535
Views
8
CrossRef citations to date
0
Altmetric
Review

New Insights into the Biological Properties of Eucalyptus-Derived Essential Oil: A Promising Green Anti-Cancer Drug

ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon & show all

References

  • Domingo, J. L.; Nadal, M. Carcinogenicity of Consumption of Red Meat and Processed Meat: A Review of Scientific News since the IARC Decision. Food Chem. Toxicol. 2017, 105, 256–261. DOI: 10.1016/j.fct.2017.04.028.
  • Abdullahi, A. D.; Mustapha, R. K.; Yau, S.; Adam, M. S. Exploring the Nigerian Medicinal Plants with Anticancer Activities: A Pharmacological Review. Modern Chem. 2013, 6(2), 35. DOI: 10.11648/j.mc.20180602.14.
  • Joshi, R. A.; Antrodia Camphorata with Potential Anti-Cancerous Activities: A Review. J. Med. Plant. 2017, 5(1), 284–291.
  • Henley, S. J.; Ward, E. M.; Scott, S.; Ma, J.; Anderson, R. N.; Firth, A. U.; Thomas, C. C.; Islami, F.; Weir, H. K.; Lewis, D. R.; et al. Annual Report to the Nation on the Status of Cancer, Part I: National Cancer Statistics. Cancer. 2020, 126(10), 2225–2249. DOI: 10.1002/cncr.32802.
  • Pavithra, P.; Mehta, A.; Verma, R. S. Aromadendrene Oxide 2, Induces Apoptosis in Skin Epidermoid Cancer Cells through ROS Mediated Mitochondrial Pathway. Life Sci. 2018, 197, 19–29. DOI: 10.1016/j.lfs.2018.01.029.
  • Harizani, M.; Ioannou, E.; Roussis, V. The Laurencia Paradox: An Endless Source of Chemodiversity, in Progress in the Chemistry of Organic Natural Products 102, Switzerland: Springer, 2016, p. 91–252.
  • Mbhele, N.; Balogun, F. O.; Kazeem, M. I.; Ashafa, T. In Vitro Studies on the Antimicrobial, Anti-oxidant and Anti-diabetic Potential of Cephalaria Gigantea. Bangladesh. J. Pharmacol. 2015, 10(1), 214–221.
  • Ahmed, H.; Phyto Pharmacological, A. Review on A Medicinal Plant: Holarrhena Floribunda. J. Med. Plants. 2017, 5(6), 26–29.
  • Bonam, S. R.; Wu, Y. S.; Tunki, L.; Chellian, R.; Halmuthur, M. S. K.; Muller, S.; Pandy, V. What Has Come Out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? Chem. Med. Chem. 2018, 13(18), 1854–1872. DOI: 10.1002/cmdc.201800343.
  • Gallego, A.; Malik, S.; Yousefzadi, M.; Makhzoum, A.; Tremouillaux-Guiller, J.; Bonfill, M. Taxol from Corylus Avellana: Paving the Way for a New Source of This Anti-Cancer Drug. Plant Cell Tiss. Org. 2017, 129(1), 1–16. DOI: 10.1007/s11240-016-1164-5.
  • Mesquita, L. S. S. D.; Luz, T. R. S. A.; Mesquita, J. W. C. D.; Coutinho, D. F.; Amaral, F. M. M. D.; Ribeiro, M. N. D. S.; Malik, S. Exploring the Anti-cancer Properties of Essential Oils from Family Lamiaceae. Food Rev. Int. 2019, 35(2), 105–131.
  • Abiri, R.; Silva, A. O. L. M.; de Mesquita, L. S. S.; de Mesquita, J. W. C.; Atabaki, N.; de Almeida, E. B., Jr; Shaharuddin, N. A.; Malik, S. Towards a Better Understanding of Artemisia Vulgaris: Botany, Phytochemistry, Pharmacological and Biotechnological Potential. Food Rev. Int. 2017, 109, 403–415. DOI: 10.1016/j.foodres.2018.03.072.
  • Mushtaq, S.; Hassan, Q. P.; Sharma, R.; Majeed, R.; Dar, A. H.; Sultan, P.; Khan, I. A.; Ali, S. A.; Ali, M. N. Evaluation of Anti-cancer and Anti-microbial Activities of Selected Medicinal Plants of Kashmir Himalayas, India. 2017.
  • Okorondu, S.; Adeleye, S. Review on Medicinal Plants. Nigerian J. Of Microbiology. 2015, 29, 3167–3183.
  • Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of Fruits and Vegetables with Major Cardiometabolic Risk Factors, Markers of Oxidation, and Inflammation. Nutrients. 2019, 11(10), 2381.
  • Umadevi, M.; Kumar, K. S.; Bhowmik, D.; Duraivel, S. Traditionally Used Anti-Cancer Herbs in India. J. Med. Plants Stud. 2013, 1(3), 56–74.
  • Turkson, J.;. Cancer Drug Discovery and Anti-Cancer Drug Development. In The Molecular Basis of Human Cancer; Switzerland: Springer, 2017; pp 695–707.
  • Yu, Y.; Gan, L. S.; Yang, S. P.; Sheng, L.; Liu, Q. F.; Chen, S. N.; Li, J.; Yue, J. M.; Eucarobustols, A.-I. Conjugates of Sesquiterpenoids and Acylphloroglucinols from Eucalyptus Robusta. J. Nat. Prod. 2016, 79(5), 1365–1372. DOI: 10.1021/acs.jnatprod.6b00090.
  • Priya, M. L.; Priya, K. B.; Kotakadi, V. S.; Josthna, P. Herbal and Medicinal Plants Molecules Towards Treatment of Cancer: A Mini Review. Am. J. Ethnomed. 2015, 2, 136–142.
  • Ishfaq, P. M.; Shukla, A.; Beraiya, S.; Tripathi, S.; Mishra, S. K. Biochemical and Pharmacological Applications of Essential Oils in Human Health Especially in Cancer Prevention. Anti-Cancer Agent Me. 2018, 18(13), 1815–1827. DOI: 10.2174/1871520618666181002130240.
  • Tran, N. H. T.; Oguchi, T.; Akatsuka, N.; Matsunaga, E.; Kawaoka, A.; Yamada, A.; Ozeki, Y.; Watanabe, K. N.; Kikuchi, A. Development and Evaluation of Novel Salt-Tolerant Eucalyptus Trees by Molecular Breeding Using an RNA- Binding- Protein Gene Derived from Common Ice Plant (Mesembryanthemum Crystallinum L.). Plant Biotechnol. J. 2019, 17(4), 801–811. DOI: 10.1111/pbi.13016.
  • Rojhan, M.; Nouri, L. Antimicrobial, Physicochemical, Mechanical, and Barrier Properties of Tapioca Starch Films Incorporated with Eucalyptus Extract. J. Chem. Health Risks. 2018, 3, 3.
  • Dave, A.; Raj, P. Screening of Anti-fungal Activity of Essential Oil of Eucalyptus Species. Int. J. Manage. Law Sci. Studies. 2018, 3(3).
  • Blowman, K.; Magalh, M.; Lemos, M.; Cabral, C.; Pires, I. Anti-cancer Properties of Essential Oils and Other Natural Products. Evid. Based Complementary Altern. Med. 2018, 1–12. DOI: 10.1155/2018/3149362.
  • War, A. R.; Paulraj, M. G.; Ahmad, T.; Buhroo, A. A.; Hussain, B.; Ignacimuthu, S.; Sharma, H. C. Mechanisms of Plant Defense against Insect Herbivores. Plant Signal. Behav. 2012, 7(10), 1306–1320. DOI: 10.4161/psb.21663.
  • Morquecho Contreras, A.; Zepeda Gomez, C.; Sanchez Sanchez, H. Plant Antiherbivore Defense in Diverse Environments, in Pure and Applied Biogeography. IntechOpen. 2017.
  • Islam, F.; Ghosh, S.; Khanam, J. A. Anti-proliferative and Hepatoprotective Activity of Metabolites from Corynebacterium Xerosis against Ehrlich Ascites Carcinoma Cells. Asian Pac. J. Trop. Biomed. 2016, 4, S284–S292. DOI: 10.12980/APJTB.4.2014C1283.
  • Sharifi-Rad, J.; Sureda, A.; Tenore, G. C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M. R.; Ademiluyi, A. O. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules. 2017, 22(1), 70. DOI: 10.3390/molecules22010070.
  • Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oil- a Review. Food Chem. Toxicol. 2008, 46(2), 446–475.
  • Van de Vel, E.; Sampers, I.; Raes, K. A. Review on Influencing Factors on the Minimum Inhibitory Concentration of Essential Oils. Crit. Rev. Food Sci. Nutr. 2019, 59(3), 357–378. DOI: 10.1080/10408398.2017.1371112.
  • Amin, A.; Gali-Muhtasib, H.; Ocker, M.; Schneider-Stock, R. Overview of Major Classes of Plant-Derived Anticancer Drugs. Int. J. Biomed. Sci. 2009, 5((1)), 1.
  • Simoens, C.; Lardon, F.; Pauwels, B.; De Pooter, C. M.; Lambrechts, H. A.; Pattyn, G. G.; Breillout, F.; Vermorken, J. B. Comparative Study of the Radiosensitising and Cell Cycle Effects of Vinflunine and Vinorelbine. Vitro. BMC Cancer. 2008, 8((1)), 65. DOI: 10.1186/1471-2407-8-65.
  • Prakash, O.; Kumar, A.; Kumar, P. Anticancer Potential of Plants and Natural Products. Am. J. Pharmacol. Sci. 2019, 1, 104–115.
  • Weaver, B. A.;. How Taxol/Paclitaxel Kills Cancer Cells. Mol. Biol. Cell. 2014, 25(18), 2677–2681. DOI: 10.1091/mbc.e14-04-0916.
  • Nirmala, M. J.; Samundeeswari, A.; Sankar, P. D. Natural Plant Resources in Anti-cancer Therapy-a Review. Res. Plant Biol. 2011, 1, 3.
  • Prakash, O.; Usmani, S.; Singh, R.; Mahapatra, D. K.; Gupta, A. Cancer Chemotherapy by Novel Bio-Active Natural Products: Looking Towards the Future. Curr. Cancer Ther. Rev. 2019, 15(1), 37–49.
  • Takasaki, M.; Konoshima, T.; Etoh, H.; Singh, I. P.; Tokuda, H.; Nishino, H. Cancer Chemopreventive Activity of Euglobal-G1 from Leaves of Eucalyptus Grandis. Cancer Lett. 2000, 155(1), 61–65. DOI: 10.1016/S0304-3835(00)00406-7.
  • Teixeira, A.; DaCunha, D. C.; Barros, L.; Caires, H. R.; Xavier, C. P.; Ferreira, I. C.; Vasconcelos, M. H. Eucalyptus Globulus Labill. Decoction Extract Inhibits the Growth of NCI-H460 Cells by Increasing the P53 Levels and Altering the Cell Cycle Profile. Food Funct. 2019, 10(6), 3188–3197. DOI: 10.1039/C8FO02466A.
  • Ferguson, L. R.; Chen, H.; Collins, A. R.; Connell, M.; Damia, G.; Dasgupta, S.; Malhotra, M.; Meeker, A. K.; Amedei, A.; Amin, A. Genomic Instability in Human Cancer: Molecular Insights and Opportunities for Therapeutic Attack and Prevention through Diet and Nutrition. in Seminars in cancer biology. 2015, 35, S5–S24.
  • Wargovich, M. J.; Baer, A.; Levin, B. Calcium Effects in the Inhibition of the Initiation, Promotion, and Progression Phases of Colon Carcinogenesis and in Short-Term Clinical Trials in Humans, in Calcium, vitamin D, and prevention of colon cancer. 2018, CRC Press. p. 267–282.
  • Yilmaz, Y.; Methods to Assess Pulmonary Metabolism. 2018, University of Basel.
  • Schonborn, J. L.; The Role of the Liver in Drug Metabolism Anaesthesia Tutorial of the Week 179. 2010.
  • Finkelmann, A. R.; Goldmann, D.; Schneider, G.; Goller, A. H. MetScore: Site of Metabolism Prediction beyond Cytochrome P450 Enzymes. Chem. Med. Chem. 2018, 13(21), 2281–2289. DOI: 10.1002/cmdc.201800309.
  • Hutteman, M.; Doan, J. W.; Goustin, A. S.; Sinkler, C.; Mahapatra, G.; Shay, J.; Liu, J.; Elbaz, H.; Aras, S.; Grossman, L. I. Regulation of Cytochrome C in Respiration, Apoptosis, Neurodegeneration and Cancer: The Good, the Bad and the Ugly. Cytochromes B and C: Biochemical Properties, Biological Functions and Electrochemical Analysis; New York: Nova Science Publishers, 2014; pp 1–38.
  • Ferraz, R. P.; Bomfim, D. S.; Carvalho, N. C.; Soares, M. B.; da Silva, T. B.; Machado, W. J.; Prata, A. P. N.; Costa, E. V.; Moraes, V. R. S.; Nogueira, P. C. L. Cytotoxic Effect of Leaf Essential Oil of Lippia Gracilis Schauer (Verbenaceae). Phytomedicine. 2013, 20(7), 615–621. DOI: 10.1016/j.phymed.2013.01.015.
  • Ferreira, J. P.; Miranda, I.; Pereira, H. Chemical Composition of Lipophilic Extractives from Six Eucalyptus Barks. Wood Sci. Technol. 2018, 52(6), 1685–1699. DOI: 10.1007/s00226-018-1054-6.
  • Hassan, S. B.; Gali-Muhtasib, H.; Goransson, H.; Larsson, R. Alpha Terpineol: A Potential Anticancer Agent Which Acts through Suppressing NF-kB Signalling. Anticancer Res. 2010, 30(6), 1911–1919.
  • Islam, F.; Khatun, H.; Khatun, M.; Ali, S. M. M.; Khanam, J. A. Growth Inhibition and Apoptosis of Ehrlich Ascites Carcinoma Cells by the Methanol Extract of Eucalyptus Camaldulensis. Pharm. Biol. 2015, 52(3), 281–290. DOI: 10.3109/13880209.2013.834365.
  • Bardaweel, S. K.; Bakchiche, B.; Al Salamat, H. A.; Rezzoug, M.; Gherib, A.; Flamini, G. Chemical Composition, Anti-Oxidant, Anti-Microbial and Anti-Proliferative Activities of Essential Oil of Mentha Spicata L. (Lamiaceae) from Algerian Saharan Atlas. BMC Complem Altern M. 2018, 18(1), 201. DOI: 10.1186/s12906-018-2274-x.
  • Salehi, B.; Sharifi-Rad, J.; Quispe, C.; Llaique, H.; Villalobos, M.; Smeriglio, A.; Trombetta, D.; Ezzat, S. M.; Salem, M. A.; Zayed, A. M. Insights into Eucalyptus Genus Chemical Constituents, Biological Activities and Health-promoting Effects. Trends Food Sci. Tech. 2019, 91, 609–624. DOI: 10.1016/j.tifs.2019.08.003.
  • Kavousi, M.; Rahimi, E.; Fallah Mehrabadi, J. The Effect of Cisplatin and Eucalyptus Extract on KRAS Gene Expression in A549 Cell Line of Lung Cancer. J. Arak Uni. Med. Sci. 2019, 22(2), 84–95.
  • Ashour, H. M.;. Antibacterial, Antifungal, and Anticancer Activities of Volatile Oils and Extracts from Stems, Leaves, and Flowers of Eucalyptus Sideroxylon and Eucalyptus Torquata. Cancer Biol. Ther. 2008, 7(3), 399–403. DOI: 10.4161/cbt.7.3.5367.
  • Adnan, M.;. Bioactive Potential of Essential Oil Extracted from the Leaves of Eucalyptus Globulus (Myrtaceae). J. Pharmacogn. Phytochem. 2019, 8(1), 213–216.
  • Pham, T. A.; Shair Mohammad, I.; Vu, V. T.; Hu, X. L.; Birendra, C.; Ulah, A.; Guo, C.; Lu, X. Y.; Ye, W. C.; Wang, H. Phloroglucinol Derivatives from the Fruits of Eucalyptus Globulus and Their Cytotoxic Activities. Chem. Biodiversity. 2018, 15((6)), e1800052. DOI: 10.1002/cbdv.201800052.
  • Mubarak, E. E.; Landa, Z. A.; Ahmed, I. F. A.; Ahmed, A. B. A.; Taha, R. M. Essential Oil Compositions and Cytotoxicity from Various Organs of Eucalyptus Camaldulensis. Int. J. Agric. Biol. 2015, 17, 2.
