430
Views
6
CrossRef citations to date
0
Altmetric
Review

Application of Nanotechnology to Enhance Adsorption and Bioavailability of Procyanidins: A Review

&

References

  • Enomoto, T.; Nagasako–Akazome, Y.; Kanda, T.; Ikeda, M.; Dake, Y. Clinical Effects of Apple Polyphenols on Persistent Allergic Rhinitis: A Randomized Double–blind Placebo–controlled Parallel Arm Study. J. Invest. Allerg. Clin. 2006, 16(5), 283–289.
  • Santos–Buelga, C.; Scalbert, A. Proanthocyanidins and Tannin–like Compounds–nature, Occurrence, Dietary Intake and Effects on Nutrition and Health. J. S. Food Agr. 2000, 80, 1094–1117.
  • Gu, L.; Kelm, M. A.; Hammerstone, J. F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R. L. Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LC–MS/MS and Thiolytic Degradation. J. Agr. Food Chem. 2003, 51(25), 7513–7521. DOI: 10.1021/jf034815d.
  • Nandakumar, V.; Singh, T.; Katiyar, S. K. Multi–targeted Prevention and Therapy of Cancer by Proanthocyanidins. Cancer Lett. 2008, 269(2), 378–387. DOI: 10.1016/j.canlet.2008.03.049.
  • Gu, L.; Kelm, M. A.; Hammerstone, J. F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R. L. Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption. J. Nutr. 2004, 134, 613–617. DOI: 10.1093/jn/134.3.613.
  • Yamakoshi, J.; Saito, M.; Kataoka, S.; Kikuchi, M. Safety Evaluation of Proanthocyanidin–rich Extract from Grape Seeds. Food Chem. Toxicol. 2002, 40(5), 599–607. DOI: 10.1016/S0278-6915(02)00006-6.
  • Joshi, S. S.; Kuszynski, C. A.; Bagchi, D. The Cellular and Molecular Basis of Health Benefits of Grape Seed Proanthocyanidin Extract. Curr. Pharm. Biotechno. 2001, 2(2), 187–200. DOI: 10.2174/1389201013378725.
  • Bagchi, D.; Garg, A.; Krohn, R. L.; Bagchi, M.; Tran, M. X.; Stohs, S. J. Oxygen Free Radical Scavenging Abilities of Vitamins C and E, and a Grape Seed Proanthocyanidin Extract in Vitro. Res. Commun. Mol. Path. 1997, 95(2), 179–189.
  • Zhang, Z.; Zheng, L.; Zhao, Z.; Shi, J.; Wang, X.; Huang, J. Grape Seed Proanthocyanidins Inhibit H2O2–induced Osteoblastic MC3T3–E1 Cell Apoptosis via Ameliorating H2O2–induced Mitochondrial Dysfunction. J. Toxicol. Sci. 2014, 39(5), 803–813. DOI: 10.2131/jts.39.803.
  • Zhen, J.; Qu, Z.; Fang, H.; Fu, L.; Wu, Y.; Wang, H.; Zang, H.; Wang, W. Effects of Grape Seed Proanthocyanidin Extract on Pentylenetetrazole–induced Kindling and Associated Cognitive Impairment in Rats. Int. J. Mol. Med. 2014, 34(2), 391–398. DOI: 10.3892/ijmm.2014.1796.
  • Ding, E. L.; Hutfless, S. M.; Ding, X.; Girotra, S. Chocolate and Prevention of Cardiovascular Disease: A Systematic Review. Nutr. Metab. 2006, 3, 2.  DOI: 10.1186/1743-7075-3-2.
  • Ksiezak–Reding, H.; Ho, L.; Santa–Maria, I.; Diaz–Ruiz, C.; Wang, J.; Pasinetti, G. M. Ultrastructural Alterations of Alzheimer’s Disease Paired Helical Filaments by Grape Seed–derived Polyphenols. Neurobiol. Aging. 2012, 33(7), 1427–1439. DOI: 10.1016/j.neurobiolaging.2010.11.006.
  • Yang, L.; Huang, J. M.; Zu, Y. G.; Ma, C. H.; Wang, H.; Sun, X. W.; Sun, Z. Preparation and Radical Scavenging Activities of Polymeric Procyanidins Nanoparticles by a Supercritical Antisolvent (SAS) Process. Food Chem. 2011, 128(4), 1152–1159. DOI: 10.1016/j.foodchem.2011.04.017.
