824
Views
9
CrossRef citations to date
0
Altmetric
Review

Prospects of Palm Fruit Extraction Technology: Palm Oil Recovery Processes and Quality Enhancement

ORCID Icon, , ORCID Icon, , , , ORCID Icon, & show all

References

  • United States Department of Agriculture (USDA). Production, Supply and Distribution. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf ( accessed Oct 17, 2020).
  • Shahbandeh, M. Palm oil: global production volume 2012/13-2019/20. https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide/ (accessed Oct 17, 2020).
  • Mba, O. I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry – A review. Food Biosci. 2015, 10, 26–41. DOI: 10.1016/j.fbio.2015.01.003
  • Sharmila, A.; Alimon, A.; Azhar, K.; Noor, H.; Samsudin, A. Improving nutritional values of Palm Kernel Cake (PKC) as poultry feeds: a review. Malays. J. Anim. Sci. 2014, 17(1), 1–18.
  • Tan, C.-P.; Nehdi, I. A. 13 - The Physicochemical Properties of Palm Oil and Its Components. In Palm Oil, Lai, O.-M.; Tan, C.-P.; Akoh, C. C., Eds. AOCS Press: USA, 2012; pp 377–391.
  • Hassim, N. A. M.; Dian, L. Usage of palm oil, palm kernel oil and their fractions as confectionery fats. J. Oil Palm Res. 2017, 29(3), 301–310. DOI: 10.21894/jopr.2017.2903.01
  • Bentivoglio, D.; Finco, A.; Bucci, G. Factors affecting the indonesian palm oil market in food and fuel industry: Evidence from a time series analysis. Int. J. Energy Econ. Policy. 2018, 8 (5), 49.
  • McNamara, D. J. Palm oil and health: a case of manipulated perception and misuse of science. Journal of the American College of Nutrition. 2013, 29(sup3),240S–244S. DOI: 10.1080/07315724.2010.10719840
  • Hansen, S. B.; Padfield, R.; Syayuti, K.; Evers, S.; Zakariah, Z.; Mastura, S. Trends in global palm oil sustainability research. J. Clean. Prod. 2015, 100, 140–149. DOI: 10.1016/j.jclepro.2015.03.051
  • Basiron, Y.; Weng, C. K. The oil palm and its sustainability. J. Oil Palm Res. 2004, 16 (1).
  • Edem, D. Palm oil: Biochemical, physiological, nutritional, hematological and toxicological aspects: A review. Plant Foods Hum. Nutr. 2002, 57 (3–4), 319–341. DOI: 10.1023/A:1021828132707
  • Mozzon, M.; Foligni, R.; Mannozzi, C. Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient. Foods 2020, 9 (5), 631. DOI: 10.3390/foods9050631
  • Oosterveer, P.; Adjei, B. E.; Vellema, S.; Slingerland, M. Global sustainability standards and food security: Exploring unintended effects of voluntary certification in palm oil. Glob. Food Sec. 2014, 3 (3–4), 220–226. DOI: 10.1016/j.gfs.2014.09.006
  • Chew, C. L.; Ng, C. Y.; Hong, W. O.; Wu, T. Y.; Lee, Y. Y.; Low, L. E.; Kong, P. S.; Chan, E. S. Improving Sustainability of Palm Oil Production by Increasing Oil Extraction Rate: A Review. Food and Bioprocess Technology. 2021, 14 (4), 573–586. DOI: 10.1007/s11947-020-02555-1
  • Chang, L. C.; Sani, A. R. A.; Basran, Z. An Economic Perspective of Oil Extraction Rate in the Oil Palm Industry of Malaysia. Oil Palm Ind. Econ. J. 2003, 3(1), 25–31.
  • MPOB. Oil Extraction Rate For Crude Palm Oil For The Month Of December 2019. http://bepi.mpob.gov.my/index.php/en/oil-extraction-rate/oil-extraction-rate-2019/oil-extraction-rate-of-crude-palm-oil-2019.html%E2%80%9D (accessed March 17, 2020).
  • EFSA, Panel o. C. i. t. F. C. C. Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 2016, 14 (5), e04426. DOI: 10.2903/j.efsa.2016.4426
  • IARC Working Group on the Evaluation of Carcinogenic Risk to Humans Silica, some silicates, coal dust and para-aramid fibrils; International Agency for Research on Cancer: Lyon, France, 1997.
