766
Views
5
CrossRef citations to date
0
Altmetric
Review

Bread baking Review: Insight into Technological Aspects in order to Preserve Nutrition

&

References

  • Vanin, F. M.; Lucas, T.; Trystram, G. Crust Formation and Its Role during Bread Baking. Trends Food Sci. Technol. 2009, 20(8), 333–343. DOI: 10.1016/j.tifs.2009.04.001.
  • Bloksma, A. H. Dough Structure, Dough Reology, and Baking Quality. Cereal Foods Word. 1990, 35(2), 237–244.
  • Cauvain, S. P. Bread Making-Improving Quality; CRC: New York, 2003.
  • Westerlund, E.; Theander, O.; Aman, P. Effects of Baking on Protein and Aqueous Ethanol ~ Extractable Carbohydrate in White Bread Fractions. J. Cereal Sci. 1989, 10, 139–147. DOI: 10.1016/S0733-5210(89)80042-6
  • Bråthen, E.; Knutsen, S. H. Effect of Temperature and Time on the Formation of Acrylamide in Starch-Based and Cereal Model Systems, Flat Breads and Bread. Food Chem. 2005, 92(4), 693–700. DOI: 10.1016/j.foodchem.2004.08.030.
  • Capuano, E.; Ferrigno, A.; Acampa, I.; Ait-Ameur, L.; Fogliano, V. Characterization of the Maillard Reaction in Bread Crisps. Eur. Food Res. Technol. 2008, 228(2), 311–319. DOI: 10.1007/s00217-008-0936-5.
  • Keramat, J.; LeBail, A.; Prost, C.; Jafari, M. Acrylamide in Baking Products: A Review Article. Food Bioprocess. Technol. 2011, 4(4), 530–543. DOI: 10.1007/s11947-010-0495-1.
  • Shen, Y.; Chen, G.; Li, Y. Bread Characteristics and Antioxidant Activities of Maillard Reaction Products of White Pan Bread Containing Various Sugars. LWT. 2018, 95, 308–315. DOI: 10.1016/j.lwt.2018.05.008.
  • Thompson, L. U.; Button, C. L.; Jenkins, D. J. Phytic Acid and Calcium Affect the in Vitro Rate of Navy Bean Starch Digestion and Blood Glucose Response in Humans. Am. J. Clin. Nutr. 1987, 46(3), 467–473. DOI: 10.1093/ajcn/46.3.467.
  • IARC (International Agency for Research on Cancer). IRAC Monographs on the Evaluation of Carcinogenic Risk for Chemicals to Humans; Lyon (France), 1994.
  • Gilani, G. M.; Canada, A. Effects of Antinutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2014, (May 2005).
  • Consultation, F. A. O. E. Dietary Protein Quality Evaluation in Human Nutrition, 2011.
  • Mondal, A.; Datta, A. K. Bread Baking - A Review. J. Food Eng. 2008, 86(4), 465–474. DOI: 10.1016/j.jfoodeng.2007.11.014.
  • Ahrné, L.; Andersson, C.-G.; Floberg, P.; Rosén, J.; Lingnert, H. Effect of Crust Temperature and Water Content on Acrylamide Formation during Baking of White Bread: Steam and Falling Temperature Baking. LWT - Food Sci. Technol. 2007, 40(10), 1708–1715. DOI: 10.1016/j.lwt.2007.01.010.
  • Purlis, E.; Salvadori, V. O. Bread Browning Kinetics during Baking. J. Food Eng. 2007, 80(4), 1107–1115. DOI: 10.1016/j.jfoodeng.2006.09.007.
  • Sui, X.; Yap, P. Y.; Zhou, W. Anthocyanins during Baking: Their Degradation Kinetics and Impacts on Color and Antioxidant Capacity of Bread. Food Bioprocess Technol. 2015, 8(5), 983–994. DOI: 10.1007/s11947-014-1464-x.
