1,498
Views
21
CrossRef citations to date
0
Altmetric
Review

Lipid and Lipid-containing Composite Edible Coatings and Films

, & ORCID Icon

References

  • Poverenov, E.; Arnon-Rips, H.; Zaitsev, Y.; Bar, V.; Danay, O.; Horev, B.; Bilbao-Sainz, C.; McHugh, T.; Rodov, V. Potential of Chitosan from Mushroom Waste to Enhance Quality and Storability of Fresh-cut Melons. Food Chem. 2018, 268, 233–241. DOI: 10.1016/j.foodchem.2018.06.045.
  • Saricaoglu, F. T.; Tural, S.; Gul, O.; Turhan, S. High Pressure Homogenization of Mechanically Deboned Chicken Meat Protein Suspensions to Improve Mechanical and Barrier Properties of Edible Films. Food Hydrocoll. 2018, 84, 135–145. DOI: 10.1016/j.foodhyd.2018.05.058.
  • Falcó, I.; Flores-Meraz, P. L.; Randazzo, W.; Sánchez, G.; López-Rubio, A.; Fabra, M. J. Antiviral Activity of Alginate-oleic Acid Based Coatings Incorporating Green Tea Extract on Strawberries and Raspberries. Food Hydrocoll. 2019, 87, 611–618. DOI: 10.1016/j.foodhyd.2018.08.055.
  • Yousuf, B.; Qadri, O. S.; Srivastava, A. K. Recent Developments in Shelf-life Extension of Fresh-cut Fruits and Vegetables by Application of Different Edible Coatings: A Review. LWT-Food Sci. Technol. 2018, 89, 198–209. DOI: 10.1016/j.lwt.2017.10.051.
  • Bourtoom, T.; Chinnan, M. S. Improvement of Water Barrier Property of Rice Starch-chitosan Composite Film Incorporated with Lipids. Food Sci. Technol. Int. 2009, 15, 149–158. DOI: 10.1177/1082013208105993.
  • Elsabee, M. Z.; Abdou, E. S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C. 2013,33,1819-1841, 2013(33).
  • Espitia, P. J. P.; Du, W. X.; Avena-Bustillos, R. J.; Soares, N. F. F.; McHugh, T. H. Edible Films from Pectin: Physical-mechanical and Antimicrobial properties-A Review. Food Hydrocoll. 2014, 35, 287–296. DOI: 10.1016/j.foodhyd.2013.06.005.
  • Cazon, P.; Velazquez, G.; Ramirez, J. A.; Vazquez, M. Polysaccharide-based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. DOI: 10.1016/j.foodhyd.2016.09.009.
  • Salehi, F.; Characterization of New Biodegradable Edible Films and Coatings Based on Seeds Gum: A Review. J. Packag. Technol. Res. 2019, 3, 193–201. DOI: 10.1007/s41783-019-00061-0.
  • Murrieta‐Martínez, C. L.; Soto‐Valdez, H.; Pacheco‐Aguilar, R.; Torres‐Arreola, W.; Rodríguez‐Felix, F.; Márquez Ríos, E. Edible Protein Films: Sources and Behavior. Packag. Technol. Sci. 2018, 31, 113–122. DOI: 10.1002/pts.2360.
  • Calva-Estrada, S. J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Protein-based Films: Advances in the Development of Biomaterials Applicable to Food Packaging. Food Eng. Rev. 2019, 11, 78–92. DOI: 10.1007/s12393-019-09189-w.
  • Khwaldia, K.; Perez, C.; Banon, S.; Desobry, S.; Hardy, J. Milk Proteins for Edible Films and Coatings. Crit. Rev. Food Sci. Nutr. 2004, 44, 239–251. DOI: 10.1080/10408690490464906.
  • Gómez-Guillén, M. C.; Pérez-Mateos, M.; Gómez-Estaca, J.; López-Caballero, E.; Giménez, B.; Montero, P. Fish Gelatin: A Renewable Material for Developing Active Biodegradable Films. Trends Food Sci. Technol. 2009, 20, 3–16. DOI: 10.1016/j.tifs.2008.10.002.
