534
Views
1
CrossRef citations to date
0
Altmetric
Review

Natural Hydrogels, the Interesting Carriers for Herbal Extracts

, , &

References

  • Astray, G.; Mejuto, J. C.; Morales, J.; Rial-Otero, R.; Simal-Gandara, J. Factors Controlling Flavors Binding Constants to Cyclodextrins and Their Applications in Foods. Food. Res. Int. 2010, 43, 1212–1218. DOI: 10.1016/j.foodres.2010.02.017.
  • Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J. C.; Rial-Otero, R.; Simal-Gandara, J. A Review on the Use of Cyclodextrins in Foods. Food. hydrocolloids 2009, 23, 1631–1640. DOI: 10.1016/j.foodhyd.2009.01.001.
  • Rakmai, J.; Cheirsilp, B.; Mejuto, J. C.; Simal-Gándara, J.; Torrado-Agrasar, A. Antioxidant and Antimicrobial Properties of Encapsulated Guava Leaf Oil in Hydroxypropyl-beta-cyclodextrin. Ind. Crop. Prod. 2018, 111, 219–225. DOI: 10.1016/j.indcrop.2017.10.027.
  • Rakmai, J.; Cheirsilp, B.; Mejuto, J. C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical Characterization and Evaluation of Bio-efficacies of black Pepper Essential Oil Encapsulated in Hydroxypropyl-beta-cyclodextrin. Food. hydrocolloids 2017, 65, 157–164. DOI: 10.1016/j.foodhyd.2016.11.014.
  • Rakmai, J.; Cheirsilp, B.; Torrado-Agrasar, A.; Simal-Gándara, J.; Mejuto, J. C. Encapsulation of Yarrow Essential Oil in Hydroxypropyl-beta-cyclodextrin: Physiochemical Characterization and Evaluation of Bio-efficacies. CYTA-J. Food. 2017, 15(3), 409–417. DOI: 10.1080/19476337.2017.1286523.
  • Hui, P. C.-L.; Wang, W.-Y.; Kan, C.-W.; Ng, F. S.-F.; Wat, E.; Zhang, V. X.; Chan, C.-L.; Bik-San Lau, C.; Leung, P.-C. Microencapsulation of Traditional Chinese herbs—PentaHerbs Extracts and Potential Application in Healthcare Textiles. Colloids. Surf. B. 2013, 111, 156–161. DOI: 10.1016/j.colsurfb.2013.05.036.
  • Simon-Brown, K.; Solval, K. M.; Chotiko, A.; Alfaro, L.; Reyes, V.; Liu, C.; Dzandu, B.; Kyereh, E.; Barnaby, A. G.; Thompson, I. Microencapsulation of Ginger (Zingiber Officinale) Extract by Spray Drying Technology. LWT–Food. Sci. Technol. 2016, 70, 119–125. DOI: 10.1016/j.lwt.2016.02.030.
  • Pasrija, D.; Ezhilarasi, P.; Indrani, D.; Anandharamakrishnan, C. Microencapsulation of Green Tea Polyphenols and Its Effect on Incorporated Bread Quality. LWT–Food. Sci. Technol. 2015, 64(1), 289–296. DOI: 10.1016/j.lwt.2015.05.054.
  • Mahdavi, S. A.; Jafari, S. M.; Assadpoor, E.; Dehnad, D. Microencapsulation Optimization of Natural Anthocyanins with Maltodextrin, Gum Arabic and Gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. DOI: 10.1016/j.ijbiomac.2016.01.011.
  • Guadarrama-Lezama, A. Y.; Dorantes-Alvarez, L.; Jaramillo-Flores, M. E.; Pérez-Alonso, C.; Niranjan, K.; Gutiérrez-López, G. F.; Alamilla-Beltrán, L. Preparation and Characterization of Non-aqueous Extracts from Chilli (Capsicum Annuum L.)and Their Microencapsulates Obtained by Spray-drying. J. Food Eng. 2012, 112, 29–37.
  • Çam, M.; İçyer, N. C.; Erdoğan, F. Pomegranate Peel Phenolics: Microencapsulation, Storage Stability and Potential Ingredient for Functional Food Development. LWT–Food. Sci. Technol. 2014, 55, 117–123. DOI: 10.1016/j.lwt.2013.09.011.
  • Ribeiro, A.; Ruphuy, G.; Lopes, J. C.; Dias, M. M.; Barros, L.; Barreiro, F.; Ferreira, I. C. F. R. Spray-drying Microencapsulation of Synergistic Antioxidant Mushroom Extracts and Their Use as Functional Food Ingredients. Food. Chem. 2015, 188, 612–618. DOI: 10.1016/j.foodchem.2015.05.061.
  • Daza, L. D.; Fujita, A.; Fávaro-Trindade, C. S.; Rodrigues-Ract, J. N.; Granato, D.; Genovese, M. I. Effect of Spray Drying Conditions on the Physical Properties of Cagaita (Eugenia Dysenterica DC.) Fruit Extracts.). Food. Bioprod. Process. 2016, 97, 20–29. DOI: 10.1016/j.fbp.2015.10.001.
  • Ballesteros, L. F.; Ramirez, M. J.; Orrego, C. E.; Teixeira, J. A.; Mussatto, S. I. Encapsulation of Antioxidant Phenolic Compounds Extracted from Spent Coffee Grounds by Freeze-drying and Spray-drying Using Different Coating Materials. Food. Chem. 2017, 237, 623–631. DOI: 10.1016/j.foodchem.2017.05.142.
  • Bahram, M.; Keshvari, F.; Najafi-Moghaddam, P. Development of Cloud Point Extraction Using pH-sensitive Hydrogel for Preconcentration and Determination of Malachite Green. Talanta. 2011, 85, 891–896. DOI: 10.1016/j.talanta.2011.04.074.
  • Cerqueira, M. A.; Pinheiro, A. C.; Silva, H. D.; Ramos, P. E.; Azevedo, M. A.; Flores-López, M. L.; Rivera, M. C.; Bourbon, A. I.; Ramos, Ó. L.; Vicente, A. A. Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Eng. Rev. 2014, 6(1–2), 1–19. DOI: 10.1007/s12393-013-9074-3.