  • Shittu, T. A.; Raji, A. O.; Sanni, L. O. Bread from Composite Cassava-Wheat Flour: I. Effect of Baking Time and Temperature on Some Physical Properties of Bread Loaf. Food Res. Int. 2007, 40(2), 280–290. DOI: 10.1016/j.foodres.2006.10.012.
  • Izadi Najafabadi, L.; Le-Bail, A.; Hamdami, N.; Monteau, J.-Y.; Keramat, J. Impact of Baking Conditions and Storage Temperature on Staling of Fully and Part-Baked Sangak Bread. J. Cereal Sci. 2014, 60(1), 151–156. DOI: 10.1016/j.jcs.2014.02.004.
  • Mondal, A.; Datta, A. K. Investigation of the Process Parameters Using Response Surface Methodology on the Quality of Crustless Bread Baked in a Water-Spraying Oven. J. Food Process Eng. 2011, 34(6), 1819–1837. DOI: 10.1111/j.1745-4530.2009.00560.x.
  • Zanoni, B.; Peri, C. A.; Pierucci, S. A Study of the Bread-baking Process. I: A Phenomenological Model. J. Food Eng. 1993, 19(4), 389–398. DOI: 10.1016/0260-8774(93)90027-H.
  • Czuchajowska, Z.; Pomeranz, Y.; Jeffers, H. C. Water Activity and Moisture Content of Dough and Bread. Cereal Chem. 1989, 66(2), 128–132.
  • Park, C. S.; Baik, B.-K. Influences of Baking and Thawing Conditions on Quality of Par-Baked French Bread. Cereal Chem. 2007, 84(1), 38–43. DOI: 10.1094/CCHEM-84-1-0038.
  • ERBAS, M.; SEKERCI, H.; ARSLAN, S.; DURAK, A. N. Effect of Sodium Metabisulfite Addition and Baking Temperature on Maillard Reaction in Bread. J. Food Qual. 2012, 35(2), 144–151. DOI: 10.1111/j.1745-4557.2012.00439.x.
  • Purlis, E.; Salvadori, V. O. Modelling the Browning of Bread during Baking. Food Res. Int. 2009, 42(7), 865–870. DOI: 10.1016/j.foodres.2009.03.007.
  • Ratnayake, W. S.; Otani, C.; Jackson, D. S. DSC Enthalpic Transitions during Starch Gelatinisation in Excess Water, Dilute Sodium Chloride and Dilute Sucrose Solutions. J. Sci. Food Agric. 2009, 89(12), 2156–2164. DOI: 10.1002/jsfa.3709.
  • Biliaderis, C. G.; Maurice, T. J.; Vose, J. R. Starch Gelatinization Phenomena Studied Differential Scanning Calorimetry. J. Food Sci. 1980, 45, 1669–1674. DOI: 10.1111/j.1365-2621.1980.tb07586.x.
  • Donovan, J. W. Phase Transitions of the Starch-Water System. Biopolymers. 1979, 18(2), 263–275. DOI: 10.1002/bip.1979.360180204.
  • Weegels, P. L.; de Groot, A. M. G.; Verhoek, J. A.; Hamer, R. J. Effects on Gluten of Heating at Different Moisture Contents. II. Changes in Physico-Chemical Properties and Secondary Structure. J. Cereal Sci. 1994, 19(1), 39–47. DOI: 10.1006/jcrs.1994.1006.
  • Cuq, B.; Boutrot, F.; Redl, A.; Lullien-Pellerin, V. Study of the Temperature Effect on the Formation of Wheat Gluten Network: Influence on Mechanical Properties and Protein Solubility. J. Agric. Food Chem. 2000, 48(7), 2954–2959. DOI: 10.1021/jf991339b.