  • Ramos, Ó. L.; Fernandes, J. C.; Silva, S. I.; Pintado, M. E.; Malcata, F. X. Edible Films and Coatings from Whey Proteins: A Review on Formulation, and on Mechanical and Bioactive Properties. Crit. Rev. Food Sci. Nutr. 2012, 52, 533–552. DOI: 10.1080/10408398.2010.500528.
  • Morillon, V.; Debeaufort, F.; Blond, G.; Capelle, M.; Voilley, A. Factors Affecting the Moisture Permeability of Lipid-based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2002, 42, 67–89. DOI: 10.1080/10408690290825466.
  • Galus, S.; Kadzińska, J. Food Applications of Emulsion-based Edible Films and Coatings. Trends Food Sci. Technol. 2015, 45, 273–283. DOI: 10.1016/j.tifs.2015.07.011.
  • Rhim, J. W.; Shellhammer, T. H. Lipid-based Edible Films and Coatings. In Innovations in Food Packaging; Han, J.H., Ed.; Elsevier, 2005; pp 362–383. DOI:10.1016/B978-012311632-1/50053-X.
  • Debeaufort, F.; Voilley, A. Lipid-based Edible Films and Coatings. In: Edible Films and Coatings for Food Applications Springer; New York, NY, 2009. pp 135–168. DOI:10.1007/978-0-387-92824-1_5.
  • Callegarin, F.; Gallo, J. A. Q.; Debeaufort, F.; Voilley, A.; Lipids and Biopackaging. J. Am. Oil Chem.’ So. 1997, 74, 1183–1192. DOI: 10.1007/s11746-997-0044-x.
  • McHugh, T. H.;. Protein-lipid Interactions in Edible Films and Coatings. Food/Nahrung. 2000, 44, 148–151. DOI: 10.1002/1521-3803(20000501)44:3<148::AID-FOOD148>3.0.CO;2-P.
  • Perez-Gago, M. B.; Rhim, J. W. Edible Coating and Film Materials: Lipid Bilayers and Lipid Emulsions. In Innovations in Food Packaging; Academic Press, 2014; pp 325–350. DOI:10.1016/B978-0-12-394601-0.00013-8.
  • Umaraw, P.; Verma, A. K. Comprehensive Review on Application of Edible Film on Meat and Meat Products: An Eco-friendly Approach. Crit. Rev. Food Sci. Nutr. 2017, 57, 1270–1279. DOI: 10.1080/10408398.2014.986563.
  • Jooyandeh, H.;. Whey Protein Films and Coatings: A Review. Pak. J. Nutr. 2011, 10, 296–301. DOI: 10.3923/pjn.2011.296.301.
  • Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V. D.; Moldão-Martins, M. Impact of Chitosan-beeswax Edible Coatings on the Quality of Fresh Strawberries (Fragaria Ananassa Cv Camarosa) under Commercial Storage Conditions. LWT-Food Sci. Technol. 2013, 52, 80–92. DOI: 10.1016/j.lwt.2013.02.004.
  • Olivas, G. I.; Barbosa-Cánovas, G. V. Edible Coatings for Fresh-cut Fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670. DOI: 10.1080/10408690490911837.
  • Phan, T. D.; Debeaufort, F.; Luu, D.; Voilley, A. Functional Properties of Edible Agar-based and Starch-based Films for Food Quality Preservation. J. Agric. Food Chem. 2005, 53, 973–981. DOI: 10.1021/jf040309s.
  • Salgado, P. R.; López-Caballero, M. E.; Gómez-Guillén, M. C.; Mauri, A. N.; Montero, M. P. Sunflower Protein Films Incorporated with Clove Essential Oil Have Potential Application for the Preservation of Fish Patties. Food Hydrocoll. 2013, 33, 74–84. DOI: 10.1016/j.foodhyd.2013.02.008.
  • Muscat, D.; Tobin, M. J.; Guo, Q.; Adhikari, B. Understanding the Distribution of Natural Wax in Starch–wax Films Using Synchrotron-based FTIR (S-FTIR). Carbohydr. Polym. 2014, 102, 125–135. DOI: 10.1016/j.carbpol.2013.11.004.