  • Meshkani, N.; Naghsh, N.; Ranjbar, M. Study of Cytotoxic Effects of Ethanolic Extract of Eucalyptus Camaldulensis Leaf on the Cells K562 of Human Chronic Myelogenous Leukemia (CML) under in Vitro Conditions. Bull. Environ. Pharmacol. Life Sci. 2014, 3, 186–190.
  • Bardaweel, S.; Hudaib, M.; Tawaha, K. Evaluation of Anti-Bacterial, Anti-Fungal, and Anti-Cancer Activities of Essential Oils from Six Species of Eucalyptus. J. Essent. Oil-Bear. Plants. 2014, 17(6), 1165–1174. DOI: 10.1080/0972060X.2014.963169.
  • Bhagat, M.; Saxena, A.; Arora, J. Inhibitory Effect of Extracts of Eucalyptus Citriodara Leaf Part against Human Cancer Cell Lines. J. Pharm. Res. 2009, 2(3), 391–394.
  • Tanase, C.; Boz, I.; Stingu, A.; Volf, I.; Popa, V. I. Physiological and Biochemical Responses Induced by Spruce Bark Aqueous Extract and Deuterium Depleted Water with Synergistic Action in Sunflower (Helianthus Annuus L.). Plants. Ind Crops Prod. 2014, 60, 160–167. DOI: 10.1016/j.indcrop.2014.05.039.
  • Surh, Y.-J.; NF-kappa, B. NRF2 as Potential Chemopreventive Targets of Some Anti-Inflammatory and Anti-Oxidative Phytonutrients with Anti-inflammatory and Anti-Oxidative Activities. Asia Pac. J. Clin. Nutr. 2008, 17((Suppl1)), 269–272.
  • Tanase, C.; Coearcsf, S.; Muntean, D. L.; Critical, A. Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules. 2019, 24(6), 1182. DOI: 10.3390/molecules24061182.
  • Guizani, N.; Waly, M. I.; Rahman, M. S.; Al-Attabi, Z. Natural Products and Their Benefits in Cancer Prevention, in Bioactive components, Diet and Medical Treatment in Cancer Prevention. 2018, Springer. p. 51–61.
  • Vuong, Q. V.; Hirun, S.; Chuen, T. L.; Goldsmith, C. D.; Munro, B.; Bowyer, M. C.; Chalmers, A. C.; Sakoff, J. A.; Phillips, P. A.; Scarlett, C. J. Physicochemical, Anti-Oxidant and Anticancer Activity of a Eucalyptus Robusta (Sm.) Leaf Aqueous Extract. Ind. Crops Prod. 2015, 64, 167–174. DOI: 10.1016/j.indcrop.2014.10.061.
  • Bhuyan, D. J.; Sakoff, J.; Bond, D. R.; Predebon, M.; Vuong, Q. V.; Chalmers, A. C.; van Altena, I. A.; Bowyer, M. C.; Scarlett, C. J. In Vitro Anticancer Properties of Selected Eucalyptus Species. Vitro Cell Dev-An. 2017, 53(7), 604–615. DOI: 10.1007/s11626-017-0149-y.
  • Singab, A. N.; Ayoub, N.; Al-Sayed, E.; Martiskainen, O.; Sinkkonen, J.; Pihlaja, K. Phenolic Constituents of Eucalyptus Camaldulensis Dehnh, with Potential Anti-Oxidant and Cytotoxic Activities. Rec. Nat. Prod. 2011, 5, 4.
  • Hsu, Y. L.; Uen, Y. H.; Chen, Y.; Liang, H. L.; Kuo, P. L. Tricetin, a Dietary Flavonoid, Inhibits Proliferation of Human Breast Adenocarcinoma MCF-7 Cells by Blocking Cell Cycle Progression and Inducing Apoptosis. J. Agric. Food Chem. 2009, 57(18), 8688–8695. DOI: 10.1021/jf901053x.
  • Luo, H.; Jiang, B. H.; King, S. M.; Chen, Y. C. Inhibition of Cell Growth and VEGF Expression in Ovarian Cancer Cells by Flavonoids. Nutr. Cancer. 2008, 60(6), 800–809. DOI: 10.1080/01635580802100851.
  • Hsu, Y. F.; Sheu, J. R.; Lin, C. H.; Yang, D. S.; Hsiao, G.; Ou, G.; Chiu, P. T.; Huang, Y. H.; Kuo, W. H.; Hsu, M. J. Trichostatin A and Sirtinol Suppressed Survivin Expression through AMPK and p38MAPK in HT29 Colon Cancer Cells. Biochim. Biophys. Acta. 2012, 1820(2), 104–115. DOI: 10.1016/j.bbagen.2011.11.011.
  • Gordobil, O.; Oberemko, A.; Saulis, G.; Baublys, V.; Labidi, J. In Vitro Cytotoxicity Studies of Industrial Eucalyptus Kraft Lignins on Mouse Hepatoma, Melanoma and Chinese Hamster Ovary Cells. Int. J. Biol. Macromol. 2019, 135, 353–361. DOI: 10.1016/j.ijbiomac.2019.05.111.
  • Lu, F. J.; Chu, L. H.; Gau, R. J. Free Radical- Scavenging Properties of Lignin. 1998. 31–38.
  • Karin, M.; Cao, Y.; Greten, F. R.; Li, Z. W. NF-κB in Cancer: From Innocent Bystander to Major Culprit. Nat. Rev. Cancer. 2002, 2(4), 301–310. DOI: 10.1038/nrc780.
  • Wang, Q.; Mu, H.; Zhang, L.; Dong, D.; Zhang, W.; Duan, J. Characterization of Two Water-Soluble Lignin Metabolites with Antiproliferative Activities from Inonotus Obliquus. Int. J. Biol. Macromol. 2015, 74, 507–514. DOI: 10.1016/j.ijbiomac.2014.12.044.
  • Santos, S. N. A.; Freire, C. S.; Domingues, M. R. R. M.; Silvestre, A. J.; Neto, C. P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus Globulus Labill. Bark by High-Performance Liquid Chromatography- Mass Spectrometry. J. Agric. Food Chem. 2011, 59(17), 9386–9393. DOI: 10.1021/jf201801q.
  • Tian, L. W.; Xu, M.; Li, Y.; Li, X. Y.; Wang, D.; Zhu, H. T.; Yang, C. R.; Zhang, Y. J. Phenolic Compounds from the Branches of Eucalyptus Maideni. Chem. Biodiversity. 2012, 9(1), 123–130. DOI: 10.1002/cbdv.201100021.
  • Ito, H.; Koreishi, M.; Tokuda, H.; Nishino, H.; Yoshida, T. Cypellocarpion- C, Phenol Glycosides Esterified with Oleuropeic Acid, from Eucalyptus Cypellocarpa. J. Nat. Prod. 2000, 63(9), 1253–1257. DOI: 10.1021/np0001981.
  • Sidana, J.; Rohilla, R. K.; Roy, N.; Barrow, R. A.; Foley, W. J.; Singh, I. P. Anti-Bacterial Sideroxylonals and Loxophlebal A from Eucalyptus Loxophleba Foliage. Fitoterapia. 2010, 81(7), 878–883. DOI: 10.1016/j.fitote.2010.05.016.
  • Peng, L. Y.; He, J.; Xu, G.; Wu, X. D.; Dong, L. B.; Gao, X.; Cheng, X.; Su, J.; Li, Y.; Zhao, Q. S. Euglobal-IIIa, a Novel Acylphloroglucinol-sesquiterpene Derivative from Eucalyptus Robusta: Absolute Structure and Cytotoxicity. Nat. Prod. Bioprospect. 2011, 1(2), 101–103. DOI: 10.1007/s13659-011-0021-9.
  • Soliman, F. M.; Fathy, M. M.; Salama, M. M.; Al-Abd, A. M.; Saber, F. R.; El-Halawany, A. M. Cytotoxic Activity of Acyl Phloroglucinols Isolated from the Leaves of Eucalyptus Cinerea F. Muell. Ex Benth. Cultivated in Egypt. Sci. Rep. 2014, 4(1), 1–6.
  • Zhao, Y.; Chang, S. K.; Qu, G.; Li, T.; Cui, H. β-Sitosterol Inhibits Cell Growth and Induces Apoptosis in SGC-7901 Human Stomach Cancer Cells. J. Agric. Food Chem. 2009, 57(12), 5211–5218. DOI: 10.1021/jf803878n.