  • Schofield, J. D.; Bottomley, R. C.; Timmst, M. F.; Booth, M. R. The Effect of Heat on Wheat Gluten and the Involvement of Sulphydryl-Disulphide Interchange Reactions. 1983, 1, 241–253. DOI: 10.1016/S0733-5210(83)80012-5
  • Rouillé, J.; Chiron, H.; Colonna, P.; Della Valle, G.; Lourdin, D. Dough/Crumb Transition during French Bread Baking. J. Cereal Sci. 2010, 52(2), 161–169. DOI: 10.1016/j.jcs.2010.04.008.
  • Schirmera, M.; Jekle, M.; Becker, T. Quantification in Starch Microstructure as a Function of Baking Time. Procedia Food Sci. 2011, 1, 145–152. DOI: 10.1016/j.profoo.2011.09.023.
  • Bredariol, P.; Spatti, M.; Vanin, F. M. Different Baking Conditions May Produce Breads with Similar Physical Qualities but Unique Starch Gelatinization Behaviour. Lwt. 2019, 111(February), 737–743. DOI: 10.1016/j.lwt.2019.05.094.
  • Hansen, L. P.; Johnston, P. H.; Ferrel, R. E. Heatmoisture Effects on Wheat Flour. I. Physical and Chemical Changes of Flour Proteins Resulting from Thermal Processing. Cereal Chem. 1975, 52, 459–472.
  • Purlis, E. Browning Development in Bakery Products – A Review. J. Food Eng. 2010, 99(3), 239–249. DOI: 10.1016/j.jfoodeng.2010.03.008.
  • Yaylayan, V. A. Classification of the Maillard Reaction: A Conceptual Approach. Trends Food Sci. Technol. 1997, 81(January), 13–18. DOI: 10.1016/S0924-2244(96)20013-5.
  • Hodge, J. E. Dehydrated Foods, Chemistry of Browning Reactions in Model Systems. J. Agric. Food Chem. 1953, 1(15), 928–943. DOI: 10.1021/jf60015a004.
  • Martins, S. I. F. S.; Van Boekel, M. A. J. S. Food Chemistry Kinetics of the Glucose/Glycine Maillard Reaction Pathways : Influences of PH and Reactant Initial Concentrations. Food Chem. 2005, 92, 437–448. DOI: 10.1016/j.foodchem.2004.08.013
  • Martins, S. I. F. S.; Jongen, W. M. F.; Van Boekel, M. A. J. S. A Review of Maillard Reaction in Food and Implications to Kinetic Modelling. J. Cereal Sci. 2001, 11, 364–373.
  • Zanoni, B.; Peri, C.; Bruno, D. Modelling of Browning Kinetics of Bread Crust during Baking. LWT - Food Sci. Technol. 1995, 28(6), 604–609. DOI: 10.1016/0023-6438(95)90008-X.
  • Therdthai, N.; Zhou, W.; Jangchud, K. Modeling of the Effect of Relative Humidity and Temperature on Proving Rate of Rice-Flour-Based Dough. LWT - Food Sci. Technol. 2007, 40(6), 1036–1040. DOI: 10.1016/j.lwt.2006.06.002.
  • Xu, H.; Zhang, X.; Karangwa, E.; Xia, S. Correlating Enzymatic Browning Inhibition and Antioxidant Ability of Maillard Reaction Products Derived from Different Amino Acids. J. Sci. Food Agric. 2017, 97(12), 4210–4218. DOI: 10.1002/jsfa.8295.
  • Cust, A. E.; Van Bakel, M. M. E.; Halkjær, J.; Olsen, A.; Agnoli, C.; Psaltopoulou, T.; Buurma, E.; Sonestedt, E.; Rinaldi, S.; Tjønneland, A.; et al. Total Dietary Carbohydrate, Sugar, Starch and Fibre Intakes in the European Prospective Investigation into Cancer and Nutrition. European J. Clin. Nut. 2009, 37–60. DOI: 10.1038/ejcn.2009.74.