  • Zahedi, Y.; Ghanbarzadeh, B.; Sedaghat, N. Physical Properties of Edible Emulsified Films Based on Pistachio Globulin Protein and Fatty Acids. J. Food Eng. 2010, 100, 102–108. DOI: 10.1016/j.jfoodeng.2010.03.033.
  • Schmidt, V. C. R.; Porto, L. M.; Laurindo, J. B.; Menegalli, F. C. Water Vapor Barrier and Mechanical Properties of Starch Films Containing Stearic Acid. Ind. Crops Prod. 2013, 41, 227–234. DOI: 10.1016/j.indcrop.2012.04.038.
  • Auras, R.; Arroyo, B.; Selke, S. Production and Properties of Spin-coated Cassava Starch- Glycerol-beeswax Films. Starch/Stärke. 2009, 61, 463–471. DOI: 10.1002/star.200700701.
  • Liu, P.; Kang, X.; Cui, B.; Wang, R.; Wu, Z. Effects of Glycerides with Different Molecular Structures on the Properties of Maize Starch and Its Film Forming Capacity. Ind. Crops Prod. 2019, 129, 512–517. DOI: 10.1016/j.indcrop.2018.12.039.
  • Fabra, M. J.; Talens, P.; Chiralt, A. Tensile Properties and Water Vapor Permeability of Sodium Caseinate Films Containing Oleic Acid-beeswax Mixtures. J. Food Eng. 2008, 85, 393–400. DOI: 10.1016/j.jfoodeng.2007.07.022.
  • Vargas, M.; Albors, A.; Chiralt, A.; Gonzalez-Martinez, C. Characterization of Chitosan-oleic Acid Composite Films. Food Hydrocoll. 2009, 23, 536–547. DOI: 10.1016/j.foodhyd.2008.02.009.
  • Ma, W.; Tang, C. H.; Yin, S. W.; Yang, X. Q.; Wang, Q.; Liu, F.; Wei, Z. H. Characterization of Gelatin-based Edible Films Incorporated with Olive Oil. Food Res. Int. 2012, 49, 572–579. DOI: 10.1016/j.foodres.2012.07.037.
  • Shih, F. F.;. Edible Films from Rice Protein Concentrate and Pullulan. Cereal Chem. 1996, 73, 406–409.
  • Garcia, M. A.; Martino, M. N.; Zaritzky, N. E. Lipid Addition to Improve Barrier Properties of Edible Starch‐based Films and Coatings. J. Food Sci. 2000, 65, 941–944. DOI: 10.1111/j.1365-2621.2000.tb09397.x.
  • Slavutsky, A. M.; Bertuzzi, M. A. Formulation and Characterization of Nanolaminated Starch Based Film. LWT-Food Sci. Technol. 2015, 61, 407–413. DOI: 10.1016/j.lwt.2014.12.034.
  • Basiak, E.; Debeaufort, F.; Lenart, A. Effect of Oil Lamination between Plasticized Starch Layers on Film Properties. Food Chem. 2016, 195, 56–63. DOI: 10.1016/j.foodchem.2015.04.098.
  • Pereda, M.; Dufresne, A.; Aranguren, M. I.; Marcovich, N. E. Polyelectrolyte Films Based on Chitosan/olive Oil and Reinforced with Cellulose Nanocrystals. Carbohydr. Polym. 2014, 101, 1018–1026. DOI: 10.1016/j.carbpol.2013.10.046.
  • Kokoszka, S.; Debeaufort, F.; Lenart, A.; Voilley, A. Liquid and Vapour Water Transfer through Whey Protein/lipid Emulsion Films. J. Sci. Food Agric. 2010, 90, 1673–1680.
  • Wang, Y.; Padua, G. W. Water Barrier Properties of Zein-oleicacid Films. Cereal Chem. 2006, 83, 331–334. DOI: 10.1094/CC-83-0331.
  • Fernandez, L.; Apodaca, E. D.; Cebrian, M.; Villaran, M. C.; Mate, J. I. Effect of the Unsaturation Degree and Concentration of Fatty Acids on the Properties of WPI-based Edible Films. Eur. Food Res. Technol. 2007, 224, 415–420. DOI: 10.1007/s00217-006-0305-1.