  • Rahn, A. K. K.; Yaylayan, V. A. What do we know about the molecular mechanism of 3‐MCPD ester formation? Eur. J. Lipid Sci. Technol. 2011, 113(3), 323–329. DOI: 10.1002/ejlt.201000310
  • Šmidrkal, J.; Tesařová, M.; Hrádková, I.; Berčíková, M.; Adamčíková, A.; Filip. V. Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining. Food Chem. 2016, 211, 124–129. DOI: 10.1016/j.foodchem.2016.05.039
  • JECFA 3-Chloro-1,2-propane-diol. In Safety evaluation of certain food additives and contaminants / prepared by the fifty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), World Health Organization: Geneva, 2002.
  • Kushairi, A.; Singh, R.; Ong-Abdullah, M. The oil palm industry in Malaysia: thriving with transformative technologies. J. Oil Palm Res. 2017, 29(4), 431–439. DOI: 10.21894/jopr.2017.00017
  • Obibuzor, J. U.; Okogbenin, E. A.; Abigor, R. D. 11 - Oil recovery from palm fruits and palm kernel. In Palm Oil, Lai, O.-M.; Tan, C.-P.; Akoh, C. C., Eds. AOCS Press: USA, 2012; pp 299–328.
  • Donough, C. R.; Cock, J.; Oberthur, T.; Indrasuara, K.; Rahmadsyah; Gatot, A. R.; Dolong, T. Estimating Oil Content of Commercially Harvested Oil Palm Fresh Fruit Bunches – A Step towards Increasing Palm Oil Yields. Oil Palm Bull. 2015, 70, 8–12.
  • Sharif, Z. B. M.; Taib, N. B. M.; Yusof, M. S. B.; Rahim, M. Z. B.; Tobi, A. L. B. M.; Othman, M. S. B. Study on Handing Process and Quality Degradation of Oil Palm Fresh Fruit Bunches (FFB). IOP Conf. Ser. Mater. Sci. Eng. 2017, 203 (1), 012027. DOI: 10.1088/1757-899X/203/1/012027
  • Chong, C. L. 15 - Measurement and Maintenance of Palm Oil Quality. In Palm Oil: Production, Processing, Characterization, and Uses, Lai, O.-M.; Tan, C.-P.; Akoh, C. C., Eds. AOCS Press: 2012; pp 431–470.
  • Makky, M.; Soni, P. In situ quality assessment of intact oil palm fresh fruit bunches using rapid portable non-contact and non-destructive approach. J. Food Eng. 2014, 120, 248–259. DOI: 10.1016/j.jfoodeng.2013.08.011
  • MPOB. Manual Penggredan Buah Kelapa Sawit. Malasian Palm Oil Board (MPOB): Selangor, 2006.
  • Ariffin, A. A. Chemical changes during sterilization process affecting strippability and oil quality. In Seminar on Developments in Palm Oil Milling Technology and Environmental Management</i>, Palm Oil Institute of Malaysia (PORIM): Bangi, 1991; pp 2–12.
  • Alfatni, M. S. M.; Shariff, A. M.; Shafri, H. M.; Saaed, O. B.; Eshanta, O. M. Oil palm fruit bunch grading system using red, green and blue digital number. J. Appl. Sci. 2008, 8(8), 1444–1452. DOI: 10.3923/jas.2008.1444.1452
  • Cooney, M. J.; Young, G. Methods and compositions for extraction and transesterification of biomass components. WO2009114830A3, December 17, 2009.
  • Shabdin, M. K.; Shariff, A. R. M.; Johari, M. N. A.; Saat, N. K.; Abbas, Z. A study on the oil palm fresh fruit bunch (FFB) ripeness detection by using Hue, Saturation and Intensity (HSI) approach. IOP Conf. Ser. Earth Environ. Sci. 2016, 37 (1), 012039. DOI: 10.1088/1755-1315/37/1/012039
  • Hazir, M. H. M.; Shariff, A. R. M.; Amiruddin, M. D. Determination of oil palm fresh fruit bunch ripeness—Based on flavonoids and anthocyanin content. Ind. Crop Prod. 2012, 36(1), 466–475. DOI: 10.1016/j.indcrop.2011.10.020
  • Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agr. Food Chem. 2005, 53(19), 7592–7599. DOI: 10.1021/jf050579q
  • Neo, Y.-P.; Ariffin, A.; Tan, C.-P.; Tan, Y.-A. Phenolic acid analysis and antioxidant activity assessment of oil palm (E. guineensis) fruit extracts. Food Chem. 2010, 122(1), 353–359. DOI: 10.1016/j.foodchem.2010.02.046
  • Silalahi, D.; Lansigan, F.; Panopio, R.; Bantayan, N.; Caliman, J.-P.; Yuan, Y.; Sudarno, S.; Davrieux, F. Near infrared spectroscopy: A rapid and non-destructive technique to assess the ripeness of oil palm (Elaeis guineensis Jacq.) fresh fruit. J. Near Infrared Spec. 2016, 24, 179–190. DOI: 10.1255/jnirs.1205
  • Henson, I. E. 5 - Ripening, Harvesting, and Transport of Oil Palm Bunches. In Palm Oil, Lai, O.-M.; Tan, C.-P.; Akoh, C. C., Eds. AOCS Press: USA, 2012; pp 137–162.
