361
Views
5
CrossRef citations to date
0
Altmetric
Review

Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier

, ORCID Icon &

References

  • Mandel, S. A.; Amit, T.; Weinreb, O.; Youdim, M. B. H. Understanding the Broad-spectrum Neuroprotective Action Profile of Green Tea Polyphenols in Aging and Neurodegenerative Diseases. J. Alzheimers Dis. 2011, 25, 187–208. DOI: 10.3233/JAD-2011-101803.
  • Lu, W.; Kelly, A. L.; Miao, S. Emulsion-based Encapsulation and Delivery Systems for Polyphenols. Trends Food Sci. Tech. 2015, 47, 1–9. DOI: 10.1016/j.tifs.2015.10.015.
  • Munin, A.; Edwards-Levy, F. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics. 2011, 3, 793–829. DOI: 10.3390/pharmaceutics3040793.
  • Heleno, S. A.; Martins, A.; Queiroz, M. J. R. P.; Ferreira, I. C. F. R. Bioactivity of Phenolic Acids: Metabolites versus Parent Compounds: A Review. Food Chem. 2015, 173, 501–513. DOI: 10.1016/j.foodchem.2014.10.057.
  • Li, Z.; Jiang, H.; Xu, C.; Gu, L. A Review: Using Nanoparticles to Enhance Absorption and Bioavailability of Phenolic Phytochemicals. Food Hydrocolloid. 2015, 43, 153–164. DOI: 10.1016/j.foodhyd.2014.05.010.
  • Souguir, H.; Salaün, F.; Douillet, P.; Vroman, I.; Chatterjee, S. Nanoencapsulation of Curcumin in Polyurethane and Polyurea Shells by an Emulsion Diffusion Method. Chem. Eng. J. 2013, 221, 133–145. DOI: 10.1016/j.cej.2013.01.069.
  • Fonseca-Santos, B.; Gremião, M. P.; Chorilli, M. Nanotechnology-based Drug Delivery Systems for the Treatment of Alzheimer’s Disease. Int. J. Nanomed. 2015, 10, 4981–5003. DOI: 10.2147/IJN.S87148.
  • Tajes, M.; Ramos-Fernández, E.; Weng-Jiang, X.; Biuse, G.; Abel, E.; Eraso-Pichot, A.; Salvador, B.; Fernàndez-Busquets, X.; Roquer, J.; Muñoz, F. J.;; et al. The Blood-brain Barrier: Structure, Function and Therapeutic Approaches to Cross It. Mol. Membr. Biol. 2014, 31, 152–167. DOI: 10.3109/09687688.2014.937468.
  • Ballabh, P.; Braun, A.; Nedergaard, M. The Blood-brain Barrier: An Overview: Structure, Regulation, and Clinical Implications. Neurobiol. Dis. 2004, 16, 1–13.
  • Mittapalli, R. K.; Manda, V. K.; Adkins, C. E.; Geldenhuys, W. J.; Lockman, P. R. Exploiting Nutrient Transporters at the Blood–brain Barrier to Improve Brain Distribution of Small Molecules. Therap. Deliver. 2010, 1, 775–784. DOI: 10.4155/tde.10.76.
  • Qian, Z.; Li, H.; Sun, H.; Ho, K. Targeted Drug Delivery via the Transferrin Receptor-mediated Endocytosis Pathway. J. Chin. Pharm. Sci. 2002, 54, 561.
  • Bohn, T.;. Dietary Factors Affecting Polyphenol Bioavailability. Nutr. Rev. 2016, 72, 429–452.
  • Hu, B.; Liu, X.; Zhang, C.; Zeng, X. Food Macromolecule Based Nanodelivery Systems for Enhancing the Bioavailability of Polyphenols. J. Food Drug Anal. 2017, 25, 3–15. DOI: 10.1016/j.jfda.2016.11.004.
  • Walle, T.; Hsieh, F.; DeLegge, M. H.; Oatis, J. E.; Walle, U. K. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. 2004, 12, 1377–1382. DOI: 10.1124/dmd.104.000885.