  • Scramin, J. A.; de Britto, D.; Forato, L. A.; Bernardes‐Filho, R.; Colnago, L. A.; Assis, O. B. Characterisation of Zein-oleic Acid Films and Applications in Fruit Coating. Int. J. Food Sci. Technol. 2011, 46, 2145–2152. DOI: 10.1111/j.1365-2621.2011.02729.x.
  • Lai, H. M.; Padua, G. W. Water Vapor Barrier Properties of Zein Films Plasticized with Oleic Acid. Cereal Chem. 1998, 75, 194–199. DOI: 10.1094/CCHEM.1998.75.2.194.
  • Hassan, B.; Chatha, S. A. S.; Hussain, A. I.; Zia, K. M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. DOI: 10.1016/j.ijbiomac.2017.11.097.
  • Park, H. J.;. Development of Advanced Edible Coatings for Fruits. Trends Food Sci. Technol. 1999, 10, 254–260. DOI: 10.1016/S0924-2244(00)00003-0.
  • Haq, M. A.; Hasnain, A.; Jafri, F. A.; Akbar, M. F.; Khan, A. Characterization of Edible Gum Cordia Film: Effects of Beeswax. LWT-Food Sci. Technol. 2016, 68, 674–680. DOI: 10.1016/j.lwt.2016.01.011.
  • Guimarães, J. E.; de la Fuente, B.; Pérez-Gago, M. B.; Andradas, C.; Carbó, R.; Mattiuz, B. H.; Palou, L. Antifungal Activity of GRAS Salts against Lasiodiplodia Theobromae in Vitro and as Ingredients of Hydroxypropyl Methylcellulose-lipid Composite Edible Coatings to Control Diplodia Stem-end Rot and Maintain Postharvest Quality of Citrus Fruit. Int. J. Food Microbiol. 2019, 301, 9–18.
  • Germano, T. A.; Aguiar, R. P.; Bastos, M. S. R.; Moreira, R. A.; Ayala-Zavala, J. F.; de Miranda, M. R. A. Galactomannan-carnauba Wax Coating Improves the Antioxidant Status and Reduces Chilling Injury of ‘Paluma’guava. Postharvest Biol. Technol. 2019, 149, 9–17. DOI: 10.1016/j.postharvbio.2018.11.013.
  • Oregel-Zamudio, E.; Angoa-Perez, M. V.; Oyoque-Salcedo, G.; Aguilar-Gonzalez, C. N.; Mena-Violante, H. G. Effect of Candelilla Wax Edible Coatings Combined with Biocontrol Bacteria on Strawberry Quality during the Shelf-life. Sci. Hortic. 2017, 214, 273–279. DOI: 10.1016/j.scienta.2016.11.038.
  • Anker, M.; Berntsen, J.; Hermansson, A. M.; Stading, M. Improved Water Vapor Barrier of Whey Protein Films by Addition of an Acetylated Monoglyceride. Innov. Food Sci. Emerg. Technol. 2002, 3, 81–92. DOI: 10.1016/S1466-8564(01)00051-0.
  • Acosta, S.; Jiménez, A.; Cháfer, M.; González-Martínez, C.; Chiralt, A. Physical Properties and Stability of Starch-gelatin Based Films as Affected by the Addition of Esters of Fatty Acids. Food Hydrocoll. 2015, 49, 135–143. DOI: 10.1016/j.foodhyd.2015.03.015.
  • Falguera, V.; Quintero, J. P.; Jiménez, A.; Muñoz, J. A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. DOI: 10.1016/j.tifs.2011.02.004.
  • Galus, S.; Kadzińska, J. Whey Protein Edible Films Modified with Almond and Walnut Oils. Food Hydrocoll. 2016, 52, 78–86. DOI: 10.1016/j.foodhyd.2015.06.013.