  • Dhital, S.; Warren, F. J.; Butterworth, P. J.; Ellis, P. R.; Gidley, M. J. Mechanisms of Starch Digestion by α -amylase—structural Basis for Kinetic Properties. Crit. Rev. Food Sci. Nutr. 2017, 57(5), 875–892. DOI: 10.1080/10408398.2014.922043.
  • Englyst, H. N.; Kingman, S. M.; Cummings, J. H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 43(2), 33–50.
  • Chen, X.; He, X.; Fu, X.; Huang, Q. In vitro Digestion and Physicochemical Properties of Wheat Starch/flour Modified by Heat-moisture Treatment. J. Cereal Sci. 2015, 63, 109–115. DOI: 10.1016/j.jcs.2015.03.003.
  • Jenkins, D. J. A.; Thorne, M. J.; Wolever, T. M. S.; Jenkins, A. L.; Rao, A. V.; Thompson, L. U. The Effect of Starch-protein Interaction in Wheat on the Glycemic Response and Rate of in Vitro Digestion. Am. J. Clin. Nutr. 1987, 45(5), 946–951. DOI: 10.1093/ajcn/45.5.946.
  • Kim, E. H.-J.; Petrie, J. R.; Motoi, L.; Morgenstern, M. P.; Sutton, K. H.; Mishra, S.; Simmons, L. D. Effect of Structural and Physicochemical Characteristics of the Protein Matrix in Pasta on in Vitro Starch Digestibility. Food Biophys. 2008, 3(2), 229–234. DOI: 10.1007/s11483-008-9066-7.
  • Wong, J. H.; Lau, T.; Cai, N.; Singh, J.; Pedersen, J. F.; Vensel, W. H.; Hurkman, W. J.; Wilson, J. D.; Lemaux, P. G.; Buchanan, B. B. Digestibility of Protein and Starch from Sorghum (Sorghum Bicolor) Is Linked to Biochemical and Structural Features of Grain Endosperm. J. Cereal Sci. 2009, 49(1), 73–82. DOI: 10.1016/j.jcs.2008.07.013.
  • Bøgh, K. L.; Madsen, C. B.; Gh, K. L. B. Ø.; Madsen, C. B. Food Allergens : Is There A Correlation between Stability to Digestion and Allergenicity? Food Allergens : Is There A Correlation between Stability to Digestion and Allergenicity? Critical Rev. Food Sci. Nut. 2016, 8398. DOI: 10.1080/10408398.2013.779569.
  • De Re, V.; Caggiari, L.; Tabuso, M.; Cannizzaro, R. The Versatile Role of Gliadin Peptides in Celiac Disease. Clin. Biochem. 2013, 46(6), 552–560. DOI: 10.1016/j.clinbiochem.2012.10.038.
  • Paschke, A. Aspects of Food Processing and Its Effect on Allergen Structure. Mol. Nutr. Food Res. 2009, 53(8), 959–962. DOI: 10.1002/mnfr.200800187.
  • Fiocchi, A.; Restani, P.; Riva, E.; Restelli, A. R.; Biasucci, G.; Galli, C. L.; Giovannini, M. Meat Allergy: II–Effects of Food Processing and Enzymatic Digestion on the Allergenicity of Bovine and Ovine Meats. J. Am. Coll. Nutr. 1995, 14(3), 245–250. DOI: 10.1080/07315724.1995.10718503.
  • Mondoulet, L.; Aty, E. P.; Rumare, M. F. D.; Eung, S. A. H.; Cheinmann, P. S.; Illemot, R. M. W.; Al, J. M. W.; Ernard, H. B. Influence of Thermal Processing on the Allergenicity of Peanut Proteins. J. Agric. Food Chem. 2005, 53(11), 4547–4553. DOI: 10.1021/jf050091p.