  • Garcea, G.; Jones, D. J.; Singh, R.; Dennison, A. R.; Farmer, P. B.; Sharma, R. A.; Steward, W. P.; Gescher, A. J.; Berry, D. P. Detection of Curcumin and Its Metabolites in Hepatic Tissue and Portal Blood of Patients following Oral Administration. Br. J. Cancer. 2004, 5, 1011–1015. DOI: 10.1038/sj.bjc.6601623.
  • Tsai, T. H.;. Determination of Naringin in Rat Blood, Brain, Liver, and Bile Using Microdialysis and Its Interaction with Cyclosporin A, a P-glycoprotein Modulator. J. Agric. Food Chem. 2002, 23, 6669–6674. DOI: 10.1021/jf020603p.
  • Chen, T. Y.; Kritchevsky, J.; Hargett, K.; Feller, K.; Klobusnik, R.; Song, B. J.;Cooper, B.; Jouni, Z.; Ferruzzi, M.G.; Janle, E.M.; Plasma Bioavailability and Regional Brain Distribution of Polyphenols from Apple/grape Seed and Bilberry Extracts in a Young Swine Model. Mol. Nutr. Food Res. 2015, 59, 2432–2447. DOI: 10.1002/mnfr.201500224.
  • Wang, J.; Bi, W.; Cheng, A.; Freire, D.; Vempati, P.; Zhao, W.; Gong, B.; Janle, E. M.; Chen, T.-Y.; Ferruzzi, M. G.;; et al. Targeting Multiple Pathogenic Mechanisms with Polyphenols for the Treatment of Alzheimer’s Disease-experimental Approach and Therapeutic Implications. Front. Aging Neurosci. 2014, 6, 42. DOI: 10.3389/fnagi.2014.00042.
  • Wang, Y.; Xie, G.; Liu, Q.; Duan, X.; Liu, Z.; Liu, X. Pharmacokinetics, Tissue Distribution, and Plasma Protein Binding Study of Chicoric Acid by Hplc–ms/ms. J. Chromatogr. B. 2016, 1031, 139–145. DOI: 10.1016/j.jchromb.2016.07.045.
  • Perkins, S.; Verschoyle, R. D.; Hill, K.; Parveen, I.; Threadgill, M. D.; Sharma, R. A.; Williams, M.L.; Steward, W.P.; Gescher, A.J.  Chemopreventive Efficacy and Pharmacokinetics of Curcumin in the Min/+ Mouse, a Model of Familial Adenomatous Polyposis. Cancer Epidem. Biomar. 2002, 11, 535–540.
  • Haller, S.; Montandon, M. L.; Rodriguez, C.; François., H.; Giannakopoulos, P. Impact of Coffee, Wine, and Chocolate Consumption on Cognitive Outcome and Mri Parameters in Old Age. Nutrients. 2018, 10, 1391. DOI: 10.3390/nu10101391.
  • Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules. 2018, 23, 1297. DOI: 10.3390/molecules23061297.
  • Valls-Pedret, C.; Rosa Maria, L.; Alexander, M.; Quintana, M.; Corella, D.; Pinto, X.; Martinez-Gonzalez, M.A.; Estruch, R.; Ros, E.Polyphenol-rich Foods in the Mediterranean Diet are Associated with Better Cognitive Function in Elderly Subjects at High Cardiovascular Risk. J. Alzheimers Dis. 2012, 29, 773–782. DOI: 10.3233/JAD-2012-111799.
  • Zhang, F.; Jiang, L.Neuroinflammation in Alzheimer’s Disease. Neuropsych. Dis. Treat. 2015, 14, 243–256. DOI: 10.2147/NDT.S75546.
  • Seo, E. J.; Fischer, N.; Efferth, T. Phytochemicals as Inhibitors of NF-kappaB for Treatment of Alzheimer’s Disease. Pharmacol. Res. 2018, 129, 262–273.