  • Cai, Z.; Luck, L. A.; Punihaole, D.; Madura, J. D.; Asher, S. A. Photonic Crystal Protein Hydrogel Sensor Materials Enabled by Conformationally Induced Volume Phase Transition. Chem. Sci. 2016, 7, 4557–4562. DOI: 10.1039/C6SC00682E.
  • Gerlach, G.; Arndt, K. F. Hydrogel Sensors and Actuators: Engineering and Technology; Springer Science & Business Media: Berlin, 2009.
  • Zhang, L.; Li, K.; Xiao, W.; Zheng, L.; Xiao, Y.; Fan, H.; Zhang, X. Preparation of Collagen–chondroitin Sulfate–hyaluronic Acid Hybrid Hydrogel Scaffolds and Cell Compatibility in Vitro. Carbohydr. Polym. 2011, 84(1), 118–125. DOI: 10.1016/j.carbpol.2010.11.009.
  • Kashyap, N.; Kumar, N.; Kumar, M. N. V. R. Hydrogels for Pharmaceutical and Biomedical Applications. Crit. Rev. Ther. Drug. Carrier. Syst. 2005, 22(2), 107–149. DOI: 10.1615/CritRevTherDrugCarrierSyst.v22.i2.10.
  • Saxena, A. K.;. Synthetic Biodegradable Hydrogel (Pleuraseal) Sealant for Sealing of Lung Tissue after Thoracoscopic Resection. J. Thorac. Cardiovasc. Surg 2010, 139, 496–497. DOI: 10.1016/j.jtcvs.2008.11.003.
  • Chen, X.; Martin, B.; Neubauer, T.; Linhardt, R.; Dordick, J.; Rethwisch, D. Enzymatic and Chemoenzymatic Approaches to Synthesis of Sugar-based Polymer and Hydrogels. Carbohydr. Polym. 1995, 28(1), 15–21. DOI: 10.1016/0144-8617(95)00082-8.
  • Zhao, W.; Jin, X.; Cong, Y.; Liu, Y.; Fu, J. Degradable Natural Polymer Hydrogels for Articular Cartilage Tissue Engineering. J. Chem. Technol. Biotechnol. 2013, 88(327–339), 139.
  • Swami, S. N.; Radiation Synthesis of Polymeric Hydrogels for Swelling-Controlled Drug Release Studies. Ph.D. Dissertation, University of Western Sydney, School of Science, Food and Horticulture, New South Wales, Australia, 2004. 140.
  • Allcock, H. R.; Lampe, F. W.; Mark, J. E.; Allcock, H. Contemporary Polymer Chemistry; Prentice Hall Englewood Cliffs: New Jersey, 1990; pp 141.
  • Kamath, K. R.; Park, K. Biodegradable Hydrogels in Drug Delivery. Adv. Drug Delivery Rev. 1993, 11, 5984. DOI: 10.1016/0169-409X(93)90027-2.
  • Korsmeyer, R. W.; Peppas, N. A. Solute and Penetrant Diffusion in Swellable Polymers. III. Drug Release from Glassy poly(HEMA-co-NVP) Copolymers. J Controlled. Release. 1984, 1(2), 89–98. DOI: 10.1016/0168-3659(84)90001-4.
  • Ratner, B. D.;. Hydrogels for Medical and Related Applications; American Chemical Society: Utah, 1976.
  • Young, R. J.; Lovell, P. A. Introduction to Polymers; CRC press: London, 2011.
  • Garner, J.; Park, K. Types and Chemistry of Synthetic Hydrogels. In GELS HANDBOOK: Fundamentals, Properties and Applications Volume 1: Fundamentals of Hydrogels; Wen, Q., Dong, Y., Eds.; World Scientific: New Jersey, 2016, 17–44.
  • Flory, P. J.;. Principles of Polymer Chemistry; Cornell University Press: Ithaca, 1953.
  • Huglin, M.;. Hydrogels in Medicine and Pharmacy Edited by NA Peppas; CRC Press Inc: Boca Raton, Florida, 1986; 1987 (Vols 2 and 3). Vol. 1 Fundamentals, pp. vii+ 180,£ 72.00, ISBN 0‐8493‐5546‐X; Vol. 2 Polymers, pp. vii+ 171,£ 72.00, ISBN 0‐8493‐5547‐8; Vol. 3 Properties and Applications, pp. vii+ 195,£ 8000, ISBN 0‐8493‐5548‐6. Br. Polym. J. 1989, 21, 184–184. Vol. l.
  • Peppas, N. A.;. Hydrogels in Medicine and Pharmacy: Fundamentals; Crc Press: Michigan, 1986.
  • Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M. Classification, Processing and Application of Hydrogels: A Review. .Mater Sci Eng. C. 2015, 57, 414–433. DOI: 10.1016/j.msec.2015.07.053.
  • Sawahata, K.; Hara, M.; Yasunaga, H.; Osada, Y. Electrically Controlled Drug Delivery System Using Polyelectrolyte Gels. J. Controlled. Release. 1990, 14, 253–262. DOI: 10.1016/0168-3659(90)90165-P.
  • Ostroha, J.; Pong, M.; Lowman, A.; Dan, N. Controlling the Collapse/swelling Transition in Charged Hydrogels. Biomater. 2004, 25(18), 4345–4353. DOI: 10.1016/j.biomaterials.2003.11.019.
  • Lee, W. F.; Chiu, R. J. Investigation of Charge Effects on Drug Release Behavior for Ionic Thermosensitive Hydrogels. Mater. Sci. Eng. 2002, 20, 161–166. DOI: 10.1016/S0928-4931(02)00027-9.
  • Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A. Stimulus-responsive Hydrogels: Theory, Modern Advances, and Applications. Mater. Sci. Eng. 2015, 93, 1–49.
  • Glass, J. E.;, Ed. Polymers in Aqueous Media: Performance through Association; American Chemical Society: Washington, 1989.