  • Duh, P. D.; Chen, Z. T.; Lee, S. W.; Lin, T. P.; Wang, Y. T.; Yen, W. J.; Kuo, L. F.; Chu, H. L. Anti-Proliferative Activity and Apoptosis Induction of Eucalyptus Citriodora Resin and Its Major Bioactive Compound in Melanoma B16F10 Cells. J. Agric. Food Chem. 2012, 60(32), 7866–7872. DOI: 10.1021/jf301068z.
  • Tripathi, M.; Singh, B. K.; Kakkar, P. Glycyrrhizic Acid Modulates t-BHP Induced Apoptosis in Primary Rat Hepatocytes. Food Chem. Toxicol. 2009, 47(2), 339–347. DOI: 10.1016/j.fct.2008.11.028.
  • Hengartner, M. O.;. The Biochemistry of Apoptosis. Nature. 2000, 407(6805), 770–776. DOI: 10.1038/35037710.
  • Perveen, S.; Al-Taweel, A. Terpenes and Terpenoids. 2018: Books on Demand.
  • Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A. P.; Nautiyal, A. R. Anti-Microbial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobial- a Review. Plants. 2017, 6(2), 16. DOI: 10.3390/plants6020016.
  • Ludwiczuk, A.; Skalicka-Woriak, K.; Georgiev, M. Terpenoids. In Pharmacognosy; Elsevier, 2017; pp 233–266.
  • Sobral, M. V.; Xavier, A. L.; Lima, T. C.; de Sousa, D. O. P. Anti-Tumor Activity of Monoterpenes Found in Essential Oils. Sci. World J. 2014. DOI: 10.1155/2014/953451.
  • Doll-Boscardin, P. M.; Sartoratto, A.; Maia, S.; de Noronha,; Padilha, B. H. L.; de Paula, J.; Nakashima, T.; Farago, P. V.; Kanunfre, C. C. Vitro Cytotoxic Potential of Essential Oils of Eucalyptus Benthamii and Its Related Terpenes on Tumor Cell Lines Evid. Based Complementary. Altern. Med. 2012.
  • Takasaki, M.; Konoshima, T.; Kozuka, M.; Harun, M.; Ito, K.; Crow, W. D.; Paton, D. M. Euglobal-In-1, a New Euglobal from Eucalyptus Incrassata. Chem. Pharm. Bull. 1994, 42(10), 2113–2116. DOI: 10.1248/cpb.42.2113.
  • Dhakad, A. K.; Pandey, V. V.; Beg, S.; Rawat, J. M.; Biological, S. A. Medicinal and Toxicological Significance of Eucalyptus Leaf Essential Oil: A Review. J. Sci. Food Agric. 2018, 98(3), 833–848. DOI: 10.1002/jsfa.8600.
  • Qin, X. J.; Feng, M. Y.; Liu, H.; Ni, W.; Rauwolf, T.; Porco, J. A., Jr; Yan, H.; He, L.; Liu, H. Y. Eucalyptus Dimers, Dimeric Phloroglucinolâ- Phellandrene Meroterpenoids from Eucalyptus Robusta. Org. Lett. 2018, 20(16), 5066–5070. DOI: 10.1021/acs.orglett.8b02259.
  • Singh, B.; Sharma, R. A. Plant Terpenes: Defense Responses, Phylogenetic Analysis, Regulation and Clinical Applications.3. Biotech. 2015, 5(2), 129–151.
  • Kovar, K.; Gropper, B.; Friess, D.; Ammon, H. Blood Levels of 1,8-Cineole and Locomotor Activity of Mice after Inhalation and Oral Administration of Rosemary Oil1. Planta Med. 1987, 53(4), 315–318. DOI: 10.1055/s-2006-962725.
  • Swamy, M. K.; Patra, J. K.; Rudramurthy, G. R. Medicinal Plants: Chemistry, Pharmacology, and Therapeutic Applications; CRC Press, 2019.
  • Murata, S.; Shiragami, R.; Kosugi, C.; Tezuka, T.; Yamazaki, M.; Hirano, A.; Yoshimura, Y.; Suzuki, M.; Shuto, K.; Ohkohchi, N. Anti-Tumor Effect of 1,8-cineole against Colon Cancer. Oncol. Rep. 2013, 30(6), 2647–2652. DOI: 10.3892/or.2013.2763.
  • Moteki, H.; Hibasami, H.; Yamada, Y.; Katsuzaki, H.; Imai, K.; Komiya, T. Specific Induction of Apoptosis by 1,8-cineole in Two Human Leukemia Cell Lines, but Not a in Human Stomach Cancer Cell Line. Oncol. Rep. 2002, 9(4), 757–760.
  • Rouse, J.; Cohen, P.; Trigon, S.; Morange, M.; Alonso-Llamazares, A.; Zamanillo, D.; Hunt, T.; Nebreda, A. R.; Novel Kinase, A. Cascade Triggered by Stress and Heat Shock that Stimulates MAPKAP Kinase-2 and Phosphorylation of the Small Heat Shock Proteins. Cell. 1994, 78(6), 1027–1037. DOI: 10.1016/0092-8674(94)90277-1.
  • Sato, S.; Mukai, M. Significance of Occult Neoplastic Cells on Tumor Metastasis: A Case Report of Gastric Cancer. Diagn. Pathol. 2010, 5(1), 14. DOI: 10.1186/1746-1596-5-14.
  • Carrasco, R. A.; Stamm, N. B.; Marcusson, E.; Sandusky, G.; Iversen, P.; Patel, B. K. Antisense Inhibition of Survivin Expression as a Cancer Therapeutic. Mol. Cancer Ther. 2011, 10(2), 221–232. DOI: 10.1158/1535-7163.MCT-10-0756.
  • Altieri, D. C.;. Validating Survivin as a Cancer Therapeutic Target. Nat. Rev. Cancer. 2003, 3(1), 46–54. DOI: 10.1038/nrc968.
  • Greiner, J. F. W.; Moler, J.; Zeuner, M. T.; Hauser, S.; Seidel, T.; Klenke, C.; Grunwald, L. M.; Schomann, T.; Widera, D.; Sudhoff, H. 1,8-Cineol Inhibits Nuclear Translocation of NF-kB P65 and NF-kB-Dependent Transcriptional Activity. Biochim. Biophys. Acta. 2013, 1833(12), 2866–2878. DOI: 10.1016/j.bbamcr.2013.07.001.
  • Lee, J.; Ha, S. J.; Park, J.; Kim, Y. H.; Lee, N. H.; Kim, Y. E.; Kim, Y.; Song, K. M.; Jung, S. K. 1,8-cineole Prevents UVB-Induced Skin Carcinogenesis by Targeting the Aryl Hydrocarbon Receptor. Oncotarget. 2017, 8((62)), 105995. DOI: 10.18632/oncotarget.22519.
  • Hayes, A. J.; Leach, D. N.; Markham, J. L.; Markovic, B. In Vitro Cytotoxicity of Australian Tea Tree Oil Using Human Cell Lines. J. Essent. Oil Res. 1997, 9(5), 575–582. DOI: 10.1080/10412905.1997.9700780.
  • Li, Q.; Wang, X.; Yang, Z.; Wang, B.; Li, S. Menthol Induces Cell Death via the TRPM8 Channel in the Human Bladder Cancer Cell Line T24. Oncology. 2009, 77(6), 335–341. DOI: 10.1159/000264627.
  • Wang, Y.; Wang, X.; Yang, Z.; Zhu, G.; Chen, D.; Meng, Z. Menthol Inhibits the Proliferation and Motility of Prostate Cancer DU145 Cells. Pathol. Oncol. Res. 2012, 18(4), 903–910. DOI: 10.1007/s12253-012-9520-1.
  • Park, E. J.; Kim, S. H.; Kim, B. J.; Kim, S. Y.; So, I.; Jeon, J. H. Menthol Enhances an Antiproliferative Activity of 1-Alpha, 25-Dihydroxyvitamin D3 in LNCaP Cells. J. Clin. Biochem. Nutr. 2009, 44(2), 125–130. DOI: 10.3164/jcbn.08-201.