  • Corley, R., H., V.; Tinker, P., B. The Products of the Oil Palm and Their Extraction. In The Oil Palm, 2016; pp 460–482.
  • Hashim, K.; Tahiruddin, S.; Asis, A. J. 8 - Palm and palm kernel oil production and processing in Malaysia and Indonesia. In Palm Oil, Lai, O.-M.; Tan, C.-P.; Akoh, C. C., Eds. AOCS Press: USA, 2012; pp 235–250.
  • Morcillo, F.; Cros, D.; Billotte, N.; Ngando-Ebongue, G. F.; Domonhédo, H.; Pizot, M.; Cue´llar, T.; Espe´out, S.; Dhouib, R.; Bourgis, F.; Claverol, S; Tranbarger, T. J.; Nouy, B.; Arondel, V. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nature Communications. 2013, 4(1), 1–8. DOI: 10.1038/ncomms3160
  • Law, M. C.; Liew, E. L.; Chang, S. L.; Chan, Y. S.; Leo, C. P. Modelling microwave heating of discrete samples of oil palm kernels. Appl. Therm. Eng. 2016, 98, 702–726. DOI: 10.1016/j.applthermaleng.2016.01.009
  • Izah, S. C.; Ohimain, E. I. Comparison of traditional and semi-mechanized palm oil processing approaches in Nigeria; Implications on biodiesel production. J. Environ. Treat. Tech. 2015, 3(2), 82–87.
  • Sukaribin, N.; Khalid, K. Effectiveness of sterilisation of oil palm bunch using microwave technology. Ind. Crop Prod. 2009, 30(2), 179–183. DOI: 10.1016/j.indcrop.2009.05.001
  • Noerhidajat; Yunus, R.; Zurina, Z. A.; Syafiie, S.; Ramanaidu, V.; Rashid, U. Effect of high pressurized sterilization on oil palm fruit digestion operation. Int. Food Res. J. 2016, 23(1), 129–134.
  • Vincent, C. J.; Shamsudin, R.; Baharuddin, A. S. Pre-treatment of oil palm fruits: A review. J. Food Eng. 2014, 143, 123–131. DOI: 10.1016/j.jfoodeng.2014.06.022
  • Gold, I. L.; Ikuenobe, C. E.; Asemota, O.; Okiy, D. A. 10 - Palm and Palm Kernel Oil Production and Processing in Nigeria. In Palm Oil, Lai, O.-M.; Tan, C.-P.; Akoh, C. C., Eds. AOCS Press: USA, 2012; pp 275–298.
  • Ab Hadi, A. B.; Takriff, M. S. Determination of optimum sterilization condition based on calculated heat transfer rate for palm oil mill process. Arpn J. Eng. Appl. Sci. 2016, 11(13), 8475–8480.
  • Omar, A. M.; Norsalwani, T. T.; Asmah, M.; Badrulhisham, Z.; Easa, A. M.; Omar, F. M.; Hossain, M. S.; Zuknik, M.; Norulaini, N. N. Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review. J. CO2 Util. 2018, 25, 205–215. DOI: 10.1016/j.jcou.2018.03.021
  • Chow, M. C.; Ma, A. N. Processing of fresh palm fruits using microwaves. J. Microw. Power Electromagn. Energy 2005, 40(3), 165–173. DOI: 10.1080/08327823.2005.11688538
  • Ab Hadi, A. b.; Moham, W.; Takrif, M. S. The Study of Temperature Distribution for Fresh Fruit Bunch during Sterilization Process. J. Ind. Eng. Res. 2015, 1(6), 16–24.
  • Aziz, M.; Oda, T.; Kashiwagi, T. Design and Analysis of Energy-Efficient Integrated Crude Palm Oil and Palm Kernel Oil Processes. J. Japan Institute of Energy 2015, 94(1), 143–150. DOI: 10.3775/jie.94.143
  • Kramanandita, R.; Bantacut, T.; Romli, M.; Makmoen, M. Utilizations of palm oil mills wastes as source of energy and water in the production process of crude palm oil. Chem. Mater. Res. 2014, