937
Views
6
CrossRef citations to date
0
Altmetric
Review

Trends in Approaches to Assist Freeze-Drying of Food: A Cohort Study on Innovations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Wu, X. F.; Zhang, M.; Bhandari, B.; Li, Z. Effects of Microwave Assisted Pulse Fluidized Bed Freeze-Drying (MPFFD) on Quality Attributes of Cordyceps Militaris. Food Biosci. 2019, 28, 7–14. DOI: 10.1016/j.fbio.2019.01.001.
  • Prosapio, V.; Norton, I. Simultaneous Application of Ultrasounds and Firming Agents to Improve the Quality Properties of Osmotic + Freeze-Dried Foods. LWT. 2018, 96, 402–410. DOI: 10.1016/j.lwt.2018.05.068.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Moses, J. A.; Norton, T.; Alagusundaram, K.; Tiwari, B. K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6(3), 43–55. DOI: 10.1007/s12393-014-9078-7.
  • Masson, M. L.;. Studies on Freeze-Drying of Foods. In Richter Reis, F. Ed.; Vacuum Drying for Extending Food Shelf-Life. SpringerBriefs in Applied Sciences and Technology. Springer, Cham; 2014; pp 19–28. DOI: 10.1007/978-3-319-08207-3_3.
  • Martínez-Navarrete, N.; Salvador, A.; Oliva, C.; Camacho, M. M. Influence of Biopolymers and Freeze-Drying Shelf Temperature on the Quality of a Mandarin Snack. LWT. 2019, 99, 57–61. DOI: 10.1016/j.lwt.2018.09.040.
  • Ratti, C.;. Hot Air and Freeze-Drying of High-Value Foods : A Review. J Pharm Sciences. 2014, 103(9), 2673–2695. DOI: 10.1016/S0260-8774(00)00228-4.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Applying Quality-by-Design to Develop a Coffee Freeze-Drying Process. J. Food Eng. 2014, 123, 179–187. DOI: 10.1016/j.jfoodeng.2013.09.018.
  • Patel, S. M.; Chaudhuri, S.; Pikal, M. J. Choked Flow and Importance of Mach I in Freeze-Drying Process Design. Chem. Eng. Sci. 2010, 65(21), 5716–5727. DOI: 10.1016/j.ces.2010.07.024.
  • Agnieszka, C.; Andrzej, L. Rehydration and Sorption Properties of Osmotically Pretreated Freeze-Dried Strawberries. J. Food Eng. 2010, 97(2), 267–274. DOI: 10.1016/j.jfoodeng.2009.10.022.
  • Lenaerts, S.; Van Der Borght, M.; Callens, A.; Van Campenhout, L. Suitability of Microwave Drying for Mealworms (Tenebrio Molitor) as Alternative to Freeze Drying: Impact on Nutritional Quality and Colour. Food Chem. 2018, 254(February), 129–136. DOI: 10.1016/j.foodchem.2018.02.006.
  • Jiang, N.; Liu, C.; Li, D.; Zhang, Z.; Liu, C.; Wang, D.; Niu, L.; Zhang, M. Evaluation of Freeze Drying Combined with Microwave Vacuum Drying for Functional Okra Snacks: Antioxidant Properties, Sensory Quality, and Energy Consumption. LWT - Food Sci. Technol. 2017, 82, 216–226. DOI: 10.1016/j.lwt.2017.04.015.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Intensification of Freeze-Drying for the Pharmaceutical and Food Industries. In Modern Drying Technology; Tsotsas, E., Mujumdar, A., Eds.; Wiley, 2014. https://doi.org/10.1002/9783527631704.ch05
  • Waghmare, R. B.; Perumal, A. B.; Moses, J. A.; Anandharamakrishnan, C. Modeling, C. Recent Developments in Freeze Drying of Foods. Elsevier; 2021, Vol. 3. DOI:10.1016/B978-0-12-815781-7.00017-2.
  • Assegehegn, G.; Brito-de la Fuente, E.; Franco, J. M.; Gallegos, C. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. J. Pharm. Sci. Elsevier B.V. April 2019, (4), 1378–1395. DOI: 10.1016/j.xphs.2018.11.039.
  • Muñoz, L. A.; Cobos, A.; Diaz, O.; Aguilera, J. M. Chia Seeds : Microstructure, Mucilage Extraction and Hydration. J Food Eng. 2012, 108, 216–224. DOI:10.1016/j.jfoodeng.2011.06.037.
  • Oddone, I.; Barresi, A. A.; Pisano, R. Influence of Controlled Ice Nucleation on the Freeze-Drying of Pharmaceutical Products : The Secondary Drying Step. Int. J. Pharm. 2017, (1–2). DOI: 10.1016/j.ijpharm.2017.03.077.
  • Mphahlele, R. R.; Fawole, O. A.; Makunga, N. P.; Opara, U. L. Effect of Drying on the Bioactive Compounds, Antioxidant, Antibacterial and Antityrosinase Activities of Pomegranate Peel. BMC Complement. Altern. Med. 2016, 1–12. DOI: 10.1186/s12906-016-1132-y.
  • Patel, S. M.; Doen, T.; Pikal, M. J. Determination of End Point of Primary Drying in Freeze-Drying Process Control. AAPS PharmSciTech. 2010, 11(1), 73–84. DOI: 10.1208/s12249-009-9362-7.
  • Skovgaard, N.;. Drying Technologies in Food Processing. Int. J. Food Microb. 2008, 129. DOI: 10.1016/j.ijfoodmicro.2008.12.004.
  • Antal, T.; Tarek-Tilistyák, J.; Cziáky, Z.; Sinka, L. Comparison of Drying and Quality Characteristics of Pear (Pyrus Communis L .) Using Mid-Infrared-Freeze Drying and Single Stage of Freeze Drying. Int. J. Food Eng. 2017. (4). DOI:10.1515/ijfe-2016-0294.
  • Khampakool, A.; Soisungwan, S.; Park, S. H. Potential Application of Infrared Assisted Freeze Drying (IRAFD) for Banana Snacks: Drying Kinetics, Energy Consumption, and Texture. LWT. 2019, 99, 355–363. DOI: 10.1016/j.lwt.2018.09.081.
  • Wu, X.; Zhang, M.; Bhandari, B. A Novel Infrared Freeze Drying (IRFD) Technology to Lower the Energy Consumption and Keep the Quality of Cordyceps Militaris. Innov. Food Sci. Emerg. Technol. 2019. DOI: 10.1016/j.ifset.2019.03.003.
  • Chakraborty, R.; Bera, M.; Mukhopadhyay, P.; Bhattacharya, P. Prediction of Optimal Conditions of Infrared Assisted Freeze-Drying of Aloe Vera (Aloe Barbadensis) Using Response Surface Methodology. Sep. Purif. Technol. 2011, 80(2), 375–384. DOI: 10.1016/j.seppur.2011.05.023.
  • Zhou, B.; Zhang, M.; Fang, Z.; Liu, Y. A. Combination of Freeze Drying and Microwave Vacuum Drying of Duck Egg White Protein Powders. Dry. Technol. 2014, 32(15), 1840–1847. DOI: 10.1080/07373937.2014.952380.
  • Ambros, S.; Mayer, R.; Schumann, B.; Kulozik, U. Microwave-Freeze Drying of Lactic Acid Bacteria: Influence of Process Parameters on Drying Behavior and Viability. Innov. Food Sci. Emerg. Technol. 2018, 48, 90–98. DOI: 10.1016/j.ifset.2018.05.020.
  • Fan, L.; Ding, S.; Liu, Y.; Ai, L. Dehydration of Crude Protein from Ginkgo Biloba L. By Microwave Freeze Drying. Int. J. Biol. Macromol. 2012, 50(4), 1008–1010. DOI: 10.1016/j.ijbiomac.2012.02.027.
  • Gaurh, A.; Kothakota, A.; Pandiselvam, R.; Pandey, J. P.; Shahi, N. C. Evaluation and Optimization of Microwave Assisted Fluidized Bed Dehydration Parameters for Button Mushroom (Agaricus Bisporous). Agric. Eng. Today. 2017, 41(2), 48–54.
  • Cao, X.; Zhang, M.; Mujumdar, A. S.; Zhong, Q.; Wang, Z. Effects of Ultrasonic Pretreatments on Quality, Energy Consumption and Sterilization of Barley Grass in Freeze Drying. Ultrason. Sonochem. 2018, 40, 333–340. DOI:10.1016/j.ultsonch.2017.06.014.
  • Isleroglu, H.; Turker, I. Thermal Inactivation Kinetics of Microencapsulated Microbial Transglutaminase by Ultrasonic Spray-Freeze Drying. LWT. 2019, 101, 653–662. DOI:10.1016/j.lwt.2018.11.091
  • Parniakov, O.; Bals, O.; Lebovka, N.; Vorobiev, E. Pulsed Electric Field Assisted Vacuum Freeze-Drying of Apple Tissue. Innov. Food Sci. Emerg. Technol. 2016, 35, 52–57. DOI: 10.1016/j.ifset.2016.04.002.
  • Wu, Y.; Zhang, D. Effect of Pulsed Electric Field on Freeze-Drying of Potato Tissue. Int. J. Food Eng. 2014, 10(4), 857–862. DOI: 10.1515/ijfe-2014-0149.
  • Wu, Y.; Guo, Y.; Zhang, D. Study of the Effect of High-Pulsed Electric Field Treatment on Vacuum Freeze-Drying of Apples. Drying Technology, 2011, 29, 1714–1720. DOI:10.1080/07373937.2011.601825.
  • Peng, J.; Yi, J.; Bi, J.; Chen, Q.; Wu, X.; Zhou, M.; Liu, J. Freezing as Pretreatment in Instant Controlled Pressure Drop (DIC) Texturing of Dried Carrot Chips: Impact of Freezing Temperature. LWT - Food Sci. Technol. 2018, 89(Dic), 365–373. DOI: 10.1016/j.lwt.2017.11.009.
  • Yi, J.; Wang, P.; Bi, J.; Liu, X.; Wu, X.; Zhong, Y. Developing Novel Combination Drying Method for Jackfruit Bulb Chips: Instant Controlled Pressure Drop (Dic)-assisted Freeze Drying. Food Bioprocess Technol. 2016, 9(3), 452–462. DOI: 10.1007/s11947-015-1643-4.
  • Yi, J. Y.; Lyu, J.; Bi, J. F.; Zhou, L. Y.; Zhou, M. Hot Air Drying and Freeze Drying Pre-Treatments Coupled to Explosion Puffing Drying in Terms of Quality Attributes of Mango, Pitaya, and Papaya Fruit Chips. J. Food Process. Preserv. 2017, 41(6), 1–10. DOI: 10.1111/jfpp.13300.
  • Yi, J.; Zhou, L.; Bi, J.; Chen, Q.; Liu, X.; Wu, X. Influence of Pre-Drying Treatments on Physicochemical and Organoleptic Properties of Explosion Puff Dried Jackfruit Chips. J. Food Sci. Technol. 2016, 53(2), 1120–1129. DOI: 10.1007/s13197-015-2127-2.
  • Yi, J.; Hou, C.; Bi, J.; Zhao, Y.; Peng, J.; Liu, C. Novel Combined Freeze-Drying and Instant Controlled Pressure Drop Drying for Restructured Carrot-Potato Chips: Optimized by Response Surface Method. J. Food Qual. 2018, 2018, 1–13. DOI: 10.1155/2018/6157697.
  • Fahloul, D.; Lahbari, M.; Benmoussa, H.; Bezdour, S. Effect of Osmotic Dehydration on the Freeze Drying Kinetics of Apricots. J Food Agricul. Environ. 2009, 7(2), 117–121.
  • Prosapio, V.; Norton, I. Influence of Osmotic Dehydration Pre-Treatment on Oven Drying and Freeze Drying Performance. LWT - Food Sci. Technol. 2017, 80, 401–408. DOI: 10.1016/j.lwt.2017.03.012.
  • Hundre, S. Y.; Karthik, P.; Anandharamakrishnan, C. Effect of Whey Protein Isolate and β-Cyclodextrin Wall Systems on Stability of Microencapsulated Vanillin by Spray-Freeze Drying Method. Food Chem. 2015, 174, 16–24. DOI: 10.1016/j.foodchem.2014.11.016.
  • Ishwarya, S. P.; Anandharamakrishnan, C. Spray-Freeze-Drying Approach for Soluble Coffee Processing and Its Effect on Quality Characteristics. J Food Eng. 2015, 149, 171–180. DOI: 10.1016/j.jfoodeng.2014.10.011.
  • Parthasarathi, S.; Anandharamakrishnan, C. Enhancement of Oral Bioavailability of Vitamin E by Spray-Freeze Drying of Whey Protein Microcapsules. Food Bioprod. Process. 2016, 100, 469–476. DOI: 10.1016/j.fbp.2016.09.004.
  • Her, J. Y.; Kim, M. S.; Lee, K. G. Preparation of Probiotic Powder by the Spray Freeze-Drying Method. J. Food Eng. 2015, 150(October), 70–74. DOI: 10.1016/j.jfoodeng.2014.10.029.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J. A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, September 2015, 77, 773–798. DOI: 10.1016/j.foodres.2015.09.015.
  • Pikal, M.; Rambhatla, S.; Ramot, R. The Impact of the Freezing Stage in Lyophilization: Effects of the Ice Nucleation Temperature on Process Design and Product Quality. Am Pharm Rev. 2002, 5, 48–52.
  • Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of Pectin from Grapefruit Peel: A Comparison of Ultrasound-Assisted and Conventional Heating Extractions. Food Hydrocoll. 2016, 61, 730–739. DOI: 10.1016/j.foodhyd.2016.06.019.
  • Chemat, F.; Zill-E-Huma, K. M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. In Ultrasonics Sonochemistry. 2011, 18(4), 813–835. DOI: 10.1016/j.ultsonch.2010.11.023.
  • Islam, Md Nahidul, Min Zhang, Huihua Liu, and Cheng Xinfeng. Effects of ultrasound on glass transition temperature of freeze-dried pear (Pyrus pyrifolia) using DMA thermal analysis. Food and Bioproducts Processing, 2015, 94: 229–238. DOI: 10.1016/j.fbp.2014.02.004
  • Fonteles, T. V.; Leite, A. K. F.; Silva, A. R. A.; Carneiro, A. P. G.; Miguel, E. D. C.; Cavada, B. S.; Fernandes, F. A. N.; Rodrigues, S. Ultrasound Processing to Enhance Drying of Cashew Apple Bagasse Puree: Influence on Antioxidant Properties and in Vitro Bioaccessibility of Bioactive Compounds. Ultrason. Sonochem. 2016, 31, 237–249. DOI: 10.1016/j.ultsonch.2016.01.003.
  • Medina-Torres, L.; Calderas, F.; Minjares, R.; Femenia, A.; Sánchez-Olivares, G.; Gónzalez-Laredo, F. R.; Santiago-Adame, R.; Ramirez-Nuñez, D. M.; Rodríguez-Ramírez, J.; Manero, O. Structure Preservation of Aloe Vera (Barbadensis Miller) Mucilage in a Spray Drying Process. LWT - Food Sci. Technol. 2016, 66, 93–100. DOI: 10.1016/j.lwt.2015.10.023.
  • Rodríguez, Ó.; Llabrés, P. J.; Simal, S.; Femenia, A.; Rosselló, C. Intensification of Predrying Treatments by Means of Ultrasonic Assistance: Effects on Water Mobility, PPO Activity, Microstructure, and Drying Kinetics of Apple. Food Bioprocess Technol. 2014, 8(3), 503–515. DOI: 10.1007/s11947-014-1424-5.
  • Li, F.; Chen, G.; Zhang, B.; Fu, X. Current Applications and New Opportunities for the Thermal and Non-Thermal Processing Technologies to Generate Berry Product or Extracts with High Nutraceutical Contents. Food Res. Int. 2017, 100(August), 19–30. DOI: 10.1016/j.foodres.2017.08.035.
  • Stefan, T.; Dietrich, K. Pulsed Electric Fields as a Pretreatment Technique in Drying Processes. Stewart Postharvest Rev. 2008, 2(4), 1–6. DOI: 10.2212/spr.2006.4.3.
  • Ammar, J. B.; Lanoisellé, J. L.; Lebovka, N. I.; van Hecke, E.; Vorobiev, E. Effect of a Pulsed Electric Field and Osmotic Treatment on Freezing of Potato Tissue. Food Biophys. 2010, 5(3), 247–254. DOI: 10.1007/s11483-010-9167-y.
  • Zhao, Y.; Alba, M., De; Sun, D.; Tiwari, B. Principles and Recent Applications of Novel Non- Thermal Processing Technologies for the Fish Industry — A Review. Crit. Rev. Food Sci. Nutr. 2018, 0(0), 1–15. DOI: 10.1080/10408398.2018.1495613.
  • Jalté, M.; Lanoisellé, J. L.; Lebovka, N. I.; Vorobiev, E. Freezing of Potato Tissue Pre-Treated by Pulsed Electric Fields. LWT - Food Sci. Technol. 2009, 42(2), 576–580. DOI: 10.1016/j.lwt.2008.09.007.
  • Lammerskitten, A.; Wiktor, A.; Siemer, C.; Toepfl, S.; Mykhailyk, V.; Gondek, E.; Rybak, K.; Witrowa-Rajchert, D.; Parniakov, O. The Effects of Pulsed Electric Fields on the Quality Parameters of Freeze-Dried Apples. J. Food Eng. 2019, 252, 36–43. DOI: 10.1016/j.jfoodeng.2019.02.006.
  • Lammerskitten, A.; Mykhailyk, V.; Wiktor, A.; Toepfl, S.; Nowacka, M.; Bialik, M.; Czyżewski, J.; Witrowa-Rajchert, D.; Parniakov, O. Impact of Pulsed Electric Fields on Physical Properties of Freeze-Dried Apple Tissue. Innov. Food Sci. Emerg. Technol. 2019, 57, 102211. DOI: 10.1016/j.ifset.2019.102211.
  • Fauster, T.; Giancaterino, M.; Pittia, P.; Jaeger, H. Effect of Pulsed Electric Field Pretreatment on Shrinkage, Rehydration Capacity and Texture of Freeze-Dried Plant Materials. LWT. 2020, 121, 108937. DOI: 10.1016/j.lwt.2019.108937.
  • Wiktor, A.; Schulz, M.; Voigt, E.; Witrowa-Rajchert, D.; Knorr, D. The Effect of Pulsed Electric Field Treatment on Immersion Freezing, Thawing and Selected Properties of Apple Tissue. J. Food Eng. 2015, 146, 8–16. DOI: 10.1016/j.jfoodeng.2014.08.013.
  • Téllez-Pérez, C.; Sabah, M. M.; Montejano-Gaitán, J. G.; Sobolik, V.; Martínez, C. A.; Allaf, K. Impact of Instant Controlled Pressure Drop Treatment on Dehydration and Rehydration Kinetics of Green Moroccan Pepper (Capsicum Annuum). Procedia Eng. 2012, 42, 978–1003. DOI: 10.1016/j.proeng.2012.07.491.
  • Peng, J.; Bi, J.; Yi, J.; Wu, X.; Zhou, M.; Zhao, Y.; Liu, J. Characteristics of Cell Wall Pectic Polysaccharides Affect Textural Properties of Instant Controlled Pressure Drop Dried Carrot Chips Derived from Different Tissue Zone. Food Chem. 2019, 293(2), 358–367. DOI: 10.1016/j.foodchem.2019.05.008.
  • Mounir, S.; Allaf, T.; Mujumdar, A. S.; Allaf, K. Swell Drying: Coupling Instant Controlled Pressure Drop DIC to Standard Convection Drying Processes to Intensify Transfer Phenomena and Improve Quality-An Overview. Dry. Technol. 2012, 30(14), 1508–1531. DOI: 10.1080/07373937.2012.693145.
  • Yadav, A. K.; Singh, S. V. Osmotic Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2014, 51(9), 1654–1673. DOI: 10.1007/s13197-012-0659-2.
  • da Costa Ribeiro, A. S.; Aguiar-Oliveira, E.; Maldonado, R. R. Optimization of Osmotic Dehydration of Pear Followed by Conventional Drying and Their Sensory Quality. LWT - Food Sci. Technol. 2016, 72, 407–415. DOI: 10.1016/j.lwt.2016.04.062.