  • Lu, H. F.; Liu, J. Y.; Hsueh, S. C.; Yang, Y. Y.; Yang, J. S.; Tan, T. W.; Kok, L. F.; Lu, C. C.; Lan, S. H.; Wu, S. Y. (-)-menthol Inhibits WEHI-3 Leukemia Cells.In Vitro and In Vivo 2007, 21(2), 285–289.
  • Lin, J. P.; Lu, H. F.; Lee, J. H.; Lin, J. G.; Hsia, T. C.; Wu, L. T.; Chung, J. G. (-)-menthol Inhibits DNA Topoisomerases I, II α and β and Promotes NF-I B Expression in Human Gastric Cancer SNU-5 Cells. Anticancer Res. 2005, 25((3B)), 2069–2074.
  • Okamoto, Y.; Ohkubo, T.; Ikebe, T.; Yamazaki, J. Blockade of TRPM8 Activity Reduces the Invasion Potential of Oral Squamous Carcinoma Cell Lines. Int. J. Oncol. 2012, 40(5), 1431–1440.
  • Badary, O. A.;. Thymoquinone Attenuates Ifosfamide-induced Fanconi Syndrome in Rats and Enhances Its Antitumor Activity in Mice. J. Ethnopharmacol. 1999, 67(2), 135–142. DOI: 10.1016/S0378-8741(98)00242-6.
  • El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. A. T.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483(1–2), 220–243. DOI: 10.1016/j.ijpharm.2014.12.069.
  • Bozzuto, G.; Colone, M.; Toccacieli, L.; Stringaro, A.; Molinari, A. Tea Tree Oil Might Combat Melanoma. Planta Med. 2011, 77(1), 54–56. DOI: 10.1055/s-0030-1250055.
  • Greay, S.; Ireland, D.; Kissick, H.; Levy, A.; Beilharz, M.; Riley, T.; Carson, C. Induction of Necrosis and Cell Cycle Arrest in Murine Cancer Cell Lines by Melaleuca Alternifolia (Tea Tree) Oil and Terpinen-4-ol. Cancer Chemother. Pharmacol. 2010, 65(5), 877–888. DOI: 10.1007/s00280-009-1093-7.
  • Wattenberg, L. W.;. Inhibition of Azoxymethane-Induced Neoplasia of the Large Bowel by 3-hydroxy-3, 7, 11-trimethyl-l, 6, 10-dodecatriene (Nerolidol). Carcinogenesis. 1991, 12(1), 151–152. DOI: 10.1093/carcin/12.1.151.
  • Fathy, M.; Fawzy, M. A.; Hintzsche, H.; Nikaido, T.; Dandekar, T.; Othman, E. M. Eugenol Exerts Apoptotic Effect and Modulates the Sensitivity of HeLa Cells to Cisplatin and Radiation. Molecules. 2019, 24(21), 3979. DOI: 10.3390/molecules24213979.
  • Su, J.; Lai, H.; Chen, J.; Li, L.; Wong, Y. S.; Chen, T.; Natural Borneol, L. X. A Monoterpenoid Compound, Potentiates Selenocystine-Induced Apoptosis in Human Hepatocellular Carcinoma Cells by Enhancement of Cellular Uptake and Activation of ROS-Mediated DNA Damage. PloS One. 2013, 8, 5.
  • Jaafari, A.; Mouse, H. A.; Rakib, E. M.; Tilaoui, M.; Benbakhta, C.; Boulli, A.; Abbad, A.; Zyad, A. Chemical Composition and Anti-Tumor Activity of Different Wild Varieties of Moroccan Thyme. Rev. Bras. Farmacogn. 2007, 17(4), 477–491. DOI: 10.1590/S0102-695X2007000400002.
  • Okamura, K.; Iwakami, S.; Matsunaga, T. Biological Activity of Monoterpenes from Trees. Toyama-Ken Yakuji Kenkyusho Nenpo. 1993, 20, 95–101.
  • Saleh, M.; Hashem, F.; Glombitza, K. Cytotoxicity and in Vitro Effects on Human Cancer Cell Lines of Volatiles of Apium Graveolens Var Filicinum. Pharm. Pharmacol. Lett. 1998, 8(2), 97–99.
  • Silva, S. L. D.; Figueiredo, P. C. M.; Yano, T. Cytotoxic Evaluation of Essential Oil from Zanthoxylum Rhoifolium Lam. Leaves. Acta Amazon. 2007, 37(2), 281–286. DOI: 10.1590/S0044-59672007000200015.
  • Ali, H.; Al-Khalifa, A. R.; Aouf, A.; Boukhebti, H.; Farouk, A. Effect of Nanoencapsulation on Volatile Constituents, and Anti-Oxidant and Anticancer Activities of Algerian Origanum Glandulosum Desf. Essential Oil. Sci. Rep. 2020, 10(1), 1–9. DOI: 10.1038/s41598-019-56847-4.
  • Jayakumar, S.; Madankumar, A.; Asokkumar, S.; Raghunandhakumar, S.; Kamaraj, S.; Divya, M. G. J.; Devaki, T. Potential Preventive Effect of Carvacrol against Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rats. Mol. Cell. Biochem. 2012, 360(1–2), 51–60. DOI: 10.1007/s11010-011-1043-7.
  • Paramasivam, A.; Sambantham, S.; Shabnam, J.; Raghunandhakumar, S.; Anandan, B.; Rajiv, R.; Priyadharsini, J. V.; Jayaraman, G. Anti-Cancer Effects of Thymoquinone in Mouse Neuroblastoma (Neuro-2a) Cells through Caspase-3 Activation with Down-Regulation of XIAP. Toxicol. Lett. 2012, 213(2), 151–159. DOI: 10.1016/j.toxlet.2012.06.011.
  • Slamenova, D.; Horvathova, E.; Sramkova, M.; Marsalkova, L. DNA-Protective Effects of Two Components of Essential Plant Oils Carvacrol and Thymol on Mammalian Cells Cultured in Vitro. Neoplasma. 2007, 54((2)), 108.
  • Stammati, A.; Bonsi, P.; Zucco, F.; Moezelaar, R.; Alakomi, H.-L.; von Wright, A. Toxicity of Selected Plant Volatiles in Microbial and Mammalian Short-Term Assays. Food Chem. Toxicol. 1999, 37(8), 813–823. DOI: 10.1016/S0278-6915(99)00075-7.
  • Hirobe, C.; Qiao, Z. S.; Takeya, K.; Itokawa, H. Cytotoxic Principles from Majorana Syriaca. J. Nat. Med. 1998, 52(1), 74–77.
  • Yin, Q. H.; Yan, F. X.; Zu, X. Y.; Wu, Y. H.; Wu, X. P.; Liao, M. C.; Deng, S. W.; Yin, L. L.; Zhuang, Y. Z. Anti-Proliferative and Pro-Apoptotic Effect of Carvacrol on Human Hepatocellular Carcinoma Cell Line HepG-2. Cytotechnology. 2012, 64(1), 43–51. DOI: 10.1007/s10616-011-9389-y.
  • Mesa-Arango, A. C.; Montiel-Ramos, J.; Zapata, B.; Duran, C.; Betancur-Galvis, L.; Stashenko, E. Citral and Carvone Chemotypes from the Essential Oils of Colombian Lippia Alba (Mill.) NE Brown: Composition, Cytotoxicity and Anti-Fungal Activity. Memorias Do Instituto Oswaldo Cruz. 2009, 104(6), 878–884. DOI: 10.1590/S0074-02762009000600010.
  • Aydinn, E.; Tarrkez, H.; Keleay, M. S. Potential Anticancer Activity of Carvone in N2a Neuroblastoma Cell Line. Toxicol. Ind. Health. 2015, 31(8), 764–772. DOI: 10.1177/0748233713484660.
  • Carnesecchi, S.; Langley, K.; Exinger, F.; Gosse, F.; Raul, F. Geraniol, a Component of Plant Essential Oils, Sensitizes Human Colonic Cancer Cells to 5-Fluorouracil Treatment. J. Pharmacol. Exp. Ther. 2002, 301(2), 625–630. DOI: 10.1124/jpet.301.2.625.
  • Carnesecchi, S.; Bras-Gonsalves, R.; Bradaia, A.; Zeisel, M.; Gosss, F.; Poupon, M.-F.; Raul, F. Geraniol, a Component of Plant Essential Oils, Modulates DNA Synthesis and Potentiates 5-Fluorouracil Efficacy on Human Colon Tumor Xenografts. Cancer Lett. 2004, 215(1), 53–59. DOI: 10.1016/j.canlet.2004.06.019.
  • Bhattacharjee, B.; Chatterjee, J. Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis. Asian Pac. J. Cancer Prev. 2013, 14(6), 3735–3742. DOI: 10.7314/APJCP.2013.14.6.3735.
  • Burke, Y. D.; Stark, M. J.; Roach, S. L.; Sen, S. E.; Crowell, P. L. Inhibition of Pancreatic Cancer Growth by the Dietary Isoprenoids Farnesol and Geraniol. Lipids. 1997, 32(2), 151. DOI: 10.1007/s11745-997-0019-y.
  • Polo, M. P.; De Bravo, M. G. Effect of Geraniol on Fatty-Acid and Mevalonate Metabolism in the Human Hepatoma Cell Line Hep G2. Biochem. Cell Biol. 2006, 84(1), 102–111. DOI: 10.1139/o05-160.
  • Pattanayak, M.; Seth, P.; Smita, S.; Gupta, S. K. Geraniol and Limonene Interaction with 3-Hydroxy-3-Methylglutaryl-CoA (Hmg-coa) Reductase for Their Role as Cancer Chemo-Preventive Agents. J. Proteomics Bioinform. 2009, 2, 466–474.
  • Carnesecchi, S.; Schneider, Y.; Ceraline, J.; Duranton, B.; Gosse, F.; Seiler, N.; Raul, F. Geraniol, a Component of Plant Essential Oils, Inhibits Growth and Polyamine Biosynthesis in Human Colon Cancer Cells. J. Pharmacol. Exp. Ther. 2001, 298(1), 197–200.
  • Zheng, G. Q.; Kenney, P. M.; Lam, L. K. Potential Anticarcinogenic Natural Products Isolated from Lemongrass Oil and Galanga Root Oil. J. Agric. Food Chem. 1993, 41(2), 153–156. DOI: 10.1021/jf00026a001.
  • Cardozo, M. N. T.; de Conti, A.; Ong, T. P.; Scolastici, C.; Purgatto, E.; Horst, M. A.; Bassoli, B. K.; Moreno, F. S. Chemopreventive Effects of β-ionone and Geraniol during Rat Hepatocarcinogenesis Promotion: Distinct Actions on Cell Proliferation, Apoptosis, HMGCoA Reductase, and RhoA. J. Nutr. Biochem. 2011, 22(2), 130–135. DOI: 10.1016/j.jnutbio.2009.12.007.
  • Ong, T. P.; Heidor, R.; de Conti, A.; Dagli, M. L. C. Z.; Moreno, F. S. Farnesol and Geraniol Chemopreventive Activities during the Initial Phases of Hepatocarcinogenesis Involve Similar Actions on Cell Proliferation and DNA Damage, but Distinct Actions on Apoptosis, Plasma Cholesterol and HMGCoA Reductase. Carcinogenesis. 2006, 27(6), 1194–1203. DOI: 10.1093/carcin/bgi291.
  • Hafner, S.; El Gaafary, M.; Schmidt, C. Q.; Syrovets, T.; Simmet, T. Natural Sesquiterpene Lactones Induce Apoptotic Cell Death in Prostate Cancer Cells in Vitro and in Vivo. Faseb. J. 2019, 33((1_supplement)), 816.16.
  • Takasaki, M.; Konoshima, T.; Fujitani, K.; Yoshida, S.; Nishimura, H.; Tokuda, H.; Nishino, H.; Iwashima, A.; Kozuka, M. Inhibitors of Skin-Tumor Promotion. VIII.: Inhibitory Effects of Euglobals and Their Related Compounds on Epstein-Barr Virus Activation. (1). Chem. Pharm. Bull. 1990, 38(10), 2737–2739. DOI: 10.1248/cpb.38.2737.
  • Grana, X.; Reddy, E. P. Cell Cycle Control in Mammalian Cells: Role of Cyclins, Cyclin Dependent Kinases (Cdks), Growth Suppressor Genes and Cyclin-Dependent Kinase Inhibitors (Ckis). Oncogene. 1995, 11(2), 211–220.
  • Cell Cycle, M. M.;. Checkpoints and Their Inactivation in Human Cancer. Cell Prolif. 2000, 33(5), 261–274. DOI: 10.1046/j.1365-2184.2000.00191.x.
  • Pavletich, N. P.;. Mechanisms of Cyclin-Dependent Kinase Regulation: Structures of CDKS, Their Cyclin Activators, and CIP and INK4 Inhibitors. J. Mol. Biol. 1999, 287(5), 821–828. DOI: 10.1006/jmbi.1999.2640.
  • Buechi, G.; Hofheinz, W.; Paukstelis, J. V. Synthesis of (-)-aromadendrene and Related Sesquiterpenes. J. Am. Chem. Soc. 1969, 91(23), 6473–6478. DOI: 10.1021/ja01051a051.
  • Boukamp, P.; Petrussevska, R. T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N. E. Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line. J. Cell Biol. 1988, 106(3), 761–771. DOI: 10.1083/jcb.106.3.761.
  • Park, D. J.; Nakamura, H.; Chumakov, A. M.; Said, J. W.; Miller, C. W.; Chen, D. L.; Koeffler, H. P. Transactivational and DNA Binding Abilities of Endogenous P53 in P53 Mutant Cell Lines. Oncogene. 1994, 9(7), 1899–1906.
  • Kastan, M. B.; Canman, C. E.; Leonard, C. J. P53, Cell Cycle Control and Apoptosis: Implications for Cancer. Cancer Metastasis Rev. 1995, 14(1), 3–15. DOI: 10.1007/BF00690207.
  • Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. Br. J. Cancer. 1972, 26(4), 239–240. DOI: 10.1038/bjc.1972.33.
  • Schwartzman, R. A.; Cidlowski, J. A. Apoptosis: The Biochemistry and Molecular Biology of Programmed Cell Death. Endocr. Rev. 1993, 14(2), 133–151. DOI: 10.1210/edrv-14-2-133.
  • Bruce-Keller, A. J.; Begley, J. G.; Fu, W.; Butterfield, D. A.; Bredesen, D. E.; Hutchins, J. B.; Hensley, K.; Mattson, M. P. Bcl-2 Protects Isolated Plasma and Mitochondrial Membranes against Lipid Peroxidation Induced by Hydrogen Peroxide and Amyloid β-peptide. J. Neurochem. 1998, 70(1), 31–39. DOI: 10.1046/j.1471-4159.1998.70010031.x.
  • Perry, G.; Raina, A. K.; Nunomura, A.; Wataya, T.; Sayre, L. M.; Smith, M. A. How Important Is Oxidative Damage? Lessons from Alzheimer’s Disease. Free Radic. Biol. Med. 2000, 28(5), 831–834. DOI: 10.1016/S0891-5849(00)00158-1.
  • Yamakoshi, Y.; Murata, M.; Shimizu, A.; Homma, S. Isolation and Characterization of Macrocarpals BG Antibacterial Compounds from Eucalyptus Macrocarpa. Biosci. Biotech. Bioch. 1992, 56(10), 1570–1576. DOI: 10.1271/bbb.56.1570.
  • Park, J. H.; Kim, J. K. Pristimerin, a Naturally Occurring Triterpenoid, Attenuates Tumorigenesis in Experimental Colitis-Associated Colon Cancer. Phytomedicine. 2018, 42, 164–171. DOI: 10.1016/j.phymed.2018.03.033.
  • Domingues, R.; Sousa, G.; Silva, C.; Freire, C.; Silvestre, A.; Neto, C. P. High Value Triterpenic Compounds from the Outer Barks of Several Eucalyptus Species Cultivated in Brazil and in Portugal. Ind. Crops Prod. 2011, 33(1), 158–164. DOI: 10.1016/j.indcrop.2010.10.006.
  • Chen, G. Q.; Shen, Y.; Anti-Tumor, D. H. Effect and Its Mechanisms of Ursolic Acid on Human Esophageal Carcinoma Cell ECA-109 in Vivo. Chinese J. Cancer Res. 2008, 20(3), 205–210. DOI: 10.1007/s11670-008-0205-y.
  • Li, J.; Guo, W. J.; Yang, Q. Y. Effects of Ursolic Acid and Oleanolic Acid on Human Colon Carcinoma Cell Line HCT15. World J. Gastroenterol. 2002, 8((3)), 493. DOI: 10.3748/wjg.v8.i3.493.