  • Lensen, M. C.; Schulte, V. A.; Diez, M. Cell Adhesion and Spreading on an Intrinsically Anti-adhesive PEG Biomaterial; Pignatello, R. Ed.; London: IntechOpen, 2011.
  • Chirani, N.; Gritsch, L.; Motta, F. L.; Fare, S. History and Applications of Hydrogels. J. Biomed. Sci. 2015, 4, 1–23.
  • Peppas, N.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. DOI: 10.1016/S0939-6411(00)00090-4.
  • Antoine, E. E.; Vlachos, P. P.; Rylander, M. N. Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport. Tissue. Eng. Part. B. 2014, 20(6), 683–696. DOI: 10.1089/ten.teb.2014.0086.
  • Gómez-Guillén, M.; Giménez, B.; López-Caballero, M. A.; Montero, M. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food. hydrocolloids 2011, 25, 1813–1827. DOI: 10.1016/j.foodhyd.2011.02.007.
  • Tian, Z.; Liu, W.; Li, G. The Microstructure and Stability of Collagen Hydrogel Cross-linked by Glutaraldehyde. Polym. Degrad. Stab. 2016, 130, 264–270. DOI: 10.1016/j.polymdegradstab.2016.06.015.
  • Dash, R.; Foston, M.; Ragauskas, A. J. Improving the Mechanical and Thermal Properties of Gelatin Hydrogels Cross-linked by Cellulose Nanowhiskers. Carbohydr. Polym. 2013, 91(2), 638–645. DOI: 10.1016/j.carbpol.2012.08.080.
  • Karim, A. A.; Bhat, R. Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food. hydrocolloids 2009, 23, 563–576. DOI: 10.1016/j.foodhyd.2008.07.002.
  • Gupta, B.; Tummalapalli, M.; Deopura, B.; Alam, M. Preparation and Characterization of In-situ Crosslinked Pectin–gelatin Hydrogels. Carbohydr. Polym. 2014, 106, 312–318. DOI: 10.1016/j.carbpol.2014.02.019.
  • Biswal, D.; Anupriya, B.; Uvanesh, K.; Anis, A.; Banerjee, I.; Pal, K. Effect of Mechanical and Electrical Behavior of Gelatin Hydrogels on Drug Release and Cell Proliferation. J. Mech. Behav. Biomed. Mater. 2016, 53, 174–186. DOI: 10.1016/j.jmbbm.2015.08.017.
  • Goetz, L.; Mathew, A.; Oksman, K.; Gatenholm, P.; Ragauskas, A. J. A Novel Nanocomposite Film Prepared from Crosslinked Cellulosic Whiskers. Carbohydr. Polym. 2009, 75(1), 85–89. DOI: 10.1016/j.carbpol.2008.06.017.
  • Derkach, S. R.; Ilyin, S. O.; Maklakova, A. A.; Kulichikhin, V. G.; Malkin, A. Y. The Rheology of Gelatin Hydrogels Modified by κ-carrageenan. LWT–Food. Sci. Technol. 2015, 63, 612–619. DOI: 10.1016/j.lwt.2015.03.024.
  • Van Nieuwenhove, I.; Salamon, A.; Adam, S.; Dubruel, P.; Van Vlierberghe, S.; Peters, K. Gelatin- and Starch-based Hydrogels. Part B: In Vitro Mesenchymal Stem Cell Behavior on the Hydrogels. Carbohydr. Polym. 2017, 161, 295–305. DOI: 10.1016/j.carbpol.2017.01.010.
  • Wu, S.; Dong, H.; Li, Q.; Wang, G.; Cao, X. High Strength, Biocompatible Hydrogels with Designable Shapes and Special Hollow-formed Character Using Chitosan and Gelatin. Carbohydr. Polym. 2017, 168, 147–152. DOI: 10.1016/j.carbpol.2017.03.069.
  • Varghese, J. S.; Chellappa, N.; Fathima, N. N. Gelatin–carrageenan Hydrogels: Role of Pore Size Distribution on Drug Delivery Process. Colloids. Surf. B 2014, 113, 346–351. DOI: 10.1016/j.colsurfb.2013.08.049.
  • Wang, C.-S.; Virgilio, N.; Wood-Adams, P. M.; Heuzey, M. C. A Gelation Mechanism for Gelatin/polysaccharide Aqueous Mixtures. Food. hydrocolloids 2018, 79, 462–472. DOI: 10.1016/j.foodhyd.2018.01.016.
  • Panouille, M.; Larreta-Garde, V. Gelation Behaviour of Gelatin and Alginate Mixtures. Food. hydrocolloids 2009, 23, 1074–1080. DOI: 10.1016/j.foodhyd.2008.06.011.
  • Remondetto, G. E.; Beyssac, E.; Subirade, M. Iron Availability from Whey Protein Hydrogels: An in Vitro Study. J. Agric. Food Chem. 2004, 52(26), 8137–8143. DOI: 10.1021/jf040286h.
  • Guo, J.; Zhang, Y.; Yang, X. Q. A Novel Enzyme Cross-linked Gelation Method for Preparing Food Globular Protein-based Transparent Hydrogel. Food. hydrocolloids 2012, 26, 277–285. DOI: 10.1016/j.foodhyd.2011.06.005.
  • Alavi, F.; Momen, S.; Emam-Djomeh, Z.; Salami, M.; Moosavi-Movahedi, A. A. Radical Cross-linked Whey Protein Aggregates as Building Blocks of Non-heated Cold-set Gels. Food. hydrocolloids 2018, 81, 429–441. DOI: 10.1016/j.foodhyd.2018.03.016.
  • Gunasekaran, S.; Xiao, L.; Ould Eleya, M. Whey Protein Concentrate Hydrogels as Bioactive Carriers. J. Appl. Polym. Sci. 2006, 99(5), 2470–2476. DOI: 10.1002/app.22838.