  • Zhao, D.; Zhao, C.; Tao, H.; An, K.; Ding, S.; Wang, Z. The Effect of Osmosis Pretreatment on Hot-Air Drying and Microwave Drying Characteristics of Chili (Capsicum annuum L.) Flesh. Int. J. Food Sci. Technol. 2013, 48(8), 1589–1595. DOI: 10.1111/ijfs.12128.
  • Torreggiani, D.;. Osmotic Dehydration in Fruit and Vegetable Processing. Food Res. Int. 1993, 26(1), 59–68. DOI: 10.1016/0963-9969(93)90106-S.
  • Nowicka, P.; Wojdyło, A.; Lech, K.; Figiel, A. Influence of Osmodehydration Pretreatment and Combined Drying Method on the Bioactive Potential of Sour Cherry Fruits. Food Bioprocess Technol. 2015, 8(4), 824–836. DOI: 10.1007/s11947-014-1447-y.
  • Kochs, M.; Körber, C.; Heschel, I.; Nunner, B. The Influence of the Freezing Process on Vapour Transport during Sublimation in Vacuum-Freeze-Drying of Macroscopic Samples. Int. J. Heat Mass Transf. 1993, 36(7), 1727–1738. DOI: 10.1016/S0017-9310(05)80159-0.
  • Searles, J. A.; Carpenter, J. F.; Randolph, T. W. The Ice Nucleation Temperature Determines the Primary Drying Rate of Lyophilization for Samples Frozen on a Temperature-Controlled Shelf. J. Pharm. Sci. 2001, 90(7), 860–871. DOI: 10.1002/jps.1039.
  • Petzold, G.; Aguilera, J. M. Ice Morphology: Fundamentals and Technological Applications in Foods. Food Biophys. 2009, 4(4), 378–396. DOI: 10.1007/s11483-009-9136-5.
  • Kramer, M.; Sennhenn, B.; Lee, G. Freeze-Drying Using Vacuum-Induced Surface Freezing. J. Pharm. Sci. 2002, 91(2), 433–443. DOI: 10.1002/jps.10035.
  • Petersen, A.; Rau, G.; Glasmacher, B. Reduction of Primary Freeze-Drying Time by Electric Field Induced Ice Nucleus Formation. Heat Mass Transf. Und Stoffuebertragung. 2006, 42(10), 929–938. DOI: 10.1007/s00231-006-0153-3.
  • Rambhatla, S.; Obert, J. P.; Luthra, S.; Bhugra, C.; Pikal, M. J. Cake Shrinkage during Freeze Drying: A Combined Experimental and Theoretical Study. Pharm. Dev. Technol. 2005, 10(1), 33–40. DOI: 10.1081/PDT-200035871.
  • Pisano, R.; Arsiccio, A.; Capozzi, L. C.; Trout, B. L. Achieving Continuous Manufacturing in Lyophilization : Technologies and Approaches. Eur. J. Pharm. Biopharm. 2019, 142(June), 265–279. DOI: 10.1016/j.ejpb.2019.06.027.
  • Chakravarty, P.; Lee, R.; Demarco, F.; Renzi, E. Ice Fog as a Means to Induce Uniform Ice Nucleation during Lyophilization. BioPharm. Int. 2012, 25(1), 33–38.
  • Brower, J.; Lee, R.; Wexler, E.; Finley, S.; Caldwell, M. Lyophilized Biologics and Vaccines. Lyophilized Biol. Vaccines. 2015, 73–90. DOI: 10.1007/978-1-4939-2383-0.
  • Oddone, I.; Pisano, R.; Bullich, R.; Stewart, P. Vacuum-Induced Nucleation as a Method for Freeze-Drying Cycle Optimization. Ind. Eng. Chem. Res. 2014, 53, 47, 18236–18244. DOI:10.1021/ie502420f
  • Pisano R. Alternative <loc>Methods of Controlling Nucleation in Freeze Drying. In: Lyophilization of Pharmaceuticals and Biologicals. Methods in Pharmacology and Toxicology; Ward K., Matejtschuk P., Eds.; Humana Press:</L> New York, NY, 2019; pp. 79–111. DOI: 10.1007/978-1-4939-8928-7_4
  • Karel, M.; Flink, J. M. Influence of Frozen State Reactions on Freeze-Dried Foods. J. Agric. Food Chem. 1973, 21(1), 16–21. DOI: 10.1021/jf60185a005.