  • Qi, B.; Shi, C.; Meng, J.; Xu, S.; Liu, J. Resveratrol Alleviates Ethanol-induced Neuroinflammation in Vivo and in Vitro: Involvement of TLR2-MyD88-NF-kappaB Pathway. Int. J. Biochem. Cell Biol. 2018, 103, 56–64. DOI: 10.1016/j.biocel.2018.07.007.
  • Zhang, Q.; Yuan, L.; Zhang, Q.; Gao, Y.; Liu, G.; Xiu, M.; Wei, X.; Wang, Z.;Liu, D. Resveratrol Attenuates Hypoxia-induced Neurotoxicity through Inhibiting Microglial Activation. Int. Immunopharmacol. 2015, 28, 578–587. DOI: 10.1016/j.intimp.2015.07.027.
  • Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R. A.; Aisen, P. S.; Turner, P.S.; Resveratrol Regulates Neuro-inflammation and Induces Adaptive Immunity in Alzheimer’s Disease. J. Neuroinflamm. 2017, 14, 1. DOI: 10.1186/s12974-016-0779-0.
  • Anandhan, A.; Essa, M. M.; Manivasagam, T. Therapeutic Attenuation of Neuroinflammation and Apoptosis by Black Tea Theaflavin in Chronic MPTP/probenecid Model of Parkinson’s Disease. Neurotox. Res. 2013, 23, 166–173. DOI: 10.1007/s12640-012-9332-9.
  • Lee, Y. J.; Choi, D. Y.; Yun, Y. P.; Han, S. B.; Oh, K. W.; Hong, J. T. Epigallocatechin-3-gallate Prevents Systemic Inflammation-induced Memory Deficiency and Amyloidogenesis via Its Anti-neuroinflammatory Properties. J. Nutr. Biochem. 2013, 24, 298–310. DOI: 10.1016/j.jnutbio.2012.06.011.
  • Yong, T.; Rui, X.; An-Guo, W.; Chong-Lin, Y.; Ya, Z.; Wen-Qiao, Q.; Wang, X.-L.; Teng, J.-F.; Liu, J.; Chen, H.-X.;; et al. Polyphenols Derived from Lychee Seed Suppress aβ (1-42)-induced Neuroinflammation. Int. J. Mol. Sci. 2018, 19, 2109. DOI: 10.3390/ijms19072109.
  • Zhang, R. R.; Hu, R. D.; Lu, X. Y.; Ding, X. Y.; Zhang, S. J. Polyphenols from the Flower of Hibiscus Syriacus Linn Ameliorate Neuroinflammation in LPS-treated SH-SY5Y Cell. Biomed. Pharmacother. 2020, 130, 110517. DOI: 10.1016/j.biopha.2020.110517.
  • Zhuang, W.; Cai, M.; Li, W.; Chen, C.; Wang, Y.; Lv, E.; Fu, W. Polyphenols from Toona Sinensiss Seeds Alleviate Neuroinflammation Induced by 6-hydroxydopamine through Suppressing P38 MAPK Signaling Pathway in a Rat Model of Parkinson’s Disease. Neurochem. Res. 2020, 45, 2052–2064. DOI: 10.1007/s11064-020-03067-2.
  • Bassani, T. B.; Turnes, J. M.; Moura, E. L. R.; Bonato, J. M.; Coppola-Segovia, V.; Zanata, S. M.; Oliveira, R. M. M. W.; Vital, M. A. B. F. Effects of Curcumin on Short-term Spatial and Recognition Memory, Adult Neurogenesis and Neuroinflammation in a Streptozotocin-induced Rat Model of Dementia of Alzheimer’s Type. Behav. Brain Res. 2017, 335, 41–54. DOI: 10.1016/j.bbr.2017.08.014.
  • Reglodi, D.; Renaud, J.; Tamas, A.; Tizabi, Y.; Socias, S. B.; Del-Bel, E.; Raisman-Vozari, R. Novel Tactics for Neuroprotection in Parkinson’s Disease: Role of Antibiotics, Polyphenols and Neuropeptides. Prog. Neurobiol. 2017, 155, 120–148.