  • Cerqueira, M. A.; Souza, B. W. S.; Teixeira, J. A.; Vicente, A. A. Effect of Glycerol and Corn Oil on Physicochemical Properties of Polysaccharide Films - a Comparative Study. Food Hydrocoll. 2012, 27, 175–184. DOI: 10.1016/j.foodhyd.2011.07.007.
  • Valenzuela, C.; Abugoch, L.; Tapia, C. Quinoa Protein-chitosan-sunflower Oil Edible Film: Mechanical, Barrier and Structural Properties. LWT-Food Sci. Technol. 2013, 50, 531–537. DOI: 10.1016/j.lwt.2012.08.010.
  • Pérez-Mateos, M.; Montero, P.; Gómez-Guillén, M. C. Formulation and Stability of Biodegradable Films Made from Cod Gelatin and Sunflower Oil Blends. Food Hydrocoll. 2009, 23, 53–61. DOI: 10.1016/j.foodhyd.2007.11.011.
  • Pereda, M.; Aranguren, M. I.; Marcovich, N. E. Caseinate Films Modified with Tung Oil. Food Hydrocoll. 2010, 24, 800–808. DOI: 10.1016/j.foodhyd.2010.04.007.
  • Fabra, M. J.; Talens, P.; Gavara, R.; Chiralt, A. Barrier Properties of Sodium Caseinate Films as Affected by Lipid Composition and Moisture Content. J. Food Eng. 2012, 109, 372–379. DOI: 10.1016/j.jfoodeng.2011.11.019.
  • Janjarasskul, T.; Rauch, D.; McCarthy, K.; Krochta, J. Barrier and Tensile Properties of Whey Protein-candelilla Wax Film/sheet. LWT-Food Sci. Technol. 2014, 56, 377–382. DOI: 10.1016/j.lwt.2013.11.034.
  • Talens, P.; Krochta, J. M. Plasticizing Effects of Beeswax and Carnauba Wax on Tensile and Water Vapor Permeability Properties of Whey Protein Films. J. Food Sci. 2005, 70, 239–243. DOI: 10.1111/j.1365-2621.2005.tb07141.x.
  • Yang, L.; Paulson, A. T. Effects of Lipids on Mechanical and Moisture Barrier Properties of Edible Gellan Film. Food Res. Int. 2000, 33, 571–578. DOI: 10.1016/S0963-9969(00)00093-4.
  • Navarro-Tarazaga, M. L.; Massa, A.; Pérez-Gago, M. B. Effect of Beeswax Content on Hydroxypropyl Methylcellulose-based Edible Film Properties and Postharvest Quality of Coated Plums (Cv. Angeleno). LWT-Food Sci. Technol. 2011, 44, 2328–2334. DOI: 10.1016/j.lwt.2011.03.011.
  • Oliveira, V. R. L.; Santos, F. K. G.; Leite, R. H. L.; Aroucha, E. M. M.; Silva, K. N. O. Use of Biopolymeric Coating Hydrophobized with Beeswax in Post-harvest Conservation of Guavas. Food Chem. 2018, 259, 55–64. DOI: 10.1016/j.foodchem.2018.03.101.
  • Chiumarelli, M.; Hubinger, M. D. Evaluation of Edible Films and Coatings Formulated with Cassava Starch, Glycerol, Carnauba Wax and Stearic Acid. Food Hydrocoll. 2014, 38, 20–27. DOI: 10.1016/j.foodhyd.2013.11.013.
  • Jiménez, A.; Fabra, M. J.; Talens, P.; Chiralt, A. Effect of Re-crystallization on Tensile, Optical and Water Vapour Barrier Properties of Corn Starch Films Containing Fatty Acids. Food Hydrocoll. 2012, 26, 302–310. DOI: 10.1016/j.foodhyd.2011.06.009.
  • Jiménez, A.; Fabra, M. J.; Talens, P.; Chiralt, A. Phase Transitions in Starch Based Films Containing Fatty Acids. Effect on Water Sorption and Mechanical Behaviour. Food Hydrocoll. 2013, 30, 408–418. DOI: 10.1016/j.foodhyd.2012.07.007.