  • Liu, C. Z.; Li, M.; Yang, J.; Xiong, L.; Sun, Q. J. Fabrication and Characterization of Biocompatible Hybrid Nanoparticles from Spontaneous Co–assembly of Casein/gliadin and Proanthocyanidin. Food Hydrocolloid. 2017, 73, 74–89. DOI: 10.1016/j.foodhyd.2017.06.036.
  • Liu, K.; Feng, Z. Q.; Shan, L.; Yang, T. T.; Qin, M.; Tang, J. B.; Zhang, W. F. Preparation, Characterization, and Antioxidative Activity of Bletilla Striata Polysaccharide/chitosan Microspheres for Oligomeric Proanthocyanidins. Inorg. Chem. 2017, 20, 3889–3896.
  • Rekha, M. R.; Sharma, C. P. Synthesis and Evaluation of Lauryl Succinyl Chitosan Particles Towards Oral Insulin Delivery and Absorption. J. Control. Release. 2009, 135(2), 144–151. DOI: 10.1016/j.jconrel.2009.01.011.
  • Sato, J.; Maulik, G.; Ray, P. S.; Bagchi, D.; Das, D. K. Cardioprotective Effects of Grape Seed Proanthocyanidin against Ischemia–reperfusion Injury. J. Mol. Cell. Cardiol. 1999, 31(6), 1289–1297. DOI: 10.1006/jmcc.1999.0961.
  • Sharma, S. D.; Meeran, S. M.; Katiyar, S. K. Dietary Grape Seed Proanthocyanidins Inhibit UVB-induced Oxidative Stress and Activation of Mitogen-activated Protein Kinases and Nuclear factor-κB Signaling in In Vivo SKH-1 Hairless Mice. Mol. Cancer Ther. 2007, 6, 995–1005. DOI: 10.1158/1535-7163.MCT-06-0661.
  • Mantena, S. K.; Katiyar, S. K. Grape Seed Proanthocyanidins Inhibit UV Radiation–induced Oxidative Stress and Activation of MAPK and NF–kappaB Signaling in Human Epidermal Keratinocytes. Free Radical Bio. Med. 2006, 40(9), 1603–1614. DOI: 10.1016/j.freeradbiomed.2005.12.032.
  • Kim, Y.; Choi, Y.; Ham, H.; Jeong, H. S.; Lee, J. Protective Effects of Oligomeric and Polymeric Procyanidin Fractions from Defatted Grape Seeds on Tert butyl Hydroperoxide–induced Oxidative Damage in HepG2 Cells. Food Chem. 2013, 137(1–4), 136–141. DOI: 10.1016/j.foodchem.2012.10.006.
  • Feghali, K.; Feldman, M.; La, V. D.; Santos, J.; Grenier, D. Cranberry Proanthocyanidins: Natural Weapons against Periodontal Diseases. J. Agr. Food Chem. 2012, 60(23), 5728–5735. DOI: 10.1021/jf203304v.
  • Feliciano, R. P.; Krueger, C. G.; Reed, J. D. Methods to Determine Effects of Cranberry Proanthocyanidins on Extraintestinal Infections: Relevance for Urinary Tract Health. Mol. Nutr. Food Res. 2015, 59(7), 1292–1306. DOI: 10.1002/mnfr.201500108.
  • Gentile, C.; Allegra, M.; Angileri, F.; Pintaudi, A. M.; Livrea, M. A.; Tesoriere, L. Polymeric Proanthocyanidins from Sicilian Pistachio (Pistacia vera L.) Nut Extract Inhibit Lipopolysaccharide–induced Inflammatory Response in RAW 264.7 Cells. Eur. J. Nutr. 2012, 51(3), 353–363. DOI: 10.1007/s00394-011-0220-5.
  • Rasmussen, S. E.; Frederiksen, H.; Krogholm, K. S.; Poulsen, L. Dietary Proanthocyanidins: Occurrence, Dietary Intake, Bioavailability, and Protection against Cardiovascular Disease. Mol. Nutr. Food Res. 2005, 49(2), 159–174. DOI: 10.1002/mnfr.200400082.
  • Bladé, C.; Arola, L.; Salvadó, M. J. Hypolipidemic Effects of Proanthocyanidins and Their Underlying Biochemical and Molecular Mechanisms. Mol. Nutr. Food Res. 2010, 54(1), 37–59. DOI: 10.1002/mnfr.200900476.
  • Belcaro, G.; Ledda, A.; Hu, S.; Cesarone, M. R.; Feragalli, B.; Dugall, M. Grape Seed Procyanidins in Pre- and Mild Hypertension: A Registry Study. Evid.–Based Compl. Alt. Med. 2013, 2013(6), 313142.