  • Shah, S. A.; Amin, F. U.; Khan, M.; Abid, M. N.; Rehman, S. U.; Kim, T. H.; Kim, M. W.; Kim, M. O. Anthocyanins Abrogate Glutamate-induced AMPK Activation, Oxidative Stress, Neuroinflammation, and Neurodegeneration in Postnatal Rat Brain. J. Neuroinflamm. 2016, 13, 286. DOI: 10.1186/s12974-016-0752-y.
  • Huang, T.; Lu, K.; Wo, Y.; Wu, Y.; Yang, Y. Resveratrol Protects Rats from Abeta-induced Neurotoxicity by the Reduction of iNOS Expression and Lipid Peroxidation. PLoS One. 2011, 6, e29102. DOI: 10.1371/journal.pone.0029102.
  • Mansouri, Z.; Sabetkasaei, M.; Moradi, F.; Masoudnia, F.; Ataie, A. Curcumin Has Neuroprotection Effect on Homocysteine Rat Model of Parkinson. J. Mol. Neurosci. 2012, 47, 234–242. DOI: 10.1007/s12031-012-9727-3.
  • Chongtham, A.; Agrawal, N. Curcumin Modulates Cell Death and Is Protective in Huntington’s Disease Model. Sci. Rep. 2016, 6,18736.
  • Koh, E.; Seo, Y.; Choi, J.; Lee, H. Y.; Kang, D.; Kim, K.; Lee, B.-Y. Spirulina Maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice. Molecules. 2017, 22, 1363. DOI: 10.3390/molecules22081363.
  • Schwingel, T. E.; Klein, C. P.; Nicoletti, N. F.; Dora, C. L.; Hadrich, G.; Bica, C. G.; Lopes, T. G.; Da Silva, V. D.; Morrone, F. B. Effects of the Compounds Resveratrol, Rutin, Quercetin, and Quercetin Nanoemulsion on Oxaliplatin-induced Hepatotoxicity and Neurotoxicity in Mice. Naunyn Schmiedebergs Arch. Pharmacol. 2014, 387, 837–848. DOI: 10.1007/s00210-014-0994-0.
  • Kodali, M.; Parihar, V. K.; Hattiangady, B.; Mishra, V.; Shuai, B.; Shetty, A. K. Resveratrol Prevents Age-related Memory and Mood Dysfunction with Increased Hippocampal Neurogenesis and Microvasculature, and Reduced Glial Activation. Sci. Rep. 2015, 5, 8075. DOI: 10.1038/srep08075.
  • Naia, L.; Rosenstock, T. R.; Oliveira, A. M.; Oliveira-Sousa, S. I.; Caldeira, G. L.; Carmo, C.; Laço, M. N.; Hayden, M. R.; Oliveira, C. R.; Rego, A. C.;; et al. Comparative Mitochondrial-based Protective Effects of Resveratrol and Nicotinamide in Huntington’s Disease Models. Mol. Neurobiol. 2017, 54, 5385–5399. DOI: 10.1007/s12035-016-0048-3.
  • Ishrat, T.; Hoda, M. N.; Khan, M. B.; Yousuf, S.; Ahmad, M.; Khan, M. M.; Ahmad, A.; Islan, F. Amelioration of Cognitive Deficits and Neurodegeneration by Curcumin in Rat Model of Sporadic Dementia of Alzheimer’s Type (SDAT). Eur. Neuropsychopharm. 2009, 19, 636–647. DOI: 10.1016/j.euroneuro.2009.02.002.
  • Julien, B.; Dudonné, S.; Nicole, E.; Hermine, P.; Camille, A.; David, G.; Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier.J. Gerontol. A-Biol. 2018, 74, 996–1007. doi:10.1093/gerona/gly166
  • Lamport, D. J.; Lawton, C. L.; Merat, N.; Jamson, H.; Myrissa, K.; Hofman, D.; Chadwick, H. K.; Quadt, F.; Wightman, J. D.; Dye, L.;; et al. Concord Grape Juice, Cognitive Function, and Driving Performance: A 12-wk, Placebo-controlled, Randomized Crossover Trial in Mothers of Preteen Children. Am. J. Clin. Nutr. 2016, 103, 775–783. DOI: 10.3945/ajcn.115.114553.
