1,694
Views
8
CrossRef citations to date
0
Altmetric
Review

Edible Insects: Techno-functional Properties Food and Feed Applications and Biological Potential

, , & ORCID Icon

References

  • Alfaro-Diaz, A.; Urías-Silvas, J. E.; Loarca-Piña, G.; Gaytan-Martínez, M.; Prado-Ramirez, R.; Mojica, L.; Techno-functional Properties of Thermally Treated Black Bean Protein Concentrate Generated through Ultrafiltration Process. Lwt. September 2021, 136, 2020. DOI: 10.1016/j.lwt.2020.110296.
  • Ramos-Elorduy, J.; Pino Moreno, J. M.; Escamilla Padro, E.; Alvarado Perez, M.; Lagunez Otero, J.; De Guevara, O, L. Nutritional Value of Edible Insects from the State of Oaxaca, Mexico. J. Food Compost. Anal. 1997, 10(2), 142–157. DOI: 10.1006/jfca.1997.0530.
  • Ramos-Elorduy Blásquez, J.; Pino Moreno, J. M.; Martínez Camacho, V. M.; Could Grasshoppers Be a Nutritive Meal ? Food Nutr. Sci. February, 2012, (2012, 164–175. DOI: 10.4236/fns.2012.32025.
  • Rumpold, B. A.; Schlüter, O. K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57(5), 802–823. DOI: 10.1002/mnfr.201200735.
  • Cerritos Flores, R.; Ponce-Reyes, R.; Rojas-García, F. Exploiting a Pest Insect Species Sphenarium Purpurascens for Human Consumption: Ecological, Social, and Economic Repercussions. J. Insect. Food Feed. 2015, 1(1), 75–84. DOI: 10.3920/JIFF2014.0013.
  • Van Huis, A.; Oonincx, D. G. A. B. The Environmental Sustainability of Insects as Food and Feed. A Review. Agronom. Sust. Develop. 2017, 37(5), 5. DOI: 10.1007/s13593-017-0452-8.
  • Dobermann, D.; Swift, J. A.; Field, L. M.; Opportunities and Hurdles of Edible Insects for Food and Feed. Nutr. Bull.2017, 42, 293–308. DOI:10.1111/nbu.12291.
  • Ramos-Elorduy, J.; Viejo Montesinos, J. L. Los Insectos Como Alimento Humano: Breve Ensayo Sobre La Entomofagia, Con Especial Referencia a México Insects as Human Food: Short Essay on Entomophagy, with Special Reference to Mexico. Bol. R. Soc. Esp. Hist. Nay. Sec. Biol. 2007, 102(1–4), 61–84.
  • Evans, J.; Alemu, M. H.; Flore, R.; Frøst, M. B.; Halloran, A.; Jensen, A. B. ‘Entomophagy ’: An Evolving Terminology in Need of Review. J. Insect. Food Feed. 2015, 1(4), 293–305. DOI: 10.3920/JIFF2015.0074.
  • Roos, N.; Van Huis, A. Consuming Insects: Are There Health Benefits? J. Insect. Food Feed. 2017, 3(4), 225–229. DOI: 10.3920/JIFF2017.x007.
  • FAO. Edible Insects. Future Prospects for Food and Feed Security. Food Agric. Organizat. U N 2013, 171. DOI: 10.1017/CBO9781107415324.004.
  • Ramos-Elorduy, J.;. Anthropo-entomophagy: Cultures, Evolution and Sustainability. Entomol. Res. 2009, 39(5), 271–288. DOI: 10.1111/j.1748-5967.2009.00238.x.
  • Ramos-Elorduy, J.; Pino Moreno, J. M.; De León, J, M. Análisis químico proximal, vitaminas y nutrimentos inorgánicos de insectos consumidos en el estado de Hidalgo, México. Folia Entomol. Mex. 2002, 41(1), 15–29.
  • Del Valle, F. R.; Mena, M. H.; Bourges, H. An Investigation into Insect Protein. J. Food Process. Preserv. 1982, 6(2), 99–110. DOI: 10.1111/j.1745-4549.1982.tb00645.x.
  • Feng, Y.; Chen, X.; Zhao, M.; He, Z.; Sun, L.; Wang, C. Edible Insects in China. Utilizat. Prospect. 2018, 184–198. DOI: 10.1111/1744-7917.12449.