  • Pastorello, E. A.; Pompei, C.; Pravettoni, V.; Farioli, L.; Calamari, A. M.; Scibilia, J.; Robino, A. M.; Conti, A.; Iametti, S.; Fortunato, D.; et al. J. Allergy Clin. Immunol. 2003, 112(4), 775–783. DOI: 10.1067/mai.2003.1748
  • Davis, P. J.; Smales, C. M.; James, D. C. How Can Thermal Processing Modify the Antigenicity of Proteins? Allergy. 2001, 56, 56–60.
  • Pasini, G.; Simonato, B.; Giannattasio, M.; Peruffo, A. D. B.; Curioni, A. Modifications of Wheat Flour Proteins during in Vitro Digestion of Bread Dough, Crumb, and Crust: An Electrophoretic and Immunological Study. J. Agric. Food Chem. 2001, 49(5), 2254–2261. DOI: 10.1021/jf0014260.
  • Smith, F.; Pan, X.; Bellido, V.; Toole, G. A.; Gates, F. K.; Wickham, M. S. J.; Shewry, P. R.; Bakalis, S.; Padfield, P.; Mills, E. N. C. Digestibility of Gluten Proteins Is Reduced by Baking and Enhanced by Starch Digestion. Mol. Nutr. Food Res. 2015, 59(10), 2034–2043. DOI: 10.1002/mnfr.201500262.
  • Tsen, C. C.; Reddy, P. R. K.; El-Samahy, S. K.; Gehrke, C. W. The Maillard Reaction in Foods and Nutrition. In American Chemical Society; Society, A.C., Ed.; USA: Washington DC, 1983; pp 379–394.
  • Konings, E. J. M.; Ashby, P.; Hamlet, C. G.; Thompson, G. A. K. Acrylamide in Cereal and Cereal Products: A Review on Progress in Level Reduction. Food Addit. Contam. 2007, 24(sup1), 47–59. DOI: 10.1080/02652030701242566.
  • Capuano, E.; Fogliano, V. Acrylamide and 5-Hydroxymethylfurfural (HMF): A Review on Metabolism, Toxicity, Occurrence in Food and Mitigation Strategies. LWT - Food Sci. Technol. 2011, 44(4), 793–810. DOI: 10.1016/j.lwt.2010.11.002.
  • Surdyk, N.; Rosén, J.; Andersson, R.; Aman, P. Effects of Asparagine, Fructose, and Baking Conditions on Acrylamide Content in Yeast-Leavened Wheat Bread. J. Agric. Food Chem. 2004, 52(7), 2047–2051. DOI: 10.1021/jf034999w.
  • [EC] European Commission. Commission Regulation (EU) 2017/2158 of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food. Off. J. Eur. Union. 2017, 2017(304), 24–44.
  • Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced Glycation End-products: A Review. Diabetologia. 2001, 44(2), 129–146. DOI: 10.1007/s001250051591.
  • Hellwig, M.; Humpf, H.; Hengstler, J.; Mally, A.; Vieths, S.; Henle, T. Quality Criteria for Studies on Dietary Glycation Compounds and Human Health. J. Agric. Food Chem. 2019, 67(41), 11307–11311. DOI: 10.1021/acs.jafc.9b04172.
  • Nicholl, D.; Stitt, A. W.; Moore, J. E.; Ritchie, A. J.; Archer, D. B.; Bucala, R.; Unit, S.; Hospital, P.; Everard, P. Original Articles Increased Levels of Advanced Glycation Endproducts in the Lenses and Blood Vessels of Cigarette Smokers. Molecular Med. 1998, 4(9), 594–601.
  • Drusch, S.; Faist, V.; Erbersdobler, H. F. Determination of Nϵ-carboxymethyllysine in Milk Products by a Modified Reversed-phase HPLC Method. Food Chem. 1999, 65(4), 547–553. DOI: 10.1016/S0308-8146(98)00244-1.
  • Nerlich, A. G. Nɛ-(carboxymethyl)lysine in Atherosclerotic Vascular Lesions as a Marker for Local Oxidative Stress. Atherosclerosis. 1999, 144(1), 41–47. DOI: 10.1016/S0021-9150(99)00038-6.