  • Cox, K. H.; Pipingas, A.; Scholey, A. B. Investigation of the Effects of Solid Lipid Curcumin on Cognition and Mood in a Healthy Older Population. J. Psychopharmacol. 2015, 29, 642–651. DOI: 10.1177/0269881114552744.
  • Rainey-Smith, S. R.; Brown, B. M.; Sohrabi, H. R.; Shah, T.; Goozee, K. G.; Gupta, V. B.; Martins, R. N. Curcumin and Cognition: A Randomised, Placebo-controlled, Double-blind Study of Community-dwelling Older Adults. Br. J. Nutr. 2016, 115, 2106–2113. DOI: 10.1017/S0007114516001203.
  • Ward, L.; Pasinetti, G. M. Recommendations for Development of Botanical Polyphenols as “Natural Drugs” for Promotion of Resilience against Stress-induced Depression and Cognitive Impairment. Neuromolecular Med. 2016, 18, 487–495. DOI: 10.1007/s12017-016-8418-6.
  • Dinda, S. C.; Pattnaik, G. Nanobiotechnology-based Drug Delivery in Brain Targeting. Curr. Pharma. Biotechno. 2013, 14, 1264–1274. DOI: 10.2174/1389201015666140608143719.
  • Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N. N.; Manohar, S.; Liang, H.-F.; Kulkarni, A. R.;; et al. Targeted Nanoparticles for Drug Delivery through the Blood-brain Barrier for Alzheimer’s Disease. J. Control. Release. 2005, 108, 193–214. DOI: 10.1016/j.jconrel.2005.07.024.
  • El-Say, K. M.; El-Sawy, H. S. Polymeric Nanoparticles: Promising Platform for Drug Delivery. Int. J. Pharm. 2017, 528, 675–691. DOI: 10.1016/j.ijpharm.2017.06.052.
  • Sanna, V.; Lubinu, G.; Madau, P.; Pala, N.; Nurra, S.; Mariani, A.; Sechi, M. Polymeric Nanoparticles Encapsulating White Tea Extract for Nutraceutical Application. J. Agric. Food Chem. 2015, 63, 2026–2032. DOI: 10.1021/jf505850q.
  • Jung, K.; Lee, J. H.; Park, J. W.; Quach, C. H. T.; Moon, S.; Cho, Y. S.; Lee, K.-H. Resveratrol-loaded Polymeric Nanoparticles Suppress Glucose Metabolism and Tumor Growth in Vitro and in Vivo. Int. J. Pharm. 2015, 478, 251–257. DOI: 10.1016/j.ijpharm.2014.11.049.
  • Frozza, R. L.; Bernardi, A.; Hoppe, J. B.; Meneghetti, A. B.; Matte, A.; Battastini, A. M. O.; Pohlmann, A. R.; Guterres, S. S.; Salbego, C. Neuroprotective Effects of Resveratrol against Abeta Administration in Rats are Improved by Lipid-core Nanocapsules. Mol. Neurobiol. 2013, 47, 1066–1080. DOI: 10.1007/s12035-013-8401-2.
  • Das, M. K.; Husain, K.; Pathak, Y. Brain Targeted Delivery of Curcumin Using P80-PEG-coated Poly (Lactide-co-glycolide) Nanoparticles. Asian J. Chem. 2013, 25, 297–301.
  • Tsai, Y. M.; Chien, C. F.; Lin, L. C.; Tsai, T. H. Curcumin and Its Nano-formulation: The Kinetics of Tissue Distribution and Blood–brain Barrier Penetration. Int. J. Pharm. 2011, 416, 331–338. DOI: 10.1016/j.ijpharm.2011.06.030.
  • Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M. A.; Tosi, G.; Grabrucker, A. M. Novel Curcumin Loaded Nanoparticles Engineered for Blood-Brain Barrier Crossing and Able to Disrupt Abeta Aggregates. Int. J. Pharm. 2017, 526, 413–424. DOI: 10.1016/j.ijpharm.2017.05.015.