  • Sipponen, M. H.; Mäkinen, O. E.; Rommi, K.; Heiniö, R. L.; Holopainen-Mantila, U.; Hokkanen, S.; … Nordlund, E. Biochemical and Sensory Characteristics of the Cricket and Mealworm Fractions from Supercritical Carbon Dioxide Extraction and Air Classification. Eur. Food Res. Technol. 2018, 244(1), 19–29. DOI: 10.1007/s00217-017-2931-1.
  • House, J.;; Consumer Acceptance of Insect-based Foods in the Netherlands: Academic and Commercial Implications. Appetite. 2016, September 2015, 107, 47–58. DOI: 10.1016/j.appet.2016.07.023.
  • Castro, M.; Chambers, E. Willingness to Eat an Insect Based Product and Impact on Brand Equity: A Global Perspective. J. Sens. Stud. 2019, 34(2), 1–10. DOI: 10.1111/joss.12486.
  • De-magistris, T.; Pascucci, S.; Mitsopoulos, D. Paying to See a Bug on My Food: How Regulations and Information Can Hamper Radical Innovations in the European Union. Br. Food J. 2015, 117(6), 1777–1792. DOI: 10.1108/BFJ-06-2014-0222.
  • Igwe, C.; Ujowundu, C.; Nwaogu, L. Chemical Analysis of an Edible African Termite, Macrotermes Nigeriensis; a Potential Antidote to Food Security Problem. Biochem. Analytic. Biochem. 2012, 01(1). DOI: 10.4172/2161-1009.1000105.
  • Ruby, M. B.; Rozin, P.; Chan, C. Determinants of Willingness to Eat Insects in the USA and India. J. Insect. Food Feed. 2015, 1(3), 215–225. DOI: 10.3920/JIFF2015.0029.
  • Siriamornpun, S.; Thammapat, P. Insects as a Delicacy and a Nutritious Food in Thailand. In Using Food Science and Technology to Improve Nutrition and Promote National Development; Robertson, G.L., Lupien, J.R., Eds.; International Union of Food Science & Technology: Mahasarakham, Thailand, 2008; pp 1–11.
  • Tan, H. S. G.; Verbaan, Y. T.; Stieger, M. How Will Better Products Improve the Sensory-liking and Willingness to Buy Insect-based Foods? Food Res. Int. 2017, 92, 95–105. DOI: 10.1016/j.foodres.2016.12.021.
  • Cilia, M.; Fish, T.; Yang, X.; Mclaughlin, M.; Thannhauser, T. W.; Gray, S. A Comparison of Protein Extraction Methods Suitable for Gel-based Proteomic. J. Biomol. Techniq. 2009, 20, 201–215.
  • Hall, F. G.; Jones, O. G.; O’Haire, M. E.; Liceaga, A. M. Functional Properties of Tropical Banded Cricket (Gryllodes Sigillatus) Protein Hydrolysates. Food Chem. 2017, 224, 414–422. DOI: 10.1016/j.foodchem.2016.11.138.
  • Takeda, S.;. Bombyx Mori. Encyclopedia of Insects (Second Edi); Elsevier Inc: Uited Kingdom, 2009. DOi: 10.1016/B978-0-12-374144-8.00040-0.
  • Caparros Megido, R.; Sablon, L.; Geuens, M.; Brostaux, Y.; Alabi, T.; Blecker, C.; Drugmand, D.; Haubruge, É.; Francis, F. Edible Insects Acceptance by Belgian Consumers: Promising Attitude for Entomophagy Development. J. Sens. Stud. 2014, 29(1), 14–20. DOI: 10.1111/joss.12077.
  • David-Birman, T.; Raften, G.; Lesmes, U. Effects of Thermal Treatments on the Colloidal Properties, Antioxidant Capacity and In-vitro Proteolytic Degradation of Cricket Flour. Food Hydrocolloids. 2018, 79, 48–54. DOI: 10.1016/j.foodhyd.2017.11.044.
  • Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; … Aquilanti, L. Protein Fortification with Mealworm (Tenebrio Molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLoS ONE. 2019, 14(2), 1–29. DOI: 10.1371/journal.pone.0211747.
  • Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer Acceptance of Insect-based Alternative Meat Products in Western Countries. Food Qual. Preference. 2016, 52, 237–243. DOI: 10.1016/j.foodqual.2016.05.004.