  • Byun, E. B.; Ishikawa, T.; Suyama, A.; Kono, M.; Nakashima, S.; Kanda, T.; Miyamoto, T.; Matsui, T. A Procyanidin Trimer, C1, Promotes NO Production in Rat Aortic Endothelial Cells via Both Hyperpolarization and PI3K/Akt Pathways. Eur. J. Pharmacol. 2012, 692(1–3), 52–60. DOI: 10.1016/j.ejphar.2012.07.011.
  • Katiyar, S. K.;. Dietary Proanthocyanidins Inhibit UV Radiation–induced Skin Tumor Development through Functional Activation of the Immune System. Mol. Nutr. Food Res. 2016, 60(6), 1374–1382. DOI: 10.1002/mnfr.201501026.
  • Schmidt, B. M.; Howell, A. B.; McEniry, B.; Knight, C. T.; Seigler, D.; Erdman, J. W.; Lila, M. A. Effective Separation of Potent Antiproliferation and Antiadhesion Components from Wild Blueberry (Vaccinium angustifolium Ait.) Fruits. J. Agr. Food Chem. 2004, 52, 6433–6442. DOI: 10.1021/jf049238n.
  • Lizarraga, D.; Lozano, C.; Briede, J. J.; Delft, J. H. V.; Tourino, S.; Centelles, J. J.; Torres, J. L.; Cascante, M. The Importance of Polymerization and Galloylation for the Antiproliferative Properties of Procyanidin-Rich Natural Extracts. FEBS J. 2007, 274(18), 4802–4811. DOI: 10.1111/j.1742-4658.2007.06010.x.
  • Baguley, B. C.;. Multiple Drug Resistance Mechanisms in Cancer. Mol. Biotechnol. 2010, 46(3), 308. DOI: 10.1007/s12033-010-9321-2.
  • Eid, S. Y.; El–Readi, M. Z.; Wink, M. Carotenoids Reverse Multidrug Resistance in Cancer Cells by Interfering with ABC–transporters. Phytomedicine. 2012, 19(11), 977–987. DOI: 10.1016/j.phymed.2012.05.010.
  • Xu, Y.; Zhi, F.; Xu, G. M.; Tang, X. L.; Lu, S.; Wu, J. H.; Hu, Y. Q. Overcoming Multidrug–resistance in Vitro and in Vivo Using the Novel P–glycoprotein Inhibitor 1416. Biosci. Rep. 2012, 32(6), 559–566. DOI: 10.1042/BSR20120020.
  • Liu, Z.; Duan, Z. J.; Chang, J. Y.; Zhang, Z. F.; Chu, R.; Li, Y. L.; Dai, K. H.; Mo, G. Q.; Chang, Q. Y. Sinomenine Sensitizes Multidrug–resistant Colon Cancer Cells (Caco–2) to Doxorubicin by Downregulation of MDR–1 Expression. PLoS One. 2014, 9(6), 98560. DOI: 10.1371/journal.pone.0098560.
  • Kibria, G.; Hatakeyama, H.; Harashima, H. Cancer Multidrug Resistance: Mechanisms Involved and Strategies for Circumvention Using a Drug Delivery System. Arch. Pharm. Res. 2014, 37(1), 4–15. DOI: 10.1007/s12272-013-0276-2.
  • He, L.; Zhao, C.; Yan, M.; Zhang, L. Y.; Xia, Y. Z. Inhibition of P–glycoprotein Function by Procyanidine on Blood–brain Barrier. Phytother. Res. 2009, 23(7), 933–937.
  • Zhao, B. X.; Sun, Y. B.; Wang, S. Q.; Duan, L.; Huo, Q. L.; Ren, F.; Li, G. F. Grape Seed Procyanidin Reversal of P–glycoprotein Associated Multi–Drug Resistance via Down–regulation of NF–kB and MAPK/ERK Mediated YB–1 Activity in A2780/T Cells. PLoS One. 2013, 8(8), e71071. DOI: 10.1371/journal.pone.0071071.
  • Martins, A.; Vasas, A.; Schelz, Z. S.; Viveiros, M.; Molnár, J.; Hohmann, J.; Amaral, L. Constituents of Carpobrotus Edulis Inhibit P–glycoprotein of MDR1–transfected Mouse Lymphoma Cells. Anticancer Res. 2010, 30(3), 829–836.
  • Spiegler, V.; Sendker, J.; Petereit, F.; Liebau, E.; Bioassay–Guided, H. A. Fractionation of a Leaf Extract from Combretum Mucronatum with Anthelmintic Activity: Oligomeric Procyanidins as the Active Principle. Molecules. 2015, 20(8), 14810–14832. DOI: 10.3390/molecules200814810.