  • Eissa, A. S.; Bisram, S.; Khan, S. A. Polymerization and Gelation of Whey Protein Isolates at Low pH Using Transglutaminase Enzyme. J. Agric. Food Chem. 2004, 52, 4456–4464. DOI: 10.1021/jf0355304.
  • Abaee, A.; Madadlou, A. Niosome-loaded Cold-set Whey Protein Hydrogels. Food. Chem. 2016, 196, 106–113. DOI: 10.1016/j.foodchem.2015.09.037.
  • Betz, M.; Kulozik, U. Microencapsulation of Bioactive Bilberry Anthocyanins by Means of Whey Protein Gels. Procedia. Food. Sci. 2011, 1, 2047–2056. DOI: 10.1016/j.profoo.2011.10.006.
  • Ozel, B.; Cikrikci, S.; Aydin, O.; Oztop, M. H. Polysaccharide Blended Whey Protein isolate-(WPI) Hydrogels: A physicochemical and Controlled Release Study. Food. hydrocolloids 2017, 71, 35–46. DOI: 10.1016/j.foodhyd.2017.04.031.
  • Somchue, W.; Sermsri, W.; Shiowatana, J.; Siripinyanond, A. Encapsulation of α-tocopherol in Protein-based Delivery Particles. Food. Res. Intl 2009, 42, 909–914. DOI: 10.1016/j.foodres.2009.04.021.
  • Egan, T.; Jacquier, J. C.; Rosenberg, Y.; Rosenberg, M. Cold-set Whey Protein Microgels for the Stable Immobilization of Lipids. Food. hydrocolloids 2013, 31, 317–324. DOI: 10.1016/j.foodhyd.2012.11.008.
  • O’Neill, G. J.; Egan, T.; Jacquier, J. C.; O’Sullivan, M.; O’Riordan, E. D. Kinetics of Immobilisation and Release of Tryptophan, Riboflavin and Peptides from Whey Protein Microbeads. Food. Chem. 2015, 180, 150–155. DOI: 10.1016/j.foodchem.2015.01.131.
  • O’Neill, G. J.; Jacquier, J. C.; Mukhopadhya, A.; Egan, T.; O’Sullivan, M.; Sweeney, T.; O’Riordan, E. D. In Vitro and in Vivo Evaluation of Whey Protein Hydrogels for Oral Delivery of Riboflavin. J. Funct. Foods. 2015, 19, 512–521. DOI: 10.1016/j.jff.2015.09.043.
  • Zand-Rajabi, H.; Madadlou, A. Caffeine-loaded Whey Protein Hydrogels Reinforced with Gellan and Enriched with Calcium Chloride. Int. Dairy J. 2016, 56, 38–44. DOI: 10.1016/j.idairyj.2015.12.011.
  • da Silva, M. V.; Delgado, J.; Gonçalves, M. Impact of Mg2+ and Tara Gum Concentrations on Flow and Textural Properties of WPI Solutions and Cold-set Gels. Int. J. Food Prop. 2010, 13, 972–982. DOI: 10.1080/10942910902927128.
  • Déat-Lainé, E.; Hoffart, V.; Garrait, G.; Jarrige, J.-F.; Cardot, J.-M.; Subirade, M.; Beyssac, E. Efficacy of Mucoadhesive Hydrogel Microparticles of Whey Protein and Alginate for Oral Insulin Delivery. Pharm. Res. 2013, 30(3), 721–734. DOI: 10.1007/s11095-012-0913-3.
  • Liu, Y.; Cui, Y.; Wu, G.; Liao, M. Preparation and Properties of Fast Temperature-responsive Soy protein/PNIPAAm IPN Hydrogels. J. Serb. Chem. Soc. 2014, 79, 211–224. DOI: 10.2298/JSC130219047L.
  • Chien, K. B.; Chung, E. J.; Shah, R. N. Investigation of Soy Protein Hydrogels for Biomedical Applications: Materials Characterization, Drug Release, and Biocompatibility. J. Biomater. Appl. 2014, 28(7), 1085–1096. DOI: 10.1177/0885328213497413.
  • Renkema, J. M. S.; van Vliet, T. Heat-induced Gel Formation by Soy Proteins at Neutral pH. J. Agric. Food . 2002, 50(6), 1569–1573. DOI: 10.1021/jf010763l.
  • Puppo, M. C.; Anon, M. C. Structural Properties of Heat-induced Soy Protein Gels as Affected by Ionic Strength and pH. J. Agric. Food. Chem. 1998, 46, 3583–3589. DOI: 10.1021/jf980006w.
  • Dumoulin, M.; Ozawa, S.; Hayashi, R. Textural Properties of Pressure‐induced Gels of Food Proteins Obtained under Different Temperatures Including Subzero. J. Food. Sci. 1998, 63, 92–95. DOI: 10.1111/j.1365-2621.1998.tb15683.x.
  • Molina, E.; Ledward, D. Effects of Combined High-pressure and Heat Treatment on the Textural Properties of Soya Gels. Food. Chem. 2003, 80(3), 367–370. DOI: 10.1016/S0308-8146(02)00274-1.
  • Caillard, R.; Remondetto, G.; Subirade, M. Physicochemical Properties and Microstructure of Soy Protein Hydrogels Co-induced by Maillard Type Cross-linking and Salts. Food. Res. Int. 2009, 42, 98–106. DOI: 10.1016/j.foodres.2008.10.004.
  • Song, F.; Zhang, L.-M. Gelation Modification of Soy Protein Isolate by a Naturally Occurring Cross-linking Agent and Its Potential Biomedical Application. Ind. Eng. Chem. Res. 2009, 48(15), 7077–7083. DOI: 10.1021/ie801372f.
  • Chen, L.; Subirade, M. Elaboration and Characterization of Soy/zein Protein Microspheres for Controlled Nutraceutical Delivery. Bio. macromol. 2009, 10, 3327–3334. DOI: 10.1021/bm900989y.
  • Ni, N.; Zhang, D.; Dumont, M.-J. Synthesis and Characterization of Zein-based Superabsorbent Hydrogels and Their Potential as Heavy Metal Ion Chelators. Polym. Bull. 2018, 75(1), 31–45. DOI: 10.1007/s00289-017-2017-z.