  • Perdones, Á.; Vargas, M.; Atarés, L.; Chiralt, A. Physical, Antioxidant and Antimicrobial Properties of Chitosan-cinnamon Leaf Oil Films as Affected by Oleic Acid. Food Hydrocoll. 2014, 36, 256–264. DOI: 10.1016/j.foodhyd.2013.10.003.
  • Navarro-Tarazaga, M. L.; Del Rio, M. A.; Krochta, J. M.; Perez-Gago, M. B. Fatty Acid Effect on Hydroxypropyl Methylcellulose-beeswax Edible Film Properties and Postharvest Quality of Coated ‘Ortanique’ Mandarins. J. Agric. Food Chem. 2008, 56, 10689–10696. DOI: 10.1021/jf801967q.
  • Vargas, M.; Perdones, Á.; Chiralt, A.; Cháfer, M.; González-Martínez, C. Effect of Homogenization Conditions on Physicochemical Properties of Chitosan-based Film-forming Dispersions and Films. Food Hydrocoll. 2011, 25, 1158–1164. DOI: 10.1016/j.foodhyd.2010.11.002.
  • Thakur, R.; Saberi, B.; Pristijono, P.; Golding, J.; Stathopoulos, C.; Scarlett, C.; Bowyer, M.; Vuong, Q. Characterization of Rice starch-ι-carrageenan Biodegradable Edible Film. Effect of Stearic Acid on the Film Properties. Int. J. Biol. Macromol. 2016, 93, 952–960. DOI: 10.1016/j.ijbiomac.2016.09.053.
  • Petersson, M.; Stading, M. Water Vapour Permeability and Mechanical Properties of Mixed Starch-monoglyceride Films and Effect of Film Forming Conditions. Food Hydrocoll. 2005, 19, 123–132. DOI: 10.1016/j.foodhyd.2004.04.021.
  • Rocca-Smith, J. R.; Marcuzzo, E.; Karbowiak, T.; Centa, J.; Giacometti, M.; Scapin, F.; Venira, E.; Sensidoni, A.; Debeaufort, F. Effect of Lipid Incorporation on Functional Properties of Wheat Gluten Based Edible Films. J. Cereal Sci. 2016, 69, 275–282. DOI: 10.1016/j.jcs.2016.04.001.
  • Jiménez, A.; Fabra, M. J.; Talens, P.; Chiralt, A. Physical Properties and Antioxidant Capacity of Starch-sodium Caseinate Films Containing Lipids. J. Food Eng. 2013, 116, 695–702. DOI: 10.1016/j.jfoodeng.2013.01.010.
  • Martins, J. T.; Cerqueira, M. A.; Vicente, A. A. Influence of α-tocopherol on Physicochemical Properties of Chitosan-based Films. Food Hydrocoll. 2012, 27, 220–227. DOI: 10.1016/j.foodhyd.2011.06.011.
  • Andreuccetti, C.; Carvalho, R. A.; Grosso, C. R. F. Effect of Hydrophobic Plasticizers on Functional Properties of Gelatin-based Films. Food Res. Int. 2009, 42, 1113–1121. DOI: 10.1016/j.foodres.2009.05.010.
  • Sartori, T.; Menegalli, F. C. Development and Characterization of Unripe Banana Starch Films Incorporated with Solid Lipid Microparticles Containing Ascorbic Acid. Food Hydrocoll. 2016, 55, 210–219. DOI: 10.1016/j.foodhyd.2015.11.018.
  • Bravin, B.; Peressini, D.; Sensidoni, A. Development and Application of Polysaccharide-lipid Edible Coating to Extend Shelf-life of Dry Bakery Products. J. Food Eng. 2006, 76, 280–290. DOI: 10.1016/j.jfoodeng.2005.05.021.
  • Formiga, A. S.; Junior, J. S. P.; Pereira, E. M.; Cordeiro, I. N.; Mattiuz, B. H. Use of Edible Coatings Based on Hydroxypropyl Methylcellulose and Beeswax in the Conservation of Red Guava ‘Pedro Sato’. Food Chem. 2019, 290, 144–151. DOI: 10.1016/j.foodchem.2019.03.142.