  • Schouteten, J. J.; De Steur, H.; De Pelsmaeker, S.; Lagast, S.; Juvinal, J. G.; De Bourdeaudhuij, I.; … Gellynck, X. Emotional and Sensory Profiling of Insect-, Plant- and Meat-based Burgers under Blind, Expected and Informed Conditions. Food Qual. Preference. 2016, 52, 27–31. DOI: 10.1016/j.foodqual.2016.03.011.
  • Bußler, S.; Rumpold, B. A.; Jander, E.; Rawel, H. M.; Schlüter, O. K. Recovery and Techno-functionality of Flours and Proteins from Two Edible Insect Species: Meal Worm (Tenebrio Molitor) and Black Soldier Fly (Hermetia Illucens) Larvae. Heliyon. 2016, 2(12), e00218. DOI: 10.1016/j.heliyon.2016.e00218.
  • Lee, H. J.; Lee, H. S.; Choi, J. W.; Ra, K. S.; Kim, J. M.; Suh, H. J. Novel Tripeptides with α-glucosidase Inhibitory Activity Isolated from Silk Cocoon Hydrolysate. J. Agric. Food Chem. 2011, 59(21), 11522–11525. DOI: 10.1021/jf202686m.
  • Sangwong, G.; Sumida, M.; Sutthikhum, V. Antioxidant Activity of Chemically and Enzymatically Modified Sericin Extracted from Cocoons of Bombyx Mori. Biocatal. Agric. Biotechnol. 2016, 5, 155–161. DOI: 10.1016/j.bcab.2016.01.010.
  • Choi, B. D.; Wong, N. A. K.; Auh, J.-H. Defatting and Sonication Enhances Protein Extraction from Edible Insects. Korean J. Food Sci. An. 2017, 37(6), 955–961. DOI: 10.5851/kosfa.2017.37.6.955.
  • Haber, M.; Mishyna, M.; Itzhak Martinez, J. J.; Benjamin, O.; (2019) Edible Larvae and Pupae of Honey Bee (Apis Mellifera): Odor and Nutritional Characterization as a Function of Diet. Food Chem. September 2019, 292, 197–203. DOI: 10.1016/j.foodchem.2019.04.041.
  • Zhao, X.; Vázquez-Gutiérrez, J. L.; Johansson, D. P.; Landberg, R.; Langton, M. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLoS ONE. 2016, 11(2), 1–17. DOI: 10.1371/journal.pone.0147791.
  • Zielińska, E.; Karaś, M.; Baraniak, B.; Comparison of Functional Properties of Edible Insects and Protein Preparations Thereof. LWT Food Sci. Technol. 2018, October 2017, 91, 168–174. DOI: 10.1016/j.lwt.2018.01.058.
  • Yi, L.; Lakemond, C. M. M.; Sagis, L. M. C.; Eisner-Schadler, V.; Van, H. A.; Boekel, M. A. J. S. V. Extraction and Characterisation of Protein Fractions from Five Insect Species. Food Chem. 2013, 141(4), 3341–3348. DOI: 10.1016/j.foodchem.2013.05.115.
  • Purschke, B.; Tanzmeister, H.; Meinlschmidt, P.; Baumgartner, S.; Lauter, K.; Jäger, H.; Recovery of Soluble Proteins from Migratory Locust (Locusta Migratoria) and Characterisation of Their Compositional and Techno-functional Properties. Food Res. Int. 2018, December 2017, 106, 271–279. DOI: 10.1016/j.foodres.2017.12.067.
  • Purschke, B.; Mendez Sanchez, Y. D.; Jäger, H.; Centrifugal Fractionation of Mealworm Larvae (Tenebrio Molitor, L.) For Protein Recovery and Concentration. LWT Food Sci. Technol. 2018, October 2017, 89, 224–228. DOI: 10.1016/j.lwt.2017.10.057.
  • Purschke, B.; Meinlschmidt, P.; Horn, C.; Rieder, O.; Jäger, H. Improvement of Techno-functional Properties of Edible Insect Protein from Migratory Locust by Enzymatic Hydrolysis. Eur. Food Res. Technol. 2017, 244(6), 999–1013. DOI: 10.1007/s00217-017-3017-9.
  • De Oliveira, L. M.; Da Silva Lucas, A. J.; Cadaval, C. L.; Mellado, M. S.; Bread Enriched with Flour from Cinereous Cockroach (Nauphoeta Cinerea). Innovative Food Sci. Emerging Technol. May 2017, 44, 30–35. DOI: 10.1016/j.ifset.2017.08.015.