  • Cheng, K. K.; Yeung, C. F.; Ho, S. W.; Chow, S. F.; Chow, A. H. L.; Baum, L. Highly Stabilized Curcumin Nanoparticles Tested in an in Vitro Blood–brain Barrier Model and in Alzheimer’s Disease Tg2576 Mice. Aaps J. 2013, 15, 324–336. DOI: 10.1208/s12248-012-9444-4.
  • Merdan, O.; Kaffashi, A.; Sibel, B. P.; Selma, Ş.; Mut, M. Effects of Curcumin-loaded PLGA Nanoparticles on the Rg2 Rat Glioma Model. Mat. Sci. Eng. C. 2017, 78, 32–38. DOI: 10.1016/j.msec.2017.03.292.
  • Kundu, P.; Das, M.; Tripathy, K.; Sahoo, S. K. Delivery of Dual Drug Loaded Lipid Based Nanoparticles across Blood Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson’s Disease. ACS Chem. Neurosci. 2016,7, 1658–1670. doi:10.1021/acschemneuro.6b00207
  • Kuo, Y. C.; Lin, C. C. Rescuing Apoptotic Neurons in Alzheimer’s Disease Using Wheat Germ Agglutinin-conjugated and Cardiolipin-conjugated Liposomes with Encapsulated Nerve Growth Factor and Curcumin. Int. J. Nanomed. 2015, 10, 2653–2672. DOI: 10.2147/IJN.S79528.
  • Agrawal, M.; Ajazuddin,; Tripathi, D. K.; Saraf, S.; Saraf, S.; Antimisiaris, S. G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent Advancements in Liposomes Targeting Strategies to Cross Blood-brain Barrier (BBB) for the Treatment of Alzheimer’s Disease. J. Control. Release. 2017, 260, 61–77. DOI: 10.1016/j.jconrel.2017.05.019.
  • Kreuter, J.;. Drug Delivery to the Central Nervous System by Polymeric Nanoparticles: What Do We Know? Adv. Drug Deliver. Rev. 2014, 71, 2–14. DOI: 10.1016/j.addr.2013.08.008.
  • Das, S.; Lin, H. S.; Ho, P. C.; Ng, K. Y. The Impact of Aqueous Solubility and Dose on the Pharmacokinetic Profiles of Resveratrol. Pharm. Res. 2008, 25(11), 2593–2600. DOI: 10.1007/s11095-008-9677-1.
  • Shen, Y.; Cao, B.; Snyder, N. R.; Woeppel, K. M.; Eles, J. R.; Cui, X. T. ROS Responsive Resveratrol Delivery from LDLR Peptide Conjugated PLA-coated Mesoporous Silica Nanoparticles across the Blood–brain Barrier. J. Nanobiotechnol. 2018, 16, 13. DOI: 10.1186/s12951-018-0340-7.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharmaceutics. 2007, 4, 807–818. DOI: 10.1021/mp700113r.
  • Grover, A.; Hirani, A.; Pathak, Y.; Sutariya, V. Brain-targeted Delivery of Docetaxel by Glutathione-coated Nanoparticles for Brain Cancer. AAPS PharmSciTech. 2014, 15, 1562–1568. DOI: 10.1208/s12249-014-0165-0.
  • Mozafaria, M. R.; Khosravi-Daranib, K.; Borazanc, G. G.; Cuia, J.; Pardakhtyd, A.; Yurdugulc, S. Encapsulation of Food Ingredients Using Nanoliposome Technology. Int. J. Food Prop. 2008, 11, 833–844. DOI: 10.1080/10942910701648115.
  • Elhissi, A. M. A.; O’Neill, M. A. A.; Roberts, S. A.; Taylor, K. M. G. A Calorimetric Study of Dimyristoylphosphatidylcholine Phase Transitions and Steroid Liposome Interactions for Liposomes Prepared by Thin Film and Proliposome Methods. Int. J. Pharm. 2006, 320, 124–130. DOI: 10.1016/j.ijpharm.2006.04.015.