  • Wada, S. I.; Iida, A.; Tanaka, R. Screening of Triterpenoids Isolated from Phyllanthus Flexuosus for DNA Topoisomerase Inhibitory Activity. J. Nat. Prod. 2001, 64(12), 1545–1547. DOI: 10.1021/np010176u.
  • Deng, J.-Z.; Starck, S. R.; Hecht, S. M. DNA Polymerase B Inhibitors from Baeckea Gunniana. J. Nat. Prod. 1999, 62(12), 1624–1626. DOI: 10.1021/np990240w.
  • Topcu, G.; Yapar, G.; Turkmen, Z.; Goren, A. C.; Oksuz, S.; Schilling, J. K.; Kingston, D. G. Ovarian Antiproliferative Activity Directed Isolation of Triterpenoids from Fruits of Eucalyptus Camaldulensis Dehnh. Phytochem. Lett. 2011, 4(4), 421–425. DOI: 10.1016/j.phytol.2011.05.002.
  • Sadat Shandiz, S. A.; Shafiee Ardestani, M.; Shahbazzadeh, D.; Assadi, A.; Ahangari Cohan, R.; Asgary, V.; Salehi, S. Novel Imatinib-loaded Silver Nanoparticles for Enhanced Apoptosis of Human Breast Cancer MCF-7 Cells. Artif. Cell. Nanomed. B. 2017, 45(6), 1082–1091. DOI: 10.1080/21691401.2016.1202257.
  • Ranjbar, T.; Asghari-Moghaddam, N.; Mohammadgholi, A. Investigating the Effect of Biosynthetic Nano-Silver on HDAC8 Expression in Lung Cancer A549 Cell Line. Feyz. 2018, 22(5), 442–449.
  • Ali, A. N. M.; Kareem, S. M.; Ghasemian, A.; Ghasemian, A.; Ghasemian, A.; Ghasemian, A. Assessment of MMP29 Gene Expression and Silver Nanoparticles Effects on Colon Cancer Cell Line (HT29). J. Gastrointest. Cancer. 2019, 50(1), 1–4. DOI: 10.1007/s12029-018-0179-z.
  • Sulaiman, G. M.; Mohammed, W. H.; Marzoog, T. R.; Al-Amiery, A. A. A.; Kadhum, A. A. H.; Mohamad, A. B. Green Synthesis, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Eucalyptus Chapmaniana Leaves Extract. Asian Pac. J. Trop. Biomed. 2013, 3(1), 58–63. DOI: 10.1016/S2221-1691(13)60024-6.
  • Kuo, P.-C.; Damu, A. G.; Lee, K.-H.; Wu, T.-S. Cytotoxic and Antimalarial Constituents from the Roots of Eurycoma Longifolia. Bioorg. Med. Chem. 2004, 12(3), 537–544. DOI: 10.1016/j.bmc.2003.11.017.
  • Tee, T. T.; Cheah, Y. H.; Hawariah, L. P. A. F16, a Fraction from Eurycoma Longifolia Jack Extract, Induces Apoptosis via a Caspase-9-Independent Manner in MCF-7 Cells. Anticancer Res. 2007, 27((5A)), 3425–3430.
  • Al-Snafi, A. E.;. The Pharmacological and Therapeutic Importance of Eucalyptus Species Grown in Iraq. IOSR J. Pharm. 2014, 7(3), 72–91.
  • Nallappan, D.; Tollamadugu, P. N.; Fauzi, A. N.; Yaacob, N. S.; Pasupuleti, V. R. Biomimetic Synthesis and Anticancer Activity of Eurycoma Longifolia Branch Extract-Mediated Silver Nanoparticles. IET Nanobiotechnol. 2017, 11(7), 889–897. DOI: 10.1049/iet-nbt.2016.0181.
  • Balaji, S.; Mandal, B. K.; Ranjan, S.; Dasgupta, N.; Chidambaram, R. Nano-Zirconi-Evaluation of Its Antioxidant and Anticancer Activity. J. Photoch. Photobio. B. 2017, 170, 125–133. DOI: 10.1016/j.jphotobiol.2017.04.004.
  • Islam, F.; Khatun, H.; Ghosh, S.; Ali, M. M.; Khanam, J. A. Bioassay of Eucalyptus Extracts for Anticancer Activity against Ehrlich Ascites Carcinoma (Eac) Cells in Swiss Albino Mice. Asian Pac. J. Trop. Biomed. 2012, 2(5), 394–398. DOI: 10.1016/S2221-1691(12)60063-X.
  • Islam, F.; Khanam, J. A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S. R.; Lam, A. K. Y. A p‐Menth‐1‐ene‐4, 7‐diol (EC‐1) from Eucalyptus Camaldulensis Dhnh Triggers Apoptosis and Cell Cycle Changes in Ehrlich Ascites Carcinoma Cells. Phytother Res. 2015, 29(4), 573–581. DOI: 10.1002/ptr.5288.
  • Chen, G. Q.; Yao, Z. W.; Zheng, W. P.; Chen, L.; Duan, H.; Shen, Y. Combined Antitumor Effect of Ursolic Acid and 5-Fluorouracil on Human Esophageal Carcinoma Cell Eca-109 in Vitro. Chinese J. Cancer Res. 2010, 22(1), 62–67. DOI: 10.1007/s11670-010-0062-3.
  • Islam, F.; Khanam, J. A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S. R.; Reza, M. A.; Ali, M.; Rabbi, M.; Gopalan, V. A p-Menth-1-ene-4, 7-diol (EC-1) from Eucalyptus Camaldulensis Dhnh. Triggers Apoptosis and Cell Cycle Changes in Ehrlich Ascites Carcinoma Cells. Phytother Res. 2015, 29(4), 573–581.
  • Ali, H.; Yesmin, R.; Satter, M. A.; Habib, R.; Yeasmin, T. Antioxidant and Antineoplastic Activities of Methanolic Extract of Kaempferia Galanga Linn. Rhizome against Ehrlich Ascites Carcinoma Cells. J. King Saud Univ. Sci. 2018, 30(3), 386–392. DOI: 10.1016/j.jksus.2017.05.009.
  • Adeniyi, B. A.; Ayepola, O. O.; Adu, F. D. The Antiviral Activity of Leaves of Eucalyptus Camaldulensis (Dehn) and Eucalyptus Torelliana (R. Muell). Pak. J. Pharm. Sci. 2015, 28(5), 1773–1776.
  • Islam, M. T.; da Mata, A. M. O. F.; de Aguiar, R. P. S.; Paz, M. F. C. J.; de Alencar, M. V. O. B.; Ferreira, P. M. P.; de Carvalho Melo- Cavalcante, A. A. Therapeutic Potential of Essential Oils Focusing on Diterpenes. Phytother Res. 2014, 30(9), 1420–1444.
  • Takasaki, M.; Konoshima, T.; Etoh, H.; Singh, I. P.; Tokuda, H.; Nishino, H. Cancer Chemopreventive Activity of Euglobal-G1 from Leaves of Eucalyptus Grandis. Cancer Lett. 2000, 155(1), 61–65.
  • Serafino, A.; Vallebona, P. S.; Andreola, F.; Zonfrillo, M.; Mercuri, L.; Federici, M.; Pierimarchi, P. Stimulatory Effect of Eucalyptus Essential Oil on Innate Cell-mediated Immune Response. BMC Immunol. 2008, 9(1), 17. DOI: 10.1186/1471-2172-9-17.
  • Bhagat, M.; Sharma, V.; Saxena, A. K. Anti-proliferative Effect of Leaf Extracts of Eucalyptus Citriodora against Human Cancer Cells in Vitro and in Vivo. Indian J. Biochem. Bio. 2012, 49, 451–457.
  • Aydın, T.; Yurtvermez, B.; Şentürk, M.; Kazaz, C.; Inhibitory, Ç. A. Effects of Metabolites Isolated from Artemisia Dracunculus L. Against the Human Carbonic Anhydrase I (Hca I) and II (Hca II). Rec. Nat. Prod. 2019, 13((3)), 225. DOI: 10.25135/rnp.102.18.07.329.
  • Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M. S.; Vijayakumar, R.; Baskaran, D. Role of Essential Oils in Food Safety: Antimicrobial and Antioxidant Applications. Grain Oil Sci. Tech. 2019, 2(2), 49–55. DOI: 10.1016/j.gaost.2019.03.001.