  • Nguyen, H. T.; Van Boekel, M. A. J. S. N - (Carboxymethyl) Lysine : A Review on Analytical Methods, Formation, and Occurrence in Processed Food, and Health Impact N ε - (Carboxymethyl) Lysine : A Review on Analytical Methods, Formation, and Occurrence in Processed. Food Rev. Int. 2014, 30(1), 36–52. DOI: 10.1080/87559129.2013.853774.
  • Mezaize, S.; Chevallier, S.; Le Bail, A.; De Lamballerie, M. Optimization of Gluten-Free Formulations for French-Style Breads. J. Food Sci. 2009, 74(3), 140–146. DOI: 10.1111/j.1750-3841.2009.01096.x.
  • Henle, T. AGEs in Foods: Do They Play a Role in Uremia? Kidney Int. 2003, 63(84), 145–147. DOI: 10.1046/j.1523-1755.63.s84.16.x.
  • Van Boekel, M. A. J. S. Effect of Heating on Maillard Reactions in Milk. Food Chem. 1998, 62 (4).
  • Fenaille, F.; Parisod, V.; Visani, P.; Populaire, S.; Tabet, J.; Guy, P. A. Modifications of Milk Constituents during Processing: A Preliminary Benchmarking Study. Int. Dairy J. 2006, 16(7), 728–739. DOI: 10.1016/j.idairyj.2005.08.003.
  • Assar, S. H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J. M. Determination of N Ɛ-(carboxymethyl)lysine in Food Systems by Ultra Performance Liquid Chromatography-mass Spectrometry. Amino Acids. 2009, 36(2), 317–326. DOI: 10.1007/s00726-008-0071-4.
  • Charissou, A.; Ait-Ameur, L.; Birlouez-Aragon, I. Kinetics of Formation of Three Indicators of the Maillard Reaction in Model Cookies: Influence of Baking Temperature and Type of Sugar. J. Agric. Food Chem. 2007, 55(11), 4532–4539. DOI: 10.1021/jf063024j.
  • Manzocco, L.; Mastrocola, D.; Nicoli, M. C.; Marangoni, V. Review of Non- Enzymatic Browning and Antioxidant Capacity in Processed Foods. Trends in Food Sci. Technol. 2001, 11, 340–346.
  • Lindenmeier, M.; Hofmann, T. Influence of Baking Conditions and Precursor Supplementation on the Amounts of the Antioxidant Pronyl-L-lysine in Bakery Products. J. Agric. Food Chem. 2004, 52(2), 350–354. DOI: 10.1021/jf0346657.
  • Michalska, A.; Amigo-Benavent, M.; Zielinski, H.; Del Castillo, M. D. Effect of Bread Making on Formation of Maillard Reaction Products Contributing to the Overall Antioxidant Activity of Rye Bread. J. Cereal Sci. 2008, 48(1), 123–132. DOI: 10.1016/j.jcs.2007.08.012.
  • Benítez, V.; Esteban, R. M.; Moniz, E.; Casado, N.; Aguilera, Y. Breads Forti Fi Ed with Wholegrain Cereals and Seeds as Source of Antioxidant Dietary Fi Bre and Other Bioactive Compounds. J. Cereal Sci. 2018, 82(June), 113–120. DOI: 10.1016/j.jcs.2018.06.001.
  • Oatway, L.; Vasanthan, T.; Helm, J. H.; Oatway, L.; Vasanthan, T.; Helm, J. H. Phytic Acid. Food Rev. Int. 2001, 17(4), 419-431. DOI: 10.1081/FRI-100108531
  • Kumar, V.; Sinha, A. K.; Makkar, H. P. S.; Becker, K. Dietary Roles of Phytate and Phytase in Human Nutrition: A Review. Food Chem. 2010, 120(4), 945–959. DOI: 10.1016/j.foodchem.2009.11.052.