  • Hua, S.;. Targeting Sites of Inflammation: Intercellular Adhesion Molecule1 as a Target for Novel Inflammatory Therapies. Front. Pharmacol. 2013, 4, 127. DOI: 10.3389/fphar.2013.00127.
  • Chen, Z. L.; Huang, M.; Wang, X. R.; Fu, J.; Han, M.; Shen, Y. Q.; Xia, Z.; Gao, J.-Q. Transferrin-modified Liposome Promotes Alpha-mangostin to Penetrate the Blood-brain Barrier. Nanomed-Nanotechnol. 2016, 12, 421–430. DOI: 10.1016/j.nano.2015.10.021.
  • Meng, J.; Agrahari, V.; Youm, I. Advances in Targeted Drug Delivery Approaches for the Central Nervous System Tumors: The Inspiration of Nanobiotechnology. J. Neuroimmune Pharmacol. 2017, 12, 84–98. DOI: 10.1007/s11481-016-9698-1.
  • Sihorkar, V.; Vyas, S. P. Potential of Polysaccharide Anchored Liposomes in Drug Delivery, Targeting and Immunization. J. Pharm. Pharm. Sci. 2011, 4, 138–158.
  • Bolger, G. T.; Licollari, A.; Tan, A.; Greil, R.; Vcelar, B.; Majeed, M.; Helson, L.Distribution and Metabolism of Lipocurc™ (Liposomal Curcumin) in Dog and Human Blood Cells: Species Selectivity and Pharmacokinetic Relevance. Anticancer Res. 2017, 37, 3483–3492. DOI: 10.21873/anticanres.11716.
  • Ethemoglu, M. S.; Seker, F. B.; Akkaya, H.; Kilic, E.; Aslan, I.; Erdogan, C. S.; Yilmaz, B. Anticonvulsant Activity of Resveratrol-loaded Liposomes in Vivo. Neuroscience. 2017, 357, 12–19. DOI: 10.1016/j.neuroscience.2017.05.026.
  • Ying, X.; Wen, H.; Lu, W. L.; Du, J.; Guo, J.; Tian, W. Men, Y.; Zhang, Y.; Li, R.J.; Yang, T.Y. Dual-targeting Daunorubicin Liposomes Improve the Therapeutic Efficacy of Brain Glioma in Animals. J. Control. Release. 2010, 141, 183–192. DOI: 10.1016/j.jconrel.2009.09.020.
  • Fan, K.; Jia, X.; Zhou, M.; Wang, K.; Conde, J.; He, J.; Tian, J.; Yan, X. Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano. 2018, 12, 4105–4115. DOI: 10.1021/acsnano.7b06969.
  • Fishman, J. B.; Rubin, J. B.; Handrahan, J. V.; Connor, J. R.; Fine, R. E. Receptor-mediated Transcytosis of Transferrin across the Blood-brain Barrier. J. Neurosci. Res. 1987, 18, 299–304. DOI: 10.1002/jnr.490180206.
  • Aktasü, Y.; Yemisci, M.; Andrieux, X. K.; Gursoy, N.; Alonso, M. J.; Fernandez-Megia, E.; Novoa-Carballal, R.; Quiñoá, E.; Riguera, R.; Sargon, M. F.;; et al. Development and Brain Delivery of chitosan-PEG Nanoparticles Functionalized with the Monoclonal Antibody OX26. Bioconjugate Chem. 2005, 16, 1503–1511. DOI: 10.1021/bc050217o.
  • Boado, R. J.; Tsukamoto, H.; Pardridge, W. M. Drug Delivery of Antisense Molecules to the Brain for Treatment of Alzheimer’s Disease and Cerebral AIDS. J. Pharma. Sci. 1998, 87, 1308–1315. DOI: 10.1021/js9800836.