  • Mariod, A. A.; Fadul, H. Extraction and Characterization of Gelatin from Two Edible Sudanese Insects and Its Applications in Ice Cream Making. Food Sci. Technol. Int. 2015, 21(5), 380–391. DOI: 10.1177/1082013214541137.
  • Gould, J.; Wolf, B. Interfacial and Emulsifying Properties of Mealworm Protein at the Oil/water Interface. Food Hydrocolloids. 2018, 77, 57–65. DOI: 10.1016/j.foodhyd.2017.09.018.
  • Mintah, B. K.; He, R.; Agyekum, A. A.; Dabbour, M.; Golly, M. K.; Ma, H.; (2020) Edible Insect Protein for Food Applications: Extraction, Composition, and Functional Properties. J. Food Process Eng. February 2019, 1–12. 10.1111/jfpe.13362.
  • Omotoso, O. T.;. An Evaluation of the Nutrients and Some Anti-nutrients in Silkworm, Bombyx Mori L. (Bombycidae: Lepidoptera). Jordan J. Biol. Sci. 2007, 89(1), 129–151. DOI: 10.1002/zoo.10031.
  • Park, Y.-S.; Choi, Y.-S.; Hwang, K.-E.; Kim, T.-K.; Lee, C.-W.; Shin, D.-M.; Gu Han, S. Physicochemical Properties of Meat Batter Added with Edible Silkworm Pupae (Bombyx Mori) and Trans- Glutaminase. Korean J. Food Sci. An. 2017, 37(3), 351–359. DOI: 10.5851/kosfa.2017.37.3.351.
  • Wu, Q.; Jia, J.; Yan, H.; Du, J.; Gui, Z. A Novel angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide from Gastrointestinal Protease Hydrolysate of Silkworm Pupa (Bombyx Mori) Protein: Biochemical Characterization and Molecular Docking Study. Peptides. 2015, 68, 17–24. DOI: 10.1016/j.peptides.2014.07.026.
  • Zepeda-Cisneros, C. S.; Hernández, J. S. M.; García-Martínez, V.; Ibañez-Palacios, J.; Zacharopoulou, A.; Franz, G. Development, Genetic and Cytogenetic Analyses of Genetic Sexing Strains of the Mexican Fruit Fly, Anastrepha Ludens Loew (Diptera: Tephritidae). BMC Genet. 2014, 15(Suppl2), S1. DOI: 10.1186/1471-2156-15-S2-S1.
  • Vercruysse, L.; Smagghe, G.; Herregods, G.; Van Camp, J. ACE Inhibitory Activity in Enzymatic Hydrolysates of Insect Protein. J. Agric. Food Chem. 2005, 53(13), 5207–5211. DOI: 10.1021/jf050337q.
  • Barać, M. B.; Pešić, M. B.; Stanojević, S. P.; Kostić, A. Z.; Čabrilo, S. B. Techno-functional Properties of Pea (Pisum Sativum) Protein Isolates-a Review. Acta Periodic. Technol. 2015, 46(January), 1–18. DOI: 10.2298/APT1546001B.
  • Ulloa, J. A.; Villalobos Barbosa, M. C.; Resendiz Vazquez, J. A.; Rosas Ulloa, P.; Ramírez Ramírez, J. C.; Silva Carrillo, Y.; González Torres, L. Production, Physico-chemical And Functional Characterization Of A Protein Isolate From Jackfruit (Artocarpus heterophyllus) seeds. CyTA - J. Food. 2017, 15(4), 497–507. DOI: 10.1080/19476337.2017.1301554.
  • Verhoeckx, K. C. M.; Van Broekhoven, S.; Den Hartog-jager, C. F.; Gaspari, M.; De Jong, G. A. H.; Wichers, H. J.; Knulst, A. C. House Dust Mite (Der P 10) and Crustacean Allergic Patients May React to Food Containing Yellow Mealworm Proteins. Food Chem. Toxicol. 2014, 65, 364–373. DOI: 10.1016/j.fct.2013.12.049.
  • Caparros Megido, R.; Poelaert, C.; Ernens, M.; Liotta, M.; Blecker, C.; Danthine, S.; … Francis, F.; (2018) Effect of Household Cooking Techniques on the Microbiological Load and the Nutritional Quality of Mealworms (Tenebrio Molitor L. 1758). Food Res. Int. August 2017, 106, 503–508. DOI: 10.1016/j.foodres.2018.01.002.