  • Hurrell, R. F.; Juillerat, M. A.; Reddy, M. B.; Lynch, S. R.; Dassenko, S. A.; Cook, J. D. Soy Protein, Phytate, and Iron Absorption in Humans. Am. J. Clin. Nutr. 1992, 56(3), 573–578. DOI: 10.1093/ajcn/56.3.573.
  • Björch, I. M.; Nyman, M. E. In Vitro Effects of Phytic Acid and Polyphenols on Starch Digestion and Fiber Degradation. J. Food Sci. 1987, 52(6), 1588–1594.
  • Norazalina, S.; Norhaizan, M. E.; Hairuszah, I.; Norashareena, M. S. Anticarcinogenic Efficacy of Phytic Acid Extracted from Rice Bran on Azoxymethane-Induced Colon Carcinogenesis in Rats. Exp. Toxicol. Pathol. 2010, 62(3), 259–268. DOI: 10.1016/j.etp.2009.04.002.
  • Kumar, A.; Sahu, C.; Panda, P. A.; Biswal, M.; Sah, R. P.; Lal, M. K.; Baig, M. J.; Swain, P.; Behera, L.; Chattopadhyay, K.; et al. Phytic Acid Content May Affect Starch Digestibility And Glycemic Index Value Of Rice (Oryza sativa L.). J. Sci. Food Agric. 2020, 100(4), 1598–1607. DOI: 10.1002/jsfa.10168.
  • Omoruyi, F. O.; Budiaman, A.; Eng, Y.; Olumese, F. E.; Hoesel, J. L.; Ejilemele, A.; Okorodudu, A. O. The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats. Adv. Pharmacol. Sci. 2013, 2013. DOI: 10.1155/2013/172494.
  • Onomi, S.; Okazaki, Y.; Katayama, T. Effect of Dietary Level of Phytic Acid on Hepatic and Serum Lipid Status in Rats Fed a High-Sucrose Diet. Biosci. Biotechnol. Biochem. 2004, 68(6), 1379–1381. DOI: 10.1271/bbb.68.1379.
  • Pozrl, T.; Kopjar, M.; Kurent, I.; Hribar, J.; Janes, A.; Simcic, M. Phytate Degradation during Breadmaking: The Influence of Flour Type and Breadmaking Procedures. Czech J. Food Sci. 2009, 27(1), 29–38. DOI: 10.17221/130/2008-CJFS.
  • Turk, M.; Carlsson, N. G.; Sandberg, A. S. Reduction in the Levels of Phytate during Wholemeal Bread Making; Effect of Yeast and Wheat Phytases. Doktorsavhandlingar Vid Chalmers Tek. Hogsk. 1999, 23(1473), 257–264.
  • Fretzdorff, B.; Brümmer, J.-M. Reduction of Phytic Acid during Breadmaking of Whole-Meal Breads. Cereal Chem. 1992, 69(3), 266–270.
  • Reinhold, J. G. Phytate Concentrations of Leavened and Unleavened Iranian Breads. Ecol. Food Nutr. 1972, 1(3), 187–192. DOI: 10.1080/03670244.1972.9990288.
  • Holmes, R. P.; Goodman, H. O.; Assimos, D. G. Dietary Oxalate and Its Intestinal Absorption. Scanning Microsc. 1995, 9(4), 1109–1118.
  • Noonan, S. C.; Hons, G. P. S.; Nutr, N. Z. R. Oxalate Content of Foods and Its Effect on Humans. Asia Pacific J. Clin. Nut.1999, 8, 64–74.
  • Chai, W.; Liebman, M. Oxalate Content of Legumes, Nuts, and Grain-Based Flours. J. Food Compos. Anal.2005, 18, 723–729. DOI: 10.1016/j.jfca.2004.07.001
  • Okombo, J.; Liebman, M. Oxalate Content of Selected Breads and Crackers. J. Food Compos. Anal. 2010, 23(1), 118–121. DOI: 10.1016/j.jfca.2009.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.