  • Castilhos, N. D.; Sampaio, N. M.; da Silva, B. C.; Riegel-Vidotti, I. C.; Grassi, M. T.; Silva, B. J. Physical-chemical Characteristics and Potential Use of a Novel Alginate/zein Hydrogel as the Sorption Phase for Polar Organic Compounds. Carbohydr. Polym. 2017, 174, 507–516. DOI: 10.1016/j.carbpol.2017.06.079.
  • Yan, F.; Cao, H.; Cover, T. L.; Washington, M. K.; Shi, Y.; Liu, L.; Chaturvedi, R.; Peek, R. M.; Wilson, K. T.; Polk, D. B. Colon-specific Delivery of a Probiotic-derived Soluble Protein Ameliorates Intestinal Inflammation in Mice through an EGFR-dependent Mechanism. J. Clin. Invest. 2011, 121(6), 2242–2253. DOI: 10.1172/JCI44031.
  • Bušić, A.; Belščak-Cvitanović, A.; Wang, Y.; Vojvodić, A.; Karlović, S.; Špoljarić, I.; Mršić, G.; Veršec, P.; Vučilovski, J.; Komes, D. Application of Whey Protein Isolates and Zein for the Formulation of Alginate-based Delivery Systems Encapsulating Ganoderma Lucidum Polyphenols. Croat. J. Food Sci. Technol. 2016, 8, 99–106. DOI: 10.17508/CJFST.2016.8.2.09.
  • Deacon, M.; Davis, S.; White, R.; Nordman, H.; Carlstedt, I.; Errington, N.; Rowe, A.; Harding, S. Are Chitosan–mucin Interactions Specific to Different Regions of the Stomach? Velocity Ultracentrifugation Offers a Clue. Carbohydr. Polym. 1999, 38(3), 235–238. DOI: 10.1016/S0144-8617(98)00097-6.
  • Falco, C. Y.; Falkman, P.; Risbo, J.; Cárdenas, M.; Medronho, B. Chitosan-dextran Sulfate Hydrogels as a Potential Carrier for Probiotics. Carbohydr. Polym. 2017, 172, 175–183. DOI: 10.1016/j.carbpol.2017.04.047.
  • Belščak-Cvitanović, A.; Stojanović, R.; Manojlović, V.; Komes, D.; Cindrić, I. J.; Nedović, V.; Bugarski, B. Encapsulation of Polyphenolic Antioxidants from Medicinal Plant Extracts in Alginate–chitosan System Enhanced with Ascorbic Acid by Electrostatic Extrusion. Food. Res. Int. 2011, 44(4), 1094–1101. DOI: 10.1016/j.foodres.2011.03.030.
  • Zeeb, B.; Saberi, A. H.; Weiss, J.; McClements, D. J. Formation and Characterization of Filled Hydrogel Beads Based on Calcium Alginate: Factors Influencing Nanoemulsion Retention and Release. Food. hydrocolloids 2015, 50, 27–36. DOI: 10.1016/j.foodhyd.2015.02.041.
  • Roopa, B.; Bhattacharya, S. Alginate Gels: Rupture Characteristics as a Function of the Conditions of Gel Formation. J. Food Eng. 2009, 91, 448–454. DOI: 10.1016/j.jfoodeng.2008.09.023.
  • Belščak-Cvitanović, A.; Komes, D.; Karlović, S.; Djaković, S.; Špoljarić, I.; Mršić, G.; Ježek, D. Improving the Controlled Delivery Formulations of Caffeine in Alginate Hydrogel Beads Combined with Pectin, Carrageenan, Chitosan and Psyllium. Food. Chem. 2015, 167, 378–386. DOI: 10.1016/j.foodchem.2014.07.011.
  • Ström, A.; Ribelles, P.; Lundin, L.; Norton, I.; Morris, E. R.; Williams, M. A. Influence of Pectin Fine Structure on the Mechanical Properties of Calcium− Pectin and Acid− Pectin Gels. Bio. macromol. 2007, 8, 2668–2674. DOI: 10.1021/bm070192r.
  • Sriamornsak, P.; Prakongpan, S.; Puttipipatkhachorn, S.; Kennedy, R. A. Development of Sustained Release Theophylline Pellets Coated with Calcium Pectinate. J. Controlled. Release. 1997, 47(3), 221–232. DOI: 10.1016/S0168-3659(97)01640-4.
  • Dafe, A.; Etemadi, H.; Dilmaghani, A.; Mahdavinia, G. R. Investigation of Pectin/starch Hydrogel as a Carrier for Oral Delivery of Probiotic Bacteria. Int. J. Biol. Macromol. 2017, 97, 536–543. DOI: 10.1016/j.ijbiomac.2017.01.060.
  • Yoshimura, T.; Sengoku, K.; Fujioka, R. Pectin-based Surperabsorbent Hydrogels Crosslinked by Some Chemicals: Synthesis and Characterization. Polym. Bull. 2005, 55(1–2), 123–129. DOI: 10.1007/s00289-005-0422-1.
  • Shen, X.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D. Hydrogels Based on Cellulose and Chitin: Fabrication, Properties, and Applications. Green. Chem. 2016, 18, 53–75. DOI: 10.1039/C5GC02396C.
  • Sarkar, N.;. Thermal Gelation Properties of Methyl and Hydroxypropyl Methylcellulose. J. Appl. Polym. Sci. 1979, 24, 1073–1087. DOI: 10.1002/app.1979.070240420.
  • Wang, W.; Hui, P. C. L.; Wat, E.; Ng, F. S. F.; Kan, C.-W.; Wang, X.; Wong, E. C. W.; Hu, H.; Chan, B.; Lau, C. B. S. In Vitro Drug Release and Percutaneous Behavior of Poloxamer-based Hydrogel Formulation Containing Traditional Chinese Medicine. Colloids. Surf. B 2016, 148, 526–532. DOI: 10.1016/j.colsurfb.2016.09.036.