  • Ramos-Elorduy, J.;. 1998. Creepy Crawly Cuisine: The Gourmet Guide to Edible Insects; 1st. ed. Park Street Press: Vermont, Uited States.
  • Iaconisi, V.; Marono, S.; Parisi, G.; Gasco, L.; Genovese, L.; Maricchiolo, G.; … Piccolo, G.; Dietary Inclusion of Tenebrio Molitor Larvae Meal: Effects on Growth Performance and Final Quality Treats of Blackspot Sea Bream (Pagellus Bogaraveo). Aquaculture. January 2017, 476, 49–58. DOI: 10.1016/j.aquaculture.2017.04.007.
  • Dzerefos, C. M.; Witkowski, E. T. F.; Toms, R. Comparative Ethnoentomology of Edible Stinkbugs in Southern Africa and Sustainable Management Considerations. J. Ethnobiol. Ethnomed. 2013, 9(1), 1. DOI: 10.1186/1746-4269-9-20.
  • Evans, J.; Müller, A.; Jensen, A. B.; Dahle, B.; Flore, R.; Eilenberg, J.; Frøst, M. B. A Descriptive Sensory Analysis of Honeybee Drone Brood from Denmark and Norway. J. Insect. Food Feed. 2016, 2(4), 277–283. DOI: 10.3920/JIFF2016.0014.
  • Baiano, A.;. Edible Insects: An Overview on Nutritional Characteristics, Safety, Farming, Production Technologies, Regulatory Framework, and Socio-economic and Ethical Implications. Trends Food Sci. Technol. 2020, 100, 35–50. DOI: 10.1016/j.tifs.2020.03.040.
  • Ibarra-Herrera, C. C.; Acosta-Estrada, B.; Chuck-Hernández, C.; Serrano-Sandoval, S. N.; Guardado-Félix, D.; Pérez-Carrillo, E. Nutritional Content of Edible Grasshopper (Sphenarium Purpurascens) Fed on Alfalfa (Medicago Sativa) and Maize (Zea Mays). CyTA - J. Food. 2020, 18(1), 257–263. DOI: 10.1080/19476337.2020.1746833.
  • Sealey, W. M.; Gaylord, T. G.; Barrows, F. T.; Tomberlin, J. K.; McGuire, M. A.; Ross, C.; St-Hilaire, S. Sensory Analysis of Rainbow Trout, Oncorhynchus Mykiss, Fed Enriched Black Soldier Fly Prepupae. Hermetia Illucens. J. World Aquacult. Soc. 2011, 42(1), 34–45. DOI: 10.1111/j.1749-7345.2010.00441.x.
  • Van Huis, A.;. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58(1), 563–583. DOI: 10.1146/annurev-ento-120811-153704.
  • Mutungi, C.; Irungu, F. G.; Nduko, J.; Mutua, F.; Affognon, H.; Nakimbugwe, D.; … Fiaboe, K. K. M. Postharvest Processes of Edible Insects in Africa: A Review of Processing Methods, and the Implications for Nutrition, Safety and New Products Development. Crit. Rev. Food Sci. Nutr. 2019, 59(2), 276–298. DOI: 10.1080/10408398.2017.1365330.
  • Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C. M. M.; Severini, C.; (2018) Effects of Formulation and Process Conditions on Microstructure, Texture and Digestibility of Extruded Insect-riched Snacks. Innovative Food Sci. Emerging Technol. September 2017, 45, 344–353. DOI: 10.1016/j.ifset.2017.11.017.
  • Cho, J. H.; Zhao, H. L.; Kim, J. S.; Kim, S. H.; Chung, C. H.; (2018) Characteristics of Fermented Seasoning Sauces Using Tenebrio Molitor Larvae. Innovative Food Sci. Emerging Technol. May 2017, 45, 186–195. DOI: 10.1016/j.ifset.2017.10.010.
  • Kim, H. W.; Setyabrata, D.; Lee, Y. J.; Jones, O. G.; Kim, Y. H. B. Effect of House Cricket (Acheta Domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion under Various Formulations. J. Food Sci. 2017, 82(12), 2787–2793. DOI: 10.1111/1750-3841.13960.