  • Bitzer, Z. T.; Glisan, S. L.; Dorenkott, M. R.; Goodrich, K. M.; Ye, L. Y.; O’ Keefe, S. F.; Lambert, J. D.; Neilson, A. P. Cocoa Procyanidins with Different Degrees of Polymerization Possess Distinct Activities in Models of Colonic Inflammation. J. Nutr. Biochem. 2015, 26(8), 827–831. DOI: 10.1016/j.jnutbio.2015.02.007.
  • Li, Z.; Zeng, J. J.; Tong, Z. H.; Qi, Y. J.; Gu, L. W. Hydrogenolytic Depolymerization of Procyanidin Polymers from Hi–tannin Sorghum Bran. Food Chem. 2015, 188, 337–342. DOI: 10.1016/j.foodchem.2015.05.021.
  • Bittner, K.; Rzeppa, S.; Humpf, H. U. Distribution and Quantification of Flavan–3–ols and Procyanidins with Low Degree of Polymerization in Nuts, Cereals, and Legumes. J. Agr. Food Chem. 2013, 61(38), 9148–9154. DOI: 10.1021/jf4024728.
  • Hellstrom, J. K.; Torronen, A. R.; Mattila, P. H. Proanthocyanidins in Common Food Products of Plant Origin. J. Agr. Food Chem. 2009, 57, 7899–7906. DOI: 10.1021/jf901434d.
  • Mendoza–Wilson, A. M.; Carmelo–Luna, F. J.; Astiazaran–García, H.; Pacheco–Moreno, B. I.; Anduro–Corona, I.; Rascon–Durán, M. L. DFT Study of the Physicochemical Properties of A- and B-type Procyanidin Oligomers. J. Theor. Comput. Chem. 2016, 15(8), 283–289. DOI: 10.1142/S0219633616500693.
  • Wiese, S.; Esatbeyoglu, T.; Winterhalter, P.; Kruse, H. P.; Winkler, S.; Bub, A.; Kulling, S. E. Comparative Biokinetics and Metabolism of Pure Monomeric, Dimeric, and Polymeric Flavan–3–ols: A Randomized Cross–over Study in Humans. Mol. Nutr. Food Res. 2015, 59(4), 610–621. DOI: 10.1002/mnfr.201400422.
  • Shoji, T.; Masumoto, S.; Moriichi, N.; Akiyama, H.; Kanda, T.; Ohtake, Y.; Goda, Y. Apple Procyanidin Oligomers Absorption in Rats after Oral Administration: Analysis of Procyanidins in Plasma Using the Porter Method and High–performance Liquid Chromatography/tandem Mass Spectrometry. J. Agr. Food Chem. 2006, 54(3), 884–892. DOI: 10.1021/jf052260b.
  • Ou, K. S.; Percival, S. S.; Zou, T.; Khoo, C.; Gu, L. W. Transport of Cranberry A–type Procyanidin Dimers, Trimers, and Tetramers across Monolayers of Human Intestinal Epithelial Caco–2 Cells. J. Agr. Food Chem. 2012, 60(6), 1390–1396. DOI: 10.1021/jf2040912.
  • Rothwell, J. A.; Day, A. J.; Morgan, M. R. A. Experimental Determination of Octanol Water Partition Coefficients of Quercetin and Related Flavonoids. J. Agr. Food Chem. 2005, 53(11), 4355–4360. DOI: 10.1021/jf0483669.
  • Ferrec, E. L.; Chesne, C.; Artusson, P.; Brayden, D.; Fabre, G.; Gires, P.; Guillou, F.; Rousset, M.; Rubas, W.; Scarino, M. L. In Vitro Models of the Intestinal Barrier. ATLA. 2001, 29, 649–668. DOI: 10.1177/026119290102900604.
  • Spencer, J. P.;. Metabolism of Tea Flavonoids in the Gastrointestinal Tract. J. Nutr. 2003, 133(10), 3255S. DOI: 10.1093/jn/133.10.3255S.
  • Ou, K. Q.; Gu, L. W. Absorption and Metabolism of Proanthocyanidins. J. Funct. Foods. 2014, 7(1), 43–53. DOI: 10.1016/j.jff.2013.08.004.
  • Gonthier, M. P.; Donovan, J. L.; Texier, O.; Felgines, C.; Remesy, C.; Scalbert, A. Metabolism of Dietary Procyanidins in Rats. Free Radical Bio. Med. 2003, 35(8), 837–844. DOI: 10.1016/S0891-5849(03)00394-0.