  • Pardo, J. M.; Suess, F.; Niranjan, K. An Investigation into the Relationship between Freezing Rate and Mean Ice Crystal Size for Coffee Extracts. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C. 2002, 80(3), 176–182. DOI: 10.1205/096030802760309197.
  • Jafar, F.; Farid, M. Analysis of Heat and Mass Transfer in Freeze Drying. Dry. Technol. 2003, 21(2), 249–263. DOI: 10.1081/DRT-120017746.
  • Ceballos, A. M.; Giraldo, G. I.; Orrego, C. E. Effect of Freezing Rate on Quality Parameters of Freeze Dried Soursop Fruit Pulp. J. Food Eng. 2012, 111(2), 360–365. DOI: 10.1016/j.jfoodeng.2012.02.010.
  • Woo, M. W.; Mujumdar, A. S. Effects of Electric and Magnetic Field on Freezing and Possible Relevance in Freeze Drying. Dry. Technol. 2010, 28(4), 433–443. DOI: 10.1080/07373930903202077.
  • Cheng, L.; Sun, D. W.; Zhu, Z.; Zhang, Z. Emerging Techniques for Assisting and Accelerating Food Freezing Processes: A Review of Recent Research Progresses. Crit. Rev. Food Sci. Nutr. 2017, 57(4), 769–781. DOI: 10.1080/10408398.2015.1004569.
  • Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of Ultrasound on Microbial Growth and Enzyme Activity. Ultrason. Sonochem. 2017, 37, 144–149. DOI: 10.1016/j.ultsonch.2016.12.018.
  • Chen, F.; Zhang, Q.; Liu, J.; Gu, H.; Yang, L. An Efficient Approach for the Extraction of Orientin and Vitexin from Trollius chinensis Flowers Using Ultrasonic Circulating Technique. Ultrason. Sonochem. 2017, 37, 267–278. DOI: 10.1016/j.ultsonch.2017.01.012.
  • Zheng, L.; Sun, D. W. Innovative Applications of Power Ultrasound during Food Freezing Processes - A Review. Trends Food Sci. Technol. 2006, 17(1), 16–23. DOI: 10.1016/j.tifs.2005.08.010.
  • Zhang, P.; Zhu, Z.; Sun, D. W. Using Power Ultrasound to Accelerate Food Freezing Processes: Effects on Freezing Efficiency and Food Microstructure. Crit. Rev. Food Sci. Nutr. 2018, 58(16), 2842–2853. DOI: 10.1080/10408398.2018.1482528.
  • Dai, C.; Zhou, X.; Zhang, S.; Zhou, N. Influence of Ultrasound-Assisted Nucleation on Freeze-Drying of Carrots. Dry. Technol. 2016, 34(10), 1196–1203. DOI: 10.1080/07373937.2015.1100203.
  • Isleroglu, H.; Turker, I. Thermal Inactivation Kinetics of Microencapsulated Microbial Transglutaminase by Ultrasonic Spray-Freeze Drying. LWT. 2019, 101, 653–662. DOI: 10.1016/j.lwt.2018.11.091.
  • Vishali, D. A.; Monisha, J.; Sivakamasundari, S. K.; Moses, J. A.; Anandharamakrishnan, C. Spray Freeze Drying: Emerging Applications in Drug Delivery. J. Controlled Release. Elsevier B.V. April 2019, 93–101. DOI: 10.1016/j.jconrel.2019.02.044.
  • Rajam, R.; Anandharamakrishnan, C. Spray Freeze Drying Method for Microencapsulation of Lactobacillus Plantarum. J. Food Eng. 2015, 166, 95–103. DOI: 10.1016/j.jfoodeng.2015.05.029.
  • Anandharamakrishnan, C.;. Spray-Freeze-Drying of Coffee. In Caffeinated and Cocoa Based Beverages, Elsevier, 2019; pp 337–366. DOI:10.1016/B978-0-12-815864-7.00010-6.
  • Ye, T.; Yu, J.; Luo, Q.; Wang, S.; Chan, H. K. Inhalable Clarithromycin Liposomal Dry Powders Using Ultrasonic Spray Freeze Drying. Powder Technol. 2017, 305, 63–70. DOI: 10.1016/j.powtec.2016.09.053.