  • Rivest, V.; Phivilay, A.; Julien, C.; Belanger, S.; Tremblay, C.; Emond, V.; Calon, F. Novel Liposomal Formulation for Targeted Gene Delivery. Pharm. Res. 2007, 24, 981–990. DOI: 10.1007/s11095-006-9224-x.
  • Gupta, Y.; Jain, A.; Jain, S. K. Transferrin-conjugated Solid Lipid Nanoparticles for Enhanced Delivery of Quinine Dihydrochloride to the Brain. J. Pharm. Pharmacol. 2007, 59, 935–940. DOI: 10.1211/jpp.59.7.0004.
  • Huang, N.; Lu, S.; Liu, X. G.; Zhu, J.; Wang, Y. J.; Liu, R. T. PLGA Nanoparticles Modified with a BBB-penetrating Peptide Co-delivering Aβ Generation Inhibitor and Curcumin Attenuate Memory Deficits and Neuropathology in Alzheimer’s Disease Mice. Oncotarget. 2017, 8(46), 81001–81013. DOI: 10.18632/oncotarget.20944.
  • Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. Dual-targeting Magnetic PLGA Nanoparticles for Codelivery of Paclitaxel and Curcumin for Brain Tumor Therapy. ACS Appl. Mater. Interfaces. 2016, 8, 32159–32169. DOI: 10.1021/acsami.6b10175.
  • Guo, W.; Li, A.; Jia, Z.; Yuan, Y.; Dai, H.; Li, H. Transferrin Modified PEG-PLA-resveratrol Conjugates: In Vitro and in Vivo Studies for Glioma. Eur. J. Pharmacol. 2013, 718, 41–47. DOI: 10.1016/j.ejphar.2013.09.034.
  • Jhaveri, A.; Deshpande, P.; Pattni, B.; Torchilin, V. Transferrin-targeted, Resveratrol-loaded Liposomes for the Treatment of Glioblastoma. J. Control. Release. 2018, 277, 89–101.
  • Loureiro, J. A.; Andrade, S.; Duarte, A.; Neves, A. R.; Queiroz, J. F.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.;; et al. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer’s Disease. Molecules. 2017, 22, 277. DOI: 10.3390/molecules22020277.
  • Zhang, T.; Lv, C.; Chen, L.; Bai, G.; Zhao, G.; Xu, C. Encapsulation of Anthocyanin Molecules within a Ferritin Nanocage Increases Their Stability and Cell Uptake Efficiency. Food Res. Int. 2014, 62, 183–192. DOI: 10.1016/j.foodres.2014.02.041.
  • Chen, L.; Bai, G.; Yang, R.; Zang, J.; Zhou, T.; Zhao, G. Encapsulation of Beta-carotene within Ferritin Nanocages Greatly Increases Its Water-solubility and Thermal Stability. Food Chem. 2014, 149, 307–312. DOI: 10.1016/j.foodchem.2013.10.115.
  • Kim, H. R.; Gil, S.; Andrieux, K.; Nicolas, V.; Appel, M.; Chacun, H.; Desmaële, D.; Taran, F.; Georgin, D.; Couvreur, P.;; et al. Low-density Lipoprotein Receptor-mediated Endocytosis of PEGylated Nanoparticles in Rat Brain Endothelial Cells. Cell Mol. Life Sci. 2007, 64, 356–364. DOI: 10.1007/s00018-007-6390-x.
  • Yusuf, M.; Khan, R. A.; Khan, M.; Ahmad, B. A. Plausible Antioxidant Biomechanics and Anticonvulsant Pharmacological Activity of Brain-targeted Beta-carotene Nanoparticles. Int. J. Nanomed. 2012, 7, 4311–4321. DOI: 10.2147/IJN.S34588.
  • Kim, S. H.; Adhikari, B. B.; Cruz, S.; Schramm, M. P.; Vinson, J. A.; Narayanaswami, V. Targeted Intracellular Delivery of Resveratrol to Glioblastoma Cells Using Apolipoprotein E-containing Reconstituted HDL as a Nanovehicle. PLoS One. 2015, 10, e0135130. DOI: 10.1371/journal.pone.0135130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.