  • Stoupi, S.; Williamson, G.; Drynan, J. W.; Barron, D.; Clifford, M. N. A Comparison of the in Vitro Biotransformation of (–)–epicatechin and Procyanidin B2 by Human Faecal Microbiota. Mol. Nutr. Food Res. 2010, 54(6), 747–759. DOI: 10.1002/mnfr.200900123.
  • Stoupi, S.; Williamson, G.; Drynan, J. W.; Barron, D.; Clifford, M. N. Procyanidin B2 Catabolism by Human Fecal Microflora: Partial Characterization of ‘Dimeric’ Intermediates. Arch. Biochem. Biophys. 2010, 501, 73–78. DOI: 10.1016/j.abb.2010.02.009.
  • Stoupi, S.; Williamson, G.; Viton, F.; Barron, D.; King, L. J.; Brown, J. E.; Clifford, M. N. In Vivo Bioavailability, Absorption, Excretion, and Pharmacokinetics of [14C] Procyanidin B2 in Male Rats. Drug Metab. Dispos. 2010, 38, 287–291. DOI: 10.1124/dmd.109.030304.
  • Xu, Z.; Wei, L. H.; Ge, Z. Z.; Zhu, W.; Li, C. M. Comparison of the Degradation Kinetics of A–type and B–type Proanthocyanidins Dimers as a Function of pH and Temperature. Eur. Food Res. Technol. 2015, 240(4), 707–717. DOI: 10.1007/s00217-014-2375-9.
  • Fang, Z. X.; Bhandari, B. Effect of Spray Drying and Storage on the Stability of Bayberry Polyphenols. Food Chem. 2011, 129(3), 1139–1147. DOI: 10.1016/j.foodchem.2011.05.093.
  • Khan, M. K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of Novel Technologies on Polyphenols during Food Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. DOI: 10.1016/j.ifset.2017.12.006.
  • Lukić, K.; Vukušić, T.; Tomašević, M.; Ćurko, N.; Gracin, L.; Ganić, K. K. The Impact of High Voltage Electrical Discharge Plasma on the Chromatic Characteristics and Phenolic Composition of Red and White Wines. Innov. Food Sci. Emerg. Technol. 2017, 39, 179–187. DOI: 10.1016/j.ifset.2017.11.004.
  • Malien–Aubert, C.; Dangles, O.; Amiot, M. J. Influence of Procyanidins on the Color Stability of Oenin Solutions. J. Agr. Food Chem. 2002, 50(11), 3299–3305. DOI: 10.1021/jf011392b.
  • Ratnam, D. V.; Ankola, D. D.; Bhardwaj, V.; Sahana, D. K.; Kumar, M. N. Role of Antioxidants in Prophylaxis and Therapy: A Pharmaceutical Perspective. J. Control. Release. 2006, 113(3), 189–207. DOI: 10.1016/j.jconrel.2006.04.015.
  • Acosta, E.;. Bioavailability of Nanoparticles in Nutrient and Nutraceutical Delivery. Curr. Opin. Colloid Int. Sci. 2009, 14(1), 3–15. DOI: 10.1016/j.cocis.2008.01.002.
  • Santiago, L. G.; Castro, G. R. Novel Technologies for the Encapsulation of Bioactive Food Compounds. Curr. Opin. Food Sci. 2016, 7, 78–85. DOI: 10.1016/j.cofs.2016.01.006.
  • Li, Z.; Gu, L. W. Effects of Mass Ratio, pH, Temperature, and Reaction Time on Fabrication of Partially Purified Pomegranate Ellagitannin–gelatin Nanoparticles. J. Agr. Food Chem. 2011, 59(8), 4225–4231. DOI: 10.1021/jf200024d.
  • Li, Z.; Percival, S. S.; Bonard, S.; Gu, L. W. Fabrication of Nanoparticles Using Partially Purified Pomegranate Ellagitannins and Gelatin and Their Apoptotic Effects. Mol. Nutr. Food Res. 2011, 55(7), 1096–1103. DOI: 10.1002/mnfr.201000528.
  • Desai, M. P.; Labhasetwar, V.; Amidon, G. L.; Levy, R. J. Gastrointestinal Uptake of Biodegradable Microparticles: Effect of Particle Size. Pharm. Res. 1996, 13(12), 1838–1845. DOI: 10.1023/A:1016085108889.
  • Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid–Moussa, N. Application of Nanotechnology in Improving Bioavailability and Bioactivity of Diet–derived Phytochemicals. J. Nutr. Biochem. 2014, 25(4), 363–376. DOI: 10.1016/j.jnutbio.2013.10.002.
  • Mattoussi, H.; Rotello, V. M. Inorganic Nanoparticles in Drug Delivery. Adv. Drug Delivery Rev. 2013, 65(5), 605–606. DOI: 10.1016/j.addr.2013.04.012.
  • Tonga, G. Y.; Moyano, D. F.; Kim, C. S.; Rotello, V. M. Inorganic Nanoparticles for Therapeutic Delivery: Trials, Tribulations and Promise. Curr. Opin. Colloid Int. Sci. 2014, 19(2), 49–55. DOI: 10.1016/j.cocis.2014.03.004.
  • Nakanishi, J.; Nakayama, H.; Shimizu, T.; Ishida, H.; Kikuchi, Y.; Yamaguchi, K.; Horiike, Y. Light Regulated Activation of Cellular Signaling by Gold Nanoparticles that Capture and Release Amines. J. Am. Chem. Soc. 2009, 131(11), 3822–3823. DOI: 10.1021/ja809236a.
  • Agasti, S. S.; Chompoosor, A.; You, C. C.; Ghosh, P.; Kim, C. K.; Rotello, V. M. Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles. J. Am. Chem. Soc. 2009, 131(16), 5728–5729. DOI: 10.1021/ja900591t.
  • Kim, C. K.; Ghosh, P.; Pagliuca, C.; Zhu, Z. J.; Menichetti, S.; Rotello, V. M. Entrapment of Hydrophobic Drugs in Nanoparticle Monolayers with Efficient Release into Cancer Cells. J. Am. Chem. Soc. 2009, 131(4), 1360–1361. DOI: 10.1021/ja808137c.
  • Krishnaswamy, K.; Vali, H.; Orsat, V. Value–adding to Grape Waste: Green Synthesis of Gold Nanoparticles. J. Food Eng. 2014, 142, 210–220. DOI: 10.1016/j.jfoodeng.2014.06.014.
  • Amarnath, K.; Mathew, N.; Nellore, J.; Siddarth, C.; Kumar, J. Facile Synthesis of Biocompatible Gold Nanoparticles from Vitis vinifera and Its Cellular Internalization against HBL–100 Cells. Cancer Nanotechnol. 2011, 2(1), 121–132. DOI: 10.1007/s12645-011-0022-8.
  • Nirmala, J. G.; Akila, S.; Narendhirakannan, R. T.; Chatterjee, S. Vitis vinifera Peel Polyphenols Stabilized Gold Nanoparticles Induce Cytotoxicity and Apoptotic Cell Death in A431 Skin Cancer Cell Lines. Adv. Powder Technol. 2017, 28(4), 1170–1184. DOI: 10.1016/j.apt.2017.02.003.
  • Hsin, Y. H.; Chen, C. F.; Huang, S.; Shih, T. S.; Lai, P. S.; Chueh, P. J. The Apoptotic Effect of Nanosilver Is Mediated by a ROS–and JNK–dependent Mechanism Involving the Mitochondrial Pathway in NIH3T3 Cells. Toxicol. Lett. 2008, 179(3), 130–139. DOI: 10.1016/j.toxlet.2008.04.015.
  • Park, Y.;. New Paradigm Shift for the Green Synthesis of Antibacterial Silver Nanoparticles Utilizing Plant Extracts. Toxicol. Res. 2014, 30(3), 169–178. DOI: 10.5487/TR.2014.30.3.169.
  • Kurek, A.; Grudniak, A. M.; Kraczkiewicz–Dowjat, A.; Wolska, K. I. New Antibacterial Therapeutics and Strategies. Pol. J. Microbiol. 2011, 60(1), 3–12. DOI: 10.33073/pjm-2011-001.
  • Singh, M.; Mallick, A. K.; Banerjee, M.; Kumar, R. Loss of Outer Membrane Integrity in Gram–negative Bacteria by Silver Nanoparticles Loaded with Camellia sinensis Leaf Phytochemicals: Plausible Mechanism of Bacterial Cell Disinte–gration. B. Mater. Sci. 2016, 39(7), 1871–1878. DOI: 10.1007/s12034-016-1317-5.
  • Han, X. T.; Xing, Z. G.; Si, S. X.; Yao, Y. Y.; Zhang, Q. Y. Electrospun Grape Seed Polyphenols/Gelatin Composite Fibers Contained Silver Nanoparticles as Biomaterials. Fiber. Polym. 2014, 15(12), 2572–2580. DOI: 10.1007/s12221-014-2572-y.