  • Ratti, C.; Hot Air and Freeze-Drying of High-Value Foods : A Review. J. Food Eng. 2001, 49(4), 311–319. DOI:10.1016/S0260-8774(00)00228-4.
  • Bae, S. H.; Nam, J. H.; Song, C. S.; Kim, C. Numerical Heat Transfer, Part A : Applications. An International Journal of Computation and Methodology A Numerical Model for Freeze Drying Processes with Infrared Radiation Heating. 2010, September 2013, 37–41. DOI: 10.1080/10407782.2010.508437.
  • Fan, K.; Zhang, M.; Mujumdar, A. S. Recent Developments in High Efficient Freeze-Drying of Fruits and Vegetables Assisted by Microwave: A Review. Crit. Rev. Food Sci. Nutr. 2018, 1–10. DOI: 10.1080/10408398.2017.1420624.
  • Wang, H. C.; Zhang, M.; Adhikari, B. Drying of Shiitake Mushroom by Combining Freeze-Drying and Mid-Infrared Radiation. Food Bioprod. Process. 2015, 94, 507–517. DOI: 10.1016/j.fbp.2014.07.008.
  • Schlessinger, M. Infrared Technology Fundamentals (2nd ed.). CRC Press. 1995. DOI:10.1201/9780203750834
  • Antal, T.;. Drying Characteristics and Quality of Pear under Hybrid Drying (Mid-infrared-freeze Drying). Hung. Agricul. Eng. 2017, 7410, 33–44. DOI:10.17676/HAE.2017.31.33.
  • Onwude, D. I.; Hashim, N.; Chen, G. Recent Advances of Novel Thermal Combined Hot Air Drying of Agricultural Crops. Trends Food Sci. Technol. 2016, 57, 132–145. DOI: 10.1016/j.tifs.2016.09.012.
  • Ma, Y. H.; Peltre, P. R. Freeze Dehydration by Microwave Energy: Part II. Experimental Study. AIChE J. 1975, 21(2), 344–350. DOI: 10.1002/aic.690210216.
  • Duan, X.; Zhang, M.; Mujumdar, A. S.; Wang, S. Microwave Freeze Drying of Sea Cucumber (Stichopus Japonicus). J. Food Eng. 2010, 96(4), 491–497. DOI: 10.1016/j.jfoodeng.2009.08.031.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Osmotic Dehydration on Microwave Freeze- Drying Characteristics and Quality of Potato Chips. Dry. Technol. 2010, (1), 37–41. DOI: 10.1080/07373937.2010.482700
  • Huang, L. L.; Zhang, M.; Mujumdar, A. S.; Lim, R. X. Comparison of Four Drying Methods for Re-Structured Mixed Potato with Apple Chips. J. Food Eng. 2011, 103(3), 279–284. DOI: 10.1016/j.jfoodeng.2010.10.025.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R. X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. J. Sci. Food Agric. 2014, 94(9), 1827–1834. DOI: 10.1002/jsfa.6501.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J.; Roknul Azam, S. M. Study of Drying Uniformity in Pulsed Spouted Microwave–Vacuum Drying of Stem Lettuce Slices with Regard to Product Quality. Dry. Technol. 2013, 31(1), 91–101. DOI: 10.1080/07373937.2012.721431.
  • Pisano, R.;. Applying Quality-by-Design to Develop a Coffee Freeze-Drying Process. J Food Eng. 2014, 123, 179–187. DOI:10.1016/j.jfoodeng.2013.09.018.
  • Carrión, C.; Mulet, A.; García-pérez, J. V.; Cárcel, J. A.; Carrión, C.; Mulet, A.; García-pérez, J. V.; Cárcel, J. A.; Cárcel, J. A. Ultrasonically Assisted Atmospheric Freeze-Drying of Button Mushroom. Drying Kinetics and Product Quality Kinetics and Product Quality. Dry. Technol. 2018, 36(15), 1814–1823. DOI: 10.1080/07373937.2017.1417870.
  • Schössler, K.; Jäger, H.; Knorr, D. Novel Contact Ultrasound System for the Accelerated Freeze-Drying of Vegetables. Innov. Food Sci. Emerg. Technol. 2012, 16, 113–120. DOI: 10.1016/j.ifset.2012.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.