  • Nho, Y. C.; Park, J. S.; Lim, Y. M. Preparation of Hydrogel by Radiation for the Healing of Diabetic Ulcer. Radiat. Phys. Chem. 2014, 94, 176–180. DOI: 10.1016/j.radphyschem.2013.07.021.
  • Jones, O. G.; McClements, D. J. Development of Colloidal Delivery Systems for Food and Pharmaceutical Applications Based on Proteins and Polysaccharides. In Nanotechnologies for Solubilization and Delivery in Foods, Cosmetics and Pharmaceuticals; Garti, G., Amar-Yuli, I., Eds.; DEStech Publications: Pennsylvania, 2012, 81–124.
  • Jayaramudu, T.; Raghavendra, G. M.; Varaprasad, K.; Sadiku, R.; Raju, K. M. Development of Novel Biodegradable Au Nanocomposite Hydrogels Based on Wheat: For Inactivation of Bacteria. Carbohydr. Polym. 2013, 92(2), 2193–2200. DOI: 10.1016/j.carbpol.2012.12.006.
  • Ubaid, M.; Murtaza, G. Fabrication and Characterization of Genipin Cross-linked Chitosan/gelatin Hydrogel for pH-sensitive, Oral Delivery of Metformin with an Application of Response Surface Methodology. Int. J. Biol. Macromol. 2018, 1174–1185. doi:10.1016/j.ijbiomac.2018.04.023.
  • Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21(32–33), 3307–3329. DOI: 10.1002/adma.200802106.
  • Saul, J. M.; Williams, D. F. Hydrogels in Regenerative Medicine. In In Handbook of Polymer Applications in Medicine and Medical Devices; Modjarrd, K., Ebnesajjad, S., Eds.; Elsevier: United States, 2013, 279–302.
  • Liu, F.; Li, R.; Mao, L.; Gao, Y. Ethanol-induced Composite Hydrogel Based on Propylene Glycol Alginate and Zein: Formation, Characterization and Application. Food. Chem. 2018, 255, 390–398. DOI: 10.1016/j.foodchem.2018.02.072.
  • Ye, X.; Li, X.; Shen, Y.; Chang, G.; Yang, J.; Gu, Z. Self-healing pH-sensitive Cytosine- and Guanosine-modified Hyaluronic Acid Hydrogels via Hydrogen Bonding. Polym. 2017, 108, 348–360. DOI: 10.1016/j.polymer.2016.11.063.
  • Patil, N. S.; Li, Y.; Rethwisch, D. G.; Dordick, J. S. Sucrose Diacrylate: A Unique Chemically and Biologically Degradable Crosslinker for Polymeric Hydrogels. J. Polym. Sci. Part A: Polym. Chem. 1997, 35(11), 2221–2229. DOI: 10.1002/(SICI)1099-0518(199708)35:11<2221::AID-POLA12>3.0.CO;2-G.
  • eong, G. T.; Lee, K. M.; Yang, H. S.; Park, S. H.; Park, J. H.; Sunwoo, C.; Ryu, H. W.; Kim, D.; Lee, W. T.; Kim, H. S.;; et al. Synthesis of Poly (Sorbitan Methacrylate) Hydrogel by Free-radical Polymerization. Appl. Biochem. Biotecnol. 2007, 137, 935–946.
  • Nguyen, K. T.; West, J. L. Photopolymerizable Hydrogels for Tissue Engineering Applications. Biomater. 2002, 23, 4307–4314. DOI: 10.1016/S0142-9612(02)00175-8.
  • Faxälv, L.; Ekblad, T.; Liedberg, B.; Lindahl, T. L. Blood Compatibility of Photografted Hydrogel Coatings. Acta. Biomater. 2010, 6(7), 2599–2608. DOI: 10.1016/j.actbio.2009.12.046.
  • Bakarich, S. E.; Pidcock, G. C.; Balding, P.; Stevens, L.; Calvert, P. Recovery from Applied Strain in Interpenetrating Polymer Network Hydrogels with Ionic and Covalent Cross-links. Soft. Matter. 2012, 8, 9985–9988. DOI: 10.1039/c2sm26745d.
  • Walo, M.;. Radiation-induced Grafting. In Applications of Ionizing Radiation in Materials Processing; Sun, Y., Andrzej, G., Chmielewski, A.G., Eds.; Institute of Nuclear Chemistry and Technology: Warsaw, 2017, 193–210.
  • Nasef, M. M.;. Preparation and Applications of Ion Exchange Membranes by Radiation-induced Graft Copolymerization of Polar Monomers onto Non-polar Films. Prog. Polym. Sci. 2004, 29(6), 499–561. DOI: 10.1016/j.progpolymsci.2004.01.003.
  • Wang, X.; Li, Q.; Guan, Y.; Zhang, Y. Glucose Oxidase-incorporated Hydrogel Thin Film for Fast Optical Glucose Detecting under Physiological Conditions. Mater. Today. Chem 2016, 1, 7–14. DOI: 10.1016/j.mtchem.2016.10.005.
  • Choi, Y. R.; Kim, E. H.; Lim, S.; Choi, Y. S. Efficient Preparation of a Permanent Chitosan/gelatin Hydrogel Using an Acid-tolerant Tyrosinase. Biochem. Eng. J. 2018, 129, 50–56. DOI: 10.1016/j.bej.2017.10.016.
  • Das, A. K.; Maity, I.; Parmar, H. S.; McDonald, T. O.; Konda, M. Lipase-catalyzed Dissipative Self-assembly of a Thixotropic Peptide Bolaamphiphile Hydrogel for Human Umbilical Cord Stem-cell Proliferation. Bio. macromol. 2015, 16, 1157–1168. DOI: 10.1021/bm501835v.
  • Zhao, L.; Li, X.; Zhao, J.; Ma, S.; Ma, X.; Fan, D.; Zhu, C.; Liu, Y. A Novel Smart Injectable Hydrogel Prepared by Microbial Transglutaminase and Human-like Collagen: Its Characterization and Biocompatibility. Mater. Sci. Eng. 2016, 68, 317–326. DOI: 10.1016/j.msec.2016.05.108.