  • Tarhinia, M.; Greige–Gerges, H.; Elaissari, A. Protein–based Nanoparticles: From Preparation to Encapsulation of Active Molecules. Int. J. Pharmaceut. 2017, 522, 172–197. DOI: 10.1016/j.ijpharm.2017.01.067.
  • Gaihre, B.; Khil, M. S.; Lee, D. R.; Kim, H. Y. Gelatin–coated Magnetic Iron Oxide Nanoparticles as Carrier System: Drug Loading and in Vitro Drug Release Study. Int. J. Pharmaceut. 2009, 365(2), 180–189. DOI: 10.1016/j.ijpharm.2008.08.020.
  • El–Sherbiny, I. M.; Salih, E.; Yassin, A. M.; Hafez, E. E. Newly Developed Chitosan–silver Hybrid Nanoparticles: Biosafety and Apoptosis Induction in HepG2 Cells. J. Nanopart. Res. 2016, 18, 172. DOI: 10.1007/s11051-016-3477-z.
  • Zhou, R. C.; Si, S. X.; Zhang, Q. Y. Water–dispersible Hydroxyapatite Nanoparticles Synthesized in Aqueous Solution Containing Grape Seed Extract. Appl. Surf. Sci. 2012, 258(8), 3578–3583. DOI: 10.1016/j.apsusc.2011.11.119.
  • Lee, E. J.; Lee, N. K.; Kim, I. S. Bioengineered Protein–based Nanocage for Drug Delivery. Adv. Drug Deliver. Rev. 2016, 106, 157–171. DOI: 10.1016/j.addr.2016.03.002.
  • Leo, E.; Vandelli, M. A.; Cameroni, R.; Forni, F. Doxorubicin–loaded Gelatin Nanoparticles Stabilized by Glutaraldehyde: Involvement of the Drug in the Cross–linking Process. Int. J. Pharmaceut. 1997, 155(1), 75–82. DOI: 10.1016/S0378-5173(97)00149-X.
  • Zou, T.; Li, Z.; Percival, S. S.; Bonard, S.; Gu, L. W. Fabrication, Characterization, and Cytotoxicity Evaluation of Cranberry Procyanidins–zein Nanoparticles. Food Hydrocolloid. 2012, 27(2), 293–300. DOI: 10.1016/j.foodhyd.2011.10.002.
  • Schneider, M.; Esposito, D.; Lilab, M. A.; Allen, E. Foegeding, Formation of Whey Protein–polyphenol Meso–structures as a Natural Means of Creating Functional Particles. Food Funct. 2016, 7(3), 1306–1318. DOI: 10.1039/C5FO01499A.
  • Huang, Y.; Li, A. J.; Qiu, C. Y.; Teng, Y. L.; Wang, Y. Self–assembled Colloidal Complexes of Polyphenol–gelatin and Their Stabilizing Effects on Emulsions. Food Funct. 2017, 8(9), 3145–3154. DOI: 10.1039/C7FO00705A.
  • Dalmora, M. E.; Oliveira, A. G. Inclusion Complex of Piroxicam with β–cyclodextrin and Incorporation in Hexadecyltrimethylammonium Bromide Based Microemulsion. Int. J. Pharmaceut. 1999, 184(2), 157–164. DOI: 10.1016/S0378-5173(99)00099-X.
  • Liang, J.; Yan, H.; Puligundla, P.; Gao, X. L.; Zhou, Y. B.; Wan, X. C. Applications of Chitosan Nanoparticles to Enhance Absorption and Bioavailability of Tea Polyphenols: A Review. Food Hydrocolloid. 2017, 69, 286–292. DOI: 10.1016/j.foodhyd.2017.01.041.
  • Munoz, V.; Kappes, T.; Roeckel, M.; Vera, J. C.; Fernández, K. Modification of Chitosan to Deliver Grapes Proanthocyanidins: Physicochemical and Biological Evaluation. LWT– Food Sci. Technol. 2016, 73, 640–648. DOI: 10.1016/j.lwt.2016.07.006.
  • Masanobu, N.; Tomoki, H.; Hiroshi, I. Structure of Poly (Vinyl Alcohol) Hydrogel Prepared by Repeated Freezing and Melting. Polymer. 1989, 30(4), 762–765. DOI: 10.1016/0032-3861(89)90169-9.
  • Kim, S.; Nimni, M. E.; Yang, Z.; Han, B. Chitosan Gelatin–based Films Crosslinked by Proanthocyanidin. J. Biomed. Mater. Res. B. 2005, 75(2), 442–450. DOI: 10.1002/jbm.b.30324.