  • Zambrano-Zaragoza, M. L.; Mercado-Silva, E.; Ramirez-Zamorano, P.; Cornejo-Villegas, M. A.; Gutiérrez-Cortez, E.; Quintanar-Guerrero, D. Use of Solid Lipid Nanoparticles (Slns) in Edible Coatings to Increase Guava (Psidium Guajava L.) Shelf-life. Food Res. Int. 2013, 51, 946–953.
  • Fagundes, C.; Palou, L.; Monteiro, A. R.; Pérez-Gago, M. B. Effect of Antifungal Hydroxypropyl Methylcellulose-beeswax Edible Coatings on Gray Mold Development and Quality Attributes of Cold-stored Cherry Tomato Fruit. Postharvest Biol. Technol. 2014, 92, 1–8. DOI: 10.1016/j.postharvbio.2014.01.006.
  • Rojas-Grau, M. A.; Tapia, M. S.; Martín-Belloso, O. Using Polysaccharide-based Edible Coatings to Maintain Quality of Fresh-cut Fuji Apples. LWT-Food Sci. Technol. 2008, 41, 139–147. DOI: 10.1016/j.lwt.2007.01.009.
  • Yan, W.; Chen, W.; Muhammad, U.; Zhang, J.; Zhuang, H.; Zhou, G. Preparation of α-tocopherol-chitosan Nanoparticles/chitosan/montmorillonite Film and the Antioxidant Efficiency on Sliced Dry-cured Ham. Food Control. 2019, 104, 132–138. DOI: 10.1016/j.foodcont.2019.04.026.
  • Yousuf, B.; Srivastava, A. K. Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-cut Papaya (Carica Papaya). Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 9, 702–707.
  • Martínez-Romero, D.; Castillo, S.; Guillén, F.; Paladine, D.; Zapata, P. J.; Valero, D.; Serrano, M. Rosehip Oil Coating Delays Postharvest Ripening and Maintains Quality of European and Japanese Plum Cultivars. Postharvest Biol. Technol. 2019, 155, 29–36. DOI: 10.1016/j.postharvbio.2019.05.005.
  • Khan, M. K. I.; Cakmak, H.; Tavman, Ş.; Schutyser, M.; Schroёn, K. Anti-browning and Barrier Properties of Edible Coatings Prepared with Electrospraying. Innov. Food Sci. Emerg. Technol. 2014, 25, 9–13. DOI: 10.1016/j.ifset.2013.10.006.
  • Bosquez-Molina, E.; Guerrero-Legarreta, I.; Vernon-Carter, E. J. Moisture Barrier Properties and Morphology of Mesquite Gum-candelilla Wax Based Edible Emulsion Coatings. Food Res. Int. 2003, 36, 885–893. DOI: 10.1016/S0963-9969(03)00097-8.
  • Beaulieu, J. C.; Park, H. S.; Mims, A. B.; Kuk, M. S. Extension of Green Bell Pepper Shelf Life Using Oilseed-derived Lipid Films from Soapstock. Ind. Crops Prod. 2009, 30, 271–275. DOI: 10.1016/j.indcrop.2009.05.003.
  • Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Prior, Á.; Fernández-Bolaños, J. Effect of Edible Pectin-fish Gelatin Films Containing the Olive Antioxidants Hydroxytyrosol and 3, 4-dihydroxyphenylglycol on Beef Meat during Refrigerated Storage. Meat Sci. 2019, 148, 213–218. DOI: 10.1016/j.meatsci.2018.07.003.
  • Han, J. H.; Hwang, H. M.; Min, S.; Krochta, J. M. Coating of Peanuts with Edible Whey Protein Film Containing α‐tocopherol and Ascorbyl Palmitate. J. Food Sci. 2008, 73, 349–355. DOI: 10.1111/j.1750-3841.2008.00910.x.
  • Shokri, S.; Ehsani, A. Efficacy of Whey Protein Coating Incorporated with Lactoperoxidase and α-tocopherol in Shelf Life Extension of Pike-Perch Fillets during Refrigeration. LWT-Food Sci. Technol. 2017, 85, 225–231. DOI: 10.1016/j.lwt.2017.07.026.
