb.90616.
  • Xie, C.; Xie, Z.; Xu, X.; Yang, D. Persimmon (Diospyros Kaki L.) Leaves: A Review on Traditional Uses, Phytochemistry and Pharmacological Properties. J. Ethnopharmacol. 2015, 163, 229–240. DOI: 10.1016/j.jep.2015.01.007.
  • Choi, W.; Lee, J. B.; Cui, L.; Li, Y.; Li, Z.; Choi, J. S.; Lee, H. S.; Yoon, K. C. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye. Oxid. Med. Cell. Longev. 2016, 2016, 1–10. DOI: 10.1155/2016/4727415.
  • de Paiva, C. S.; Schwartz, C. E.; Gjorstrup, P.; Pflugfelder, S. C. Resolvin E1 (RX-10001) Reduces Corneal Epithelial Barrier Disruption and Protects against Goblet Cell Loss in a Murine Model of Dry Eye. Cornea. 2012, 31, 1299–1303. DOI: 10.1097/ICO.0b013e31823f789e.
  • Zhang, X.; Chen, W.; De Paiva, C. S.; Corrales, R. M.; Volpe, E. A.; McClellan, A. J.; Farley, W. J.; Li, D.-Q.; Pflugfelder, S. C. Interferon-γ Exacerbates Dry Eye-Induced Apoptosis in Conjunctiva through Dual Apoptotic Pathways. Invest. Ophthalmol. Vis. Sci. 2011, 52, 6279–6285. DOI: 10.1167/iovs.10-7081.
  • Zhang, C.; Li, K.; Yang, Z.; Wang, Y.; Si, H. The Effect of the Aqueous Extract of Bidens Pilosa L. On Androgen Deficiency Dry Eye in Rats. Cell. Physiol. Biochem. 2016, 39(1), 266–277. DOI: 10.1159/000445622.
  • Singh, S.; Moksha, L.; Sharma, N.; Titiyal, J. S.; Biswas, N. R.; Velpandian, T. Development and Evaluation of Animal Models for Sex Steroid Deficient Dry Eye. J. Pharmacol. Toxicol. Methods. 2014, 70, 29–34. DOI: 10.1016/j.vascn.2014.03.004.
  • Corrales, R. M.; Narayanan, S.; Fernández, I.; Mayo, A.; Galarreta, D. J.; Fuentes-Páez, G.; Chaves, F. J.; Herreras, J. M.; Calonge, M. Ocular Mucin Gene Expression Levels as Biomarkers for the Diagnosis of Dry Eye Syndrome. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8363–8369. DOI: 10.1167/iovs.11-7655.
  • Kang, S. W.; Kim, K. A.; Lee, C. H.; Yang, S. J.; Kang, T. K.; Jung, J. H.; Kim, T. J.; Oh, S. R.; Jung, S. H. A Standardized Extract of Rhynchosia Volubilis Lour. Exerts A Protective Effect on Benzalkonium Chloride-Induced Mouse Dry Eye Model. J. Ethnopharmacol. 2018, 215, 91–100. DOI: 10.1016/j.jep.2017.12.041.
  • Baudouin, C.; Bourcier, T.; Brignole, F.; Bertel, F.; Moldovan, M.; Goldschild, M.; Goguel, A. Correlation between Tear IgE Levels and HLA-DR Expression by Conjunctival Cells in Allergic and Nonallergic Chronic Conjunctivitis. Graef. Arch. Clin. Exp. 2000, 238, 900–904. DOI: 10.1007/s004170000179.
  • Lopin, E.; Deveney, T.; Asbell, P. A. Impression Cytology: Recent Advances and Applications in Dry Eye Disease. Ocul. Surf. 2009, 7, 93–110. DOI: 10.1016/s1542-0124(12)70301-4.
  • Chien, K.-J.; Horng, C.-T.; Huang, Y.-S.; Hsieh, Y.-H.; Wang, C.-J.; Yang, J.-S.; Lu, -C.-C.; Chen, F.-A. Effects of Lycium Barbarum (Goji Berry) on Dry Eye Disease in Rats. Mol. Med. Rep. 2018, 17, 809–818. DOI: 10.3892/mmr.2017.7947.
  • Cheng, J.; Zhou, Z. W.; Sheng, H. P.; He, L. J.; Fan, X. W.; He, Z. X.; Sun, T.; Zhang, X.; Zhao, R. J.; Gu, L.;, et al. An Evidence-Based Update on the Pharmacological Activities and Possible Molecular Targets of Lycium Barbarum Polysaccharides. Drug Des. Devel. Ther. 2014, 9, 33–78. DOI: 10.2147/DDDT.S72892.
  • Qian, D.; Zhao, Y.; Yang, G.; Huang, L. Systematic Review of Chemical Constituents in the Genus Lycium (Solanaceae). Molecules. 2017, 22, 911. DOI: 10.3390/molecules22060911.
  • Choi, W.; Kim, J. C.; Kim, W. S.; Oh, H. J.; Yang, J. M.; Lee, J. B.; Yoon, K. C. Clinical Effect of Antioxidant Glasses Containing Extracts of Medicinal Plants in Patients with Dry Eye Disease: A Multi-Center, Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. PLoS One. 2015, 10. DOI: 10.1371/journal.pone.0139761.
  • Riva, A.; Togni, S.; Franceschi, F.; Kawada, S.; Inaba, Y.; Eggenhoffner, R.; Giacomelli, L. The Effect of A Natural, Standardized Bilberry Extract (Mirtoselect®) in Dry Eye: A Randomized, Double Blinded, Placebo-Controlled Trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2518–2525.
  • Nejabat, M.; Reza, S. A.; Zadmehr, M.; Yasemi, M.; Sobhani, Z. Efficacy of Green Tea Extract for Treatment of Dry Eye and Meibomian Gland Dysfunction; A Double-blind Randomized Controlled Clinical Trial Study. J. Clin. Diagn. Res. 2017, 11, NC05–NC08. DOI: 10.7860/JCDR/2017/23336.9426.
  • Masmali, A. M.; Alanazi, S. A.; Alotaibi, A. G.; Fagehi, R.; Abusharaha, A.; El-Hiti, G. A. The Acute Effect of a Single Dose of Green Tea on the Quality and Quantity of Tears in Normal Eye Subjects. Clin. Ophthalmol. 2019, 13, 605–610. DOI: 10.2147/OPTH.S201127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.