  • Lee, S. J.; Depoortere, I.; Hatt, H. Therapeutic Potential of Ectopic Olfactory and Taste Receptors. Nat. Rev. Drug Discov. 2019, 18(2), 116–138.
  • Tyagi, A. K.; Malik, A. Antimicrobial Potential and Chemical Composition of Eucalyptus Globulus Oil in Liquid and Vapour Phase against Food Spoilage Microorganisms. Food Chem. 2011, 126(1), 228–235. DOI: 10.1016/j.foodchem.2010.11.002.
  • Dima, C.; Dima, S. Essential Oils in Foods: Extraction, Stabilization, and Toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. DOI: 10.1016/j.cofs.2015.07.003.
  • Baser, K. H. C.; Buchbauer, G. Essential Oils Science, Technology, and Applications; CRC Press: Florida, Estados Unidos, 2010; Vol. 10. pp 1–7
  • Adams, S. A.;. Benefaction in Luke’s Gospel: Jonathan Marshall, Jesus, Patrons, and Benefactors: Roman Palestine and the Gospel of Luke. Expo. Times. 2010, 121(4), 186. DOI: 10.1177/00145246101210040502.
  • Darben, T.; Cominos, B.; Lee, C. T. Topical Eucalyptus Oil Poisoning. Aust. J. Dermatol. 1998, 39(4), 265–267. DOI: 10.1111/j.1440-0960.1998.tb01488.x.
  • Kumar, K. J.; Sonnathi, S.; Anitha, C.; Santhoshkumar, M. Eucalyptus Oil Poisoning. Toxicol. Int. 2015, 22(1), 170–171. DOI: 10.4103/0971-6580.172259.
  • Pandey, S.; Shaw, N. P.; Hewavitharana, K. A. Review of Procedures Used for the Extraction of Anti-cancer Compounds from Tropical Plants. Anti-Cancer Agent Me. 2015, 15(3), 314–326. DOI: 10.2174/1871520614666141114202104.
  • Batish, D. R.; Singh, H. P.; Kohli, R. K.; Kaur, S. Eucalyptus Essential Oil as a Natural Pesticide. For. Ecol. Manag. 2008, 256(12), 2166–2174. DOI: 10.1016/j.foreco.2008.08.008.
  • Golmakani, M. T.; Rezaei, K. Comparison of Microwave-assisted Hydrodistillation with the Traditional Hydrodistillation Method in the Extraction of Essential Oils from Thymus Vulgaris L. Food Chem. 2008, 109(4), 925–930. DOI: 10.1016/j.foodchem.2007.12.084.
  • Gupta, D.; Shah, M.; Shirvastav, P. Microwave-assisted Extraction of Eucalyptus Citriodora Oil and Comparison with Conventional Hydrodistillation. Middle East J. Sci. Res. 2013, 16(5), 702–705.
  • Buckley, H. L.; Beck, A. R.; Mulvihill, M. J.; Douskey, M. C. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory. J. Chem. Educ. 2013, 90(6), 771–774.
  • Ameer, K.; Shahbaz, H. M.; Kwon, J. H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16(2), 295–315. DOI: 10.1111/1541-4337.12253.
  • Sajid, M.; Plotka-Wasylka, J. Combined Extraction and Microextraction Techniques: Recent Trends and Future Perspectives. Tr. Anal. Chem. 2018, 103, 74–86. DOI: 10.1016/j.trac.2018.03.013.
  • Uzel, R. A.; Microwave-Assisted Green Extraction Technology for Sustainable Food Processing. Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing, 2018, 159.
  • Ganzler, K.; Salgó, A.; Valkó, K. Microwave Extraction: A Novel Sample Preparation Method for Chromatography. J. Chromatogr. A. 1986, 371, 299–306. DOI: 10.1016/S0021-9673(01)94714-4.
  • Li, K.; Landriault, M.; Fingas, M.; Llompart, M. Accelerated Solvent Extraction (ASE) of Environmental Organic Compounds in Soils Using a Modified Supercritical Fluid Extractor. J. Hazard. Mater. 2003, 102(1), 93–104. DOI: 10.1016/S0304-3894(03)00204-8.
  • Hao, J. Y.; Han, W.; Xue, B. Y.; Deng, X. Microwave-Assisted Extraction of Artemisinin from Artemisia Annua L. Sep. Purif. Technol. 2002, 28(3), 191–196. DOI: 10.1016/S1383-5866(02)00043-6.
  • Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave Assisted Extraction—an Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharma. Reviews. 2007, 1(1), 7–18.
  • Nitthiyah, J.; Nour, A. H.; Kantasamy, R.; Akindoyo, J. O. Microwave Assisted Hydrodistillation–An Overview of Mechanism and Heating Properties. Aust. J. Basic Appl. Sci. 2017, 11, 22–29.
  • Fractional, R. E.;. Separation of SCF Extracts from Marjoram Leaves: Mass Transfer and Optimization. J. Supercrit. Fluid. 1992, 5(4), 256–261. DOI: 10.1016/0896-8446(92)90016-D.
  • Reverchon, E.; De Marco, I. Supercritical Fluid Extraction and Fractionation of Natural Matter. J. Supercrit. Fluid. 2006, 38(2), 146–166.
  • Rodrigues, V. H.; de Melo, M. M.; Portugal, I.; Silva, C. M. Supercritical Fluid Extraction of Eucalyptus Globulus Leaves. Experimental and Modelling Studies of the Influence of Operating Conditions and Biomass Pre-treatment upon Yields and Kinetics. Sep. Purif. Technol. 2018, 191, 173–181. DOI: 10.1016/j.seppur.2017.09.026.
  • Cunha, S. C.; Fernandes, J. O. Extraction Techniques with Deep Eutectic Solvents. Tr. Anal. Chem. 2018, 105, 225–239. DOI: 10.1016/j.trac.2018.05.001.
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (Dess) and Their Applications. Chem. Rev. 2014, 114(21), 11060–11082. DOI: 10.1021/cr300162p.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. Journal of the American Chemical Society. 2004, 126(29), 9142–9147. DOI: 10.1021/ja048266j.
  • Yan, Y. C.; Rashmi, W.; Khalid, M.; Shahbaz, K.; Gupta, T. C. S. M.; Mase, N. Potential Application of Deep Eutectic Solvents in Heat Transfer Application. J. Eng. Sci. Technol. 2017, 12, 1–14.
  • Vilkhu, K.; Mawson, R.; Simons, L.; Applications, B. D. Opportunities for Ultrasound Assisted Extraction in the Food Industry-A Review. Innov. Food Sci. Emerg. Technol. 2008, 9(2), 161–169. DOI: 10.1016/j.ifset.2007.04.014.
  • Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrasonics Sonochemistry, 2020. 105325.
  • Quintero Quiroz, J.; Naranjo Duran, A. M.; Silva Garcia, M.; Ciro Gomez, G. L.; Rojas Camargo, J. J. Ultrasound-Assisted Extraction of Bioactive Compounds from Annatto Seeds, Evaluation of Their Antimicrobial and Antioxidant Activity, and Identification of Main Compounds by LC/ESI-MS Analysis. Int. J. Food Sci. 2019, 1–9. DOI: 10.1155/2019/3721828.
  • Plaza, M.; Amigo-Benavent, M.; Del Castillo, M. D.; Ibáñez, E.; Herrero, M. Facts about the Formation of New Antioxidants in Natural Samples after Subcritical Water Extraction. Int. J. Food Sci. 2010, 43(10), 2341–2348.
  • Munir, M. T.; Li, B.; Boiarkina, I.; Baroutian, S.; Yu, W.; Young, B. R. Phosphate Recovery from Hydrothermally Treated Sewage Sludge Using Struvite Precipitation. Bioresour. Technol. 2017, 239, 171–179. DOI: 10.1016/j.biortech.2017.04.129.
  • Zhang, Z.; Baroutian, S.; Munir, M. T.; Young, B. R. Variation in Metals during Wet Oxidation of Sewage Sludge. Bioresour. Technol. 2017, 245, 234–241. DOI: 10.1016/j.biortech.2017.08.164.
  • Wiboonsirikul, J.; Adachi, S. Extraction of Functional Substances from Agricultural Products or By-Products by Subcritical Water Treatment. J. Food Sci. Technol. 2008, 14(4), 319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.