  • Zou, T.; Percival, S. S.; Cheng, Q.; Li, Z.; Rowe, C. A.; Gu, L. Preparation, Characterization, and Induction of Cell Apoptosis of Cocoa Procyanidins–gelatin–chitosan Nanoparticles. Eur. J. Pharm. Biopharm. 2012, 82(1), 36–42. DOI: 10.1016/j.ejpb.2012.05.006.
  • Fernández, K.; Aburto, J.; Von, P. C.; Rockel, M.; Aspé, E. Factorial Design Optimization and Characterization of Poly–lactic Acid (PLA) Nanoparticle Formation for the Delivery of Grape Extracts. Food Chem. 2016, 207, 75–85. DOI: 10.1016/j.foodchem.2016.03.083.
  • Fawzy, A. S.; Priyadarshini, B. M.; Selvan, S. T.; Lu, T. B.; Proanthocyanidins–Loaded Nanoparticles, N. J. Enhance Dentin Degradation Resistance. J. Dent. Res. 2017, 96(7), 780–789. DOI: 10.1177/0022034517691757.
  • Bedran–Russo, A. K.; Pauli, G. F.; Chen, S. N.; McAlpine, J.; Castellan, C. S.; Phansalkar, R. S.; Aguiar, T. R.; Vidal, C. M.; Napotilano, J. G.; Nam, J. W.; et al. Dentin Biomodification: Strategies, Renewable Resources and Clinical Applications. Dent. Mater. 2014, 30(1), 62–76. DOI: 10.1016/j.dental.2013.10.012.
  • Chen, A. Z.; Li, Y.; Chau, F. T.; Lau, T. Y.; Hu, J. Y.; Zhao, Z.; Mok, D. K. Application of Organic Nonsolvent in the Process of Solution–enhanced Dispersion by Supercritical CO2 to Prepare Puerarin Fine Particles. J. Supercrit. Fluid. 2009, 49(3), 394–402. DOI: 10.1016/j.supflu.2009.02.004.
  • Kim, M.; Jin, S.; Kim, J.; Park, H.; Song, H.; Neubert, R. Preparation, Characterization and in Vivo Evaluation of Amorphous Atorvastatin Calcium Nanoparticles Using Supercritical Antisolvent (SAS) Process. Eur. J. Pharm. Biopharm. 2008, 69(2), 454–465.
  • Patravale, V.; Date, A.; Kulkarni, R. Nanosuspensions: A Promising Drug Delivery Strategy. J. Pharm. Pharmacol. 2004, 56(7), 827–840. DOI: 10.1211/0022357023691.
  • Roger, E.; Lagarce, F.; Garcion, E.; Benoit, J. P. Biopharmaceutical Parameters to Consider in order to Alter the Fate of Nanocarriers after Oral Delivery. Nanomed. 2010, 5(2), 287–306. DOI: 10.2217/nnm.09.110.
  • Wang, J.; Byrne, J. D.; Napier, M. E.; DeSimone, J. M. More Effective Nanomedicines through Particle Design. Small. 2011, 7(14), 1919–1931. DOI: 10.1002/smll.201100442.
  • Mercer, J.; Helenius, A. Virus Entry by Macropinocytosis. Nat. Cell Biol. 2009, 11(5), 510–520. DOI: 10.1038/ncb0509-510.
  • Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of Nanomedicines. J. Control. Release. 2010, 145(3), 182–195. DOI: 10.1016/j.jconrel.2010.01.036.
  • Ehrlich, M.; Boll, W.; Van Oijen, A.; Hariharan, R.; Chandran, K.; Nibert, M. L.; Kirchhausen, T. Endocytosis by Random Initiation and Stabilization of Clathrin–coated Pits. Cell. 2004, 118(5), 591–605. DOI: 10.1016/j.cell.2004.08.017.
  • Qian, M.; Cai, D.; Verhey, K.; Tsai, B. A Lipid Receptor Sorts Polyomavirus from the Endolysosome to the Endoplasmic Reticulum to Cause Infection. PLoS Pathog. 2009, 5(6), e1000465. DOI: 10.1371/journal.ppat.1000465.
  • Siddiqui, I. A.; Shukla, Y.; Mukhtar, H. Nanoencapsulation of Natural Products for Chemoprevention. J. Nanomed. Nanotechnol. 2011, 2(6), 104e. DOI: 10.4172/2157-7439.1000104e.
  • Mohanraj, V. J.; Chen, Y. Nanoparticles–A Review. Trop. J. Pharm. Res. 2006, 5, 561–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.