  • Choi, Y.-S.; Kim, T.-K.; Choi, H.-D.; Park, J.-D.; Sung, J.-M.; Jeon, K.-H.; … Kim, Y.-B. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio Molitor L.) For Frankfurters. Korean J. Food Sci. Animal Resour. 2017, 37(5), 617–625. DOI: 10.5851/kosfa.2017.37.5.617.
  • Cuj-Laines, R.; Hernan-Lara, E.; Torruco-Uco, J. G.; Rodriguez-Miranda, J. Efecto de la mezcla de harinas de chapulín y maíz sobre las propiedades funcionales de botanas extruidas. In Avances de Investigación para el Sector Tecnológico, Ambiental y Alimentario, FACUNDO JOAQUÍN MÁRQUEZ ROCHA; Instituto Politécnico Nacional (MEXICO), 2017; pp 169–181.
  • Ayieko, M.; Oriaro, V.; Nyambuga, I. Processed Products of Termites and Lake Flies: Improving Enthomophagy for Food Security within the Lake Victoria Region. Afr. J. Food Agric. Nutr. Dev. 2010, 10(2), 2085–2098. DOI: 10.4314/ajfand.v10i2.53352.
  • González, C. M.; Garzón, R.; Rosell, C. M.; Insects as Ingredients for Bakery Goods. A Comparison Study of H. Illucens, A. Domestica and T. Molitor Flours. Innovative Food Sci. Emerging Technol. 2018, March, 0–1. DOI: 10.1016/j.ifset.2018.03.021.
  • Chico, S.; Alvizo, C.; Martínez, G.; Bravo, T. Elaboración de una botana tipo fritura adicionada con haba y chapulín. Investigación y Desarrollo En Ciencia y Tecnología de Alimentos. 2016, 1(2), 618–622. Retrieved from http://www.fcb.uanl.mx/IDCyTA/files/volume1/2/8/108.pdf
  • Newton, G. L.; Booram, C. V.; Barker, R. W.; Hale, O. M. Dried Hermetia Illucens Larvae Meal as a Supplement for Swine. J. Anim. Sci. 1977, 44(3), 395–400. DOI: 10.2527/jas1977.443395x.
  • Bondari, K.; Sheppard, D. C. Soldier Fly, Hermetia Illucens L., Larvae as Feed for Channel Catfish, Ictalurus Punctatus (Rafinesque), and Blue Tilapia, Oreochromis Aureus (Steindachner). Aquacult. Res. 1987, 18(3), 209–220. DOI: 10.1111/j.1365-2109.1987.tb00141.x.
  • Magalhães, R.; Sánchez-López, A.; Leal, R. S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black Soldier Fly (Hermetia Illucens) Pre-pupae Meal as a Fish Meal Replacement in Diets for European Seabass (Dicentrarchus Labrax). Aquaculture. 2017, 476(April), 79–85. DOI: 10.1016/j.aquaculture.2017.04.021.
  • Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; … Chatzifotis, S. Tenebrio Molitor Meal in Diets for European Sea Bass (Dicentrarchus Labrax L.) Juveniles: Growth Performance, Whole Body Composition and in Vivo Apparent Digestibility. Anim. Feed Sci. Technol. 2016, 220, 34–45. DOI: 10.1016/j.anifeedsci.2016.07.003.
  • Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; … Schiavone, A. Effects of Dietary Tenebrio Molitor Meal Inclusion in Free-range Chickens. J. Animal Physiol. Animal Nutr. 2016, 100(6), 1104–1112. DOI: 10.1111/jpn.12487.
  • De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; … Schiavone, A. Nutritional Value of Two Insect Larval Meals (Tenebrio Molitor and Hermetia Illucens) for Broiler Chickens: Apparent Nutrient Digestibility, Apparent Ileal Amino Acid Digestibility and Apparent Metabolizable Energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. DOI: 10.1016/j.anifeedsci.2015.08.006.
  • Alegbeleye, W. O.; Obasa, S. O.; Olude, O. O.; Otubu, K.; Jimoh, W. Preliminary Evaluation of the Nutritive Value of the Variegated Grasshopper (Zonocerus Variegatus L.) For African Catfish Clarias Gariepinus (Burchell. 1822) Fingerlings. Aquacult. Res. 2012, 43(3), 412–420. DOI: 10.1111/j.1365-2109.2011.02844.x.