  • Tzoumaki, M. V.; Biliaderis, C. G.; Vasilakakis, M. Impact of Edible Coatings and Packaging on Quality of White Asparagus (Asparagus Officinalis, L.) During Cold Storage. Food Chem. 2009, 117, 55–63. DOI: 10.1016/j.foodchem.2009.03.076.
  • Mehyar, G. F.; Al‐Ismail, K.; Han, J. H.; Chee, G. W. Characterization of Edible Coatings Consisting of Pea Starch, Whey Protein Isolate, and Carnauba Wax and Their Effects on Oil Rancidity and Sensory Properties of Walnuts and Pine Nuts. J. Food Sci. 2012, 77, 52–59. DOI: 10.1111/j.1750-3841.2011.02559.x.
  • Kowalczyk, D.; Kordowska-Wiater, M.; Kałwa, K.; Skrzypek, T.; Sikora, M.; Łupina, K. Physiological, Qualitative, and Microbiological Changes of Minimally Processed Brussels Sprouts in Response to Coating with Carboxymethyl Cellulose/candelilla Wax Emulsion. J. Food Proces. Preser, 2019, 43, 14004. DOI: 10.1111/jfpp.14004.
  • Chiumarelli, M.; Hubinger, M. D. Stability, Solubility, Mechanical and Barrier Properties of Cassava Starch-carnauba Wax Edible Coatings to Preserve Fresh-cut Apples. Food Hydrocoll. 2012, 28, 59–67. DOI: 10.1016/j.foodhyd.2011.12.006.
  • Abugoch, L.; Tapia, C.; Plasencia, D.; Pastor, A.; Castro‐Mandujano, O.; López, L.; Escalona, V. H. Shelf‐life of Fresh Blueberries Coated with Quinoa Protein/chitosan/sunflower Oil Edible Film. J. Sci. Food Agric. 2016, 96, 619–626. DOI: 10.1002/jsfa.7132.
  • Dea, S.; Ghidelli, C.; Pérez-Gago, M. B.; Plotto, A. Coatings for Minimally Processed Fruits and Vegetables. In: Edible Coatings and Films to Improve Food Quality; CRC Press, Boca Raton, FL, 2012. pp 243–289.
  • Zhou, G. H.; Xu, X. L.; Liu, Y. Preservation Technologies for Fresh Meat - A Review. Meat Sci. 2010, 86, 119–128. DOI: 10.1016/j.meatsci.2010.04.033.
  • Sanchez-Ortega, I.; Garcia-Almendarez, B. E.; Santos-Lopez, E. M.; Amaro-Reyes, A.; Barboza-Corona, J. E.; Regalado, C. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation. Sci. World J. 2014, 2014, 248935. DOI: 10.1155/2014/248935.
  • Guilbert, S.;. Technology and Application of Edible Protective Films. In Food Packaging and Preservation; Mathlouthi, M., Ed.; Elsevier Applied Science Publishers: London, 2000; pp 371–394.
  • Guerrero, P.; Nur Hanani, Z. A.; Kerry, J. P.; de la Caba, K. Characterization of Soy Protein-based Films Prepared with Acids and Oils by Compression. J. Food Sci. 2011, 107, 41–49.
  • Pereda, M.; Amica, G.; Marcovich, N. E. Development and Characterization of Edible Chitosan/olive Oil Emulsion Films. Carbohydr. Polym. 2012, 87, 1318–1325. DOI: 10.1016/j.carbpol.2011.09.019.
  • Kim, S. J.; Ustunol, Z. Sensory Attributes of Whey Protein Isolate and Candelilla Wax Emulsion Edible Films. J. Food Sci. 2001, 66, 909–911. DOI: 10.1111/j.1365-2621.2001.tb15195.x.
  • Pirozzi, A.; Pataro, G.; Donsì, F.; Ferrari, G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. Food Eng. Rev. 2020, 24, 1–26.
  • Wan, V. C. H.; Lee, C. M.; Lee, S. Y. Understanding Consumer Attitudes on Edible Films and Coatings: Focus Group Findings. J. Sens. Stud. 2007, 22, 353–366. DOI: 10.1111/j.1745-459X.2007.00108.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.