  • Liu, H.; Zhang, H.; Zhao, X.; Sun, J.; Fu, S.; Leu, S. Y. A Mini-review on in Situ Enzymatic Fabrication of Hydrogels.
  • Nollet, L. M.; Toldrá, F.; Benjakul, S.; Paliyath, G.; Hui, Y. Food Biochemistry and Food Processing; John Wiley & Sons: Arnes, AI, United States, 2012.
  • Teixeira, L. S. M.; Feijen, J.; van Blitterswijk, C. A.; Dijkstra, P. J.; Karperien, M. Enzyme-catalyzed Crosslinkable Hydrogels: Emerging Strategies for Tissue Engineering. Biomater. 2012, 33, 1281–1290. DOI: 10.1016/j.biomaterials.2011.10.067.
  • Zhang, J.; Peppas, N. A. Synthesis and Characterization of pH- and Temperature-Sensitive Poly(methacrylic acid)/Poly(N-isopropylacrylamide) Interpenetrating Polymeric Networks. Macromol. 2000, 33(1), 102–107. DOI: 10.1021/ma991398q.
  • Saini, K.;. Preparation Method, Properties and Crosslinking of Hydrogel: A Review. Pharma. Tutor. 2017, 5, 27–36.
  • Haglund, B. O.; Joshi, R.; Himmelstein, K. J. An in Situ Gelling System for Parenteral Delivery. J. Controlled. Release. 1996, 41, 229–235. DOI: 10.1016/0168-3659(96)01333-8.
  • Kinekawa, Y.-I.; Kitabatake, N. Turbidity and Rheological Properties of Gels and Sols Prepared by Heating Process Whey Protein. Biosci. Biotechnol. Biochem. 1995, 59(5), 834–840. DOI: 10.1271/bbb.59.834.
  • Jin, S.; Liu, M.; Zhang, F.; Chen, S.; Niu, A. Synthesis and Characterization of pH-sensitivity semi-IPN Hydrogel Based on Hydrogen Bond between Poly (N-vinylpyrrolidone) and Poly (Acrylic Acid). Polym. 2006, 47, 1526–1532. DOI: 10.1016/j.polymer.2006.01.009.
  • Crompton, K.; Forsythe, J.; Horne, M.; Finkelstein, D.; Knott, R. Molecular Level and Microstructural Characterisation of Thermally Sensitive Chitosan Hydrogels. Soft. Matter. 2009, 5(23), 4704–4711. DOI: 10.1039/b907593c.
  • Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. 2017, 79, 958–971. DOI: 10.1016/j.msec.2017.05.096.
  • Masruchin, N.; Park, B. D.; Causin, V. Influence of Sonication Treatment on Supramolecular Cellulose Microfibril-based Hydrogels Induced by Ionic Interaction. J. Ind. Eng. Chem. 2015, 29, 265–272. DOI: 10.1016/j.jiec.2015.03.034.
  • Zand-Rajabi, H.; Madadlou, A. Citric Acid Cross-linking of Heat-set Whey Protein Hydrogel Influences Its Textural Attributes and Caffeine Uptake and Release Behaviour. Int. Dairy 2016, 61, 142–147. DOI: 10.1016/j.idairyj.2016.05.008.
  • Maltais, A.; Remondetto, G. E.; Subirade, M. Soy Protein Cold-set Hydrogels as Controlled Delivery Devices for Nutraceutical Compounds. Food. hydrocolloids 2009, 23, 1647–1653. DOI: 10.1016/j.foodhyd.2008.12.006.
  • Maltais, A.; Remondetto, G. E.; Subirade, M. Mechanisms Involved in the Formation and Structure of Soya Protein Cold-set Gels: A Molecular and Supramolecular Investigation. Food. hydrocolloids. 2008, 22(4), 550–559. DOI: 10.1016/j.foodhyd.2007.01.026.
  • Remondetto, G.; Paquin, P.; Subirade, M. Cold Gelation of β‐lactoglobulin in the Presence of Iron. J. Food Sci. 2002, 67, 586–595. DOI: 10.1111/j.1365-2621.2002.tb10643.x.
  • Sung, M.-R.; Xiao, H.; Decker, E. A.; McClements, D. J. Fabrication, Characterization and Properties of Filled Hydrogel Particles Formed by the Emulsion-template Method. .J. Food Eng 2015, 155, 16–21. DOI: 10.1016/j.jfoodeng.2015.01.007.
  • Shewan, H. M.; Stokes, J. R. Review of Techniques to Manufacture Micro-hydrogel Particles for the Food Industry and Their Applications. J. Food Eng. 2013, 119, 781–792. DOI: 10.1016/j.jfoodeng.2013.06.046.
  • Hassan, C. M.;. Diffusional Characteristics of Freeze/thawed Poly(vinyl Alcohol) Hydrogels: Applications to Protein Controlled Release from Multilaminate Devices. Eur. J. Pharm. Biopharm. 2000, 49(2), 161–165. DOI: 10.1016/S0939-6411(99)00056-9.
  • Dave, V. J.; Patel, H. S. Synthesis and Characterization of Interpenetrating Polymer Networks from Transesterified Castor Oil Based Polyurethane and Polystyrene. J. Saudi Chem. Soc. 2017, 21, 18–24. DOI: 10.1016/j.jscs.2013.08.001.
  • Lowman, A. M.; Peppas, N. A. Hydrogels. Encycl. Control. Drug Deliv. 1999, 1, 397–418.
  • Baek, S.; Kim, D.; Jeon, S. L.; Seo, J. Preparation and Characterization of pH-responsive Poly (N, N-dimethyl Acrylamide-co-methacryloyl Sulfadimethoxine) Hydrogels for Application as Food Freshness Indicators. React. Funct. Polym. 2017, 120, 57–65. DOI: 10.1016/j.reactfunctpolym.2017.09.003.
  • Qiu, Y.; Park, K. Environment-sensitive Hydrogels for Drug Delivery. Adv. Drug Delivery Rev. 2001, 53(3), 321–339. DOI: 10.1016/S0169-409X(01)00203-4.