  • Belghit, I.; Liland, N. S.; Waagbø, R.; Biancarosa, I.; Pelusio, N.; Li, Y.; Lock, E.-J.; (2018) Potential of Insect-based Diets for Atlantic Salmon (Salmo Salar). Aquaculture. November 2017, 491, 72–81. DOI: 10.1016/j.aquaculture.2018.03.016.
  • Irungu, F. G.; Mutungi, C. M.; Faraj, A. K.; Affognon, H.; Kibet, N.; Tanga, C.; … Fiaboe, K. K. M. Physico-chemical Properties of Extruded Aquafeed Pellets Containing Black Soldier Fly (Hermetia Illucens) Larvae and Adult Cricket (Acheta Domesticus) Meals. J. Insect. Food Feed. 2018, 4(1), 19–30. DOI: 10.3920/JIFF2017.0008.
  • Tze, F. T.; Hing, W. N. Fish Feed Formulation Using Black Soldier Fly Pre-pupae from Fruit Waste. J. Eng. Appl. Sci. 2017. DOI: 10.3923/jeasci.2017.6393.6397.
  • Liu, Y.; Wan, S.; Liu, J.; Zou, Y.; Liao, S. Antioxidant Activity and Stability Study of Peptides from Enzymatically Hydrolyzed Male Silkmoth. J. Food Process. Preserv. 2017, 41(1), 1. DOI: 10.1111/jfpp.13081.
  • Tao, M.; Wang, C.; Liao, D.; Liu, H.; Zhao, Z.; Zhao, Z. Purification, Modification and Inhibition Mechanism of Angiotensin I-converting Enzyme Inhibitory Peptide from Silkworm Pupa (Bombyx Mori) Protein Hydrolysate. Process Biochem. 2017, 54, 172–179. DOI: 10.1016/j.procbio.2016.12.022.
  • Bosch, G.; Vervoort, J. J. M.; Hendriks, W. H. In Vitro Digestibility and Fermentability of Selected Insects for Dog Foods. Anim. Feed Sci. Technol. 2016, 221, 174–184. DOI: 10.1016/j.anifeedsci.2016.08.018.
  • Tanaka, S.; Nishide, Y. A Green Morph of the Migratory Locust, Locusta Migratoria L. (Orthoptera: Acrididae) that Occurred after Inbreeding. J. Orthoptera Res. 2012, 21(2), 175–177. DOI: 10.1665/034.021.0205.
  • Adámková, A.; Kourimská, L.; Borkovcová, M.; Kulma, M.; Mlček, J. Nutritional Values of Edible Coleoptera (Tenebrio Molitor, Zophobas Morio and Alphitobius Diaperinus) Reared in the Czech Republic. Potravinarstvo. 2016, 10(1), 663–671. DOI: 10.5219/609.
  • Worek, F.; Seeger, T.; Neumaier, K.; Wille, T.; Thiermann, H. Blaptica Dubia as Sentinels for Exposure to Chemical Warfare Agents – A Pilot Study. Toxicol. Lett. 2016, 262, 12–16. DOI: 10.1016/j.toxlet.2016.09.006.
  • Zhang, H.; Wang, P.; Zhang, A.-J.; Li, X.; Zhang, J.-H.; Qin, Q.-L.; Wu, Y.-J. Antioxidant Activities of Protein Hydrolysates Obtained from the Housefly Larvae. Acta Biol. Hungarica. 2016, 67(3), 236–246. DOI: 10.1556/018.67.2016.3.2.
  • Dutta, P.; Dey, T.; Manna, P.; Kalita, J. Antioxidant Potential of Vespa Affinis L., A Traditional Edible Insect Species of North East India. PLoS ONE. 2016, 11(5), 1–19. DOI: 10.1371/journal.pone.0156107.
  • Zielińska, E.; Karaś, M.; Jakubczyk, A. Antioxidant Activity of Predigested Protein Obtained from a Range of Farmed Edible Insects. Int. J. Food Sci. Technol. 2017, 52(2), 306–312. DOI: 10.1111/ijfs.13282.
  • Seo, M.; Goo, T. W.; Chung, M. Y.; Baek, M.; Hwang, J. S.; Kim, M. A.; Yun, E. Y. Tenebrio Molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-fat Diet-induced Obese Mice. Int. J. Mol. Sci. 2017, 18(3), 3. DOI: 10.3390/ijms18030518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.