  • Laftah, W. A.; Hashim, S.; Ibrahim, A. N. Polymer Hydrogels: A Review. Polym. Plast. Technol. Eng 2011, 50, 1475–1486. DOI: 10.1080/03602559.2011.593082.
  • Serra, L.; Doménech, J.; Peppas, N. A. Drug Transport Mechanisms and Release Kinetics from Molecularly Designed Poly(acrylic Acid-g-ethylene Glycol) Hydrogels. Biomater. 2006, 27(31), 5440–5451. DOI: 10.1016/j.biomaterials.2006.06.011.
  • Wolfgang, W.; Karl, K.; Matthias, H.; Lendlein, A. Shape-memory Polymers and Shape-changing Polymers. Adv. Polym. Sci. 2010, 226, 97–145.
  • Chung, J.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-responsive Drug Delivery from Polymeric Micelles Constructed Using Block Copolymers of Poly (N-isopropylacrylamide) and Poly (Butylmethacrylate). J. Controlled. Release. 1999, 62, 115–127. DOI: 10.1016/S0168-3659(99)00029-2.
  • Loh, X. J.;, Ed. In-Situ Gelling Polymers: For Biomedical Applications; Springer: Singapore, 2014.
  • Spizzirri, U.; Altimari, I.; Puoci, F.; Parisi, O.; Iemma, F.; Picci, N. Innovative Antioxidant Thermo-responsive Hydrogels by Radical Grafting of Catechin on Inulin Chain. Carbohydr. Polym. 2011, 84(1), 517–523. DOI: 10.1016/j.carbpol.2010.12.015.
  • Shi, X.; Zheng, Y.; Wang, G.; Lin, Q.; Fan, J. pH-and Electro-response Characteristics of Bacterial Cellulose Nanofiber/sodium Alginate Hybrid Hydrogels for Dual Controlled Drug Delivery. RSC. Adv. 2014, 4, 47056–47065. DOI: 10.1039/C4RA09640A.
  • Indermun, S.; Choonara, Y. E.; Kumar, P.; Du Toit, L. C.; Modi, G.; Luttge, R.; Pillay, V. An Interfacially Plasticized Electro-responsive Hydrogel for Transdermal Electro-activated and Modulated (TEAM) Drug Delivery. Int. J. Pharm. 2014, 462, 52–65. DOI: 10.1016/j.ijpharm.2013.11.014.
  • Whiting, C.; Voice, A.; Olmsted, P.; McLeish, T. Shear Modulus of Polyelectrolyte Gels under Electric Field. J. Phys. Condens. Matter. 2001, 13, 1381.
  • Guiseppi-Elie, A.;. Electroconductive Hydrogels: Synthesis, Characterization and Biomedical Applications. Biomater. 2010, 31(10), 2701–2716. DOI: 10.1016/j.biomaterials.2009.12.052.
  • Mamada, A.; Tanaka, T.; Kungwatchakun, D.; Irie, M. Photoinduced Phase Transition of Gels. Macromol. 1990, 23, 1517–1519. DOI: 10.1021/ma00207a046.
  • Lo, C.-W.; Zhu, D.; Jiang, H. An Infrared-light Responsive Graphene-oxide Incorporated poly(N-isopropylacrylamide) Hydrogel Nanocomposite. Soft. Matter. 2011, 7(12), 5604–5609. DOI: 10.1039/c1sm00011j.
  • Jiang, H.; Kobayashi, T. Ultrasound Stimulated Release of Gallic Acid from Chitin Hydrogel Matrix. Mater. Sci. Eng. 2017, 75, 478–486. DOI: 10.1016/j.msec.2017.02.082.
  • Tao, Y.; Zhang, R.; Xu, W.; Bai, Z.; Zhou, Y.; Zhao, S.; Xu, Y.; Yu, D. Rheological Behavior and Microstructure of Release-controlled Hydrogels Based on Xanthan Gum Crosslinked with Sodium Trimetaphosphate. Food. hydrocolloids 2016, 52, 923–933. DOI: 10.1016/j.foodhyd.2015.09.006.
  • Chung, C.; Degner, B.; Decker, E. A.; McClements, D. J. Oil-filled Hydrogel Particles for Reduced-fat Food Applications: Fabrication, Characterization, and Properties. Innovative. Food. Sci. Emerging. Technol 2013, 20, 324–334. DOI: 10.1016/j.ifset.2013.08.006.
  • Zheng, B.; Zhang, Z.; Chen, F.; Luo, X.; McClements, D. J. Impact of Delivery System Type on Curcumin Stability: Comparison of Curcumin Degradation in Aqueous Solutions, Emulsions, and Hydrogel Beads. Food. hydrocolloids 2017, 71, 187–197. DOI: 10.1016/j.foodhyd.2017.05.022.
  • Razzak, M. T.; Darwis, D. Z. S. Irradiation of Polyvinyl Alcohol and Polyvinyl Pyrrolidone Blended Hydrogel for Wound Dressing. Radiat. Phys. Chem. 2001, 62(1), 107–113. DOI: 10.1016/S0969-806X(01)00427-3.
  • Kumar, A.; Rao, K. M.; Han, S. S. Mechanically Viscoelastic Nanoreinforced Hybrid Hydrogels Composed of Polyacrylamide, Sodium Carboxymethylcellulose, Graphene Oxide, and Cellulose Nanocrystals. Carbohydr. Polym. 2018, 193, 228–238. DOI: 10.1016/j.carbpol.2018.04.004.
  • Martins, J. T.; Ramos, Ó. L.; Pinheiro, A. C.; Bourbon, A. I.; Silva, H. D.; Rivera, M. C.; Cerqueira, M. A.; Pastrana, L.; Malcata, F. X.; González-Fernández, Á. Edible Bio-based Nanostructures: Delivery, Absorption and Potential Toxicity. Food. Eng. Rev. 2015, 7(4), 491–513. DOI: 10.1007/s12393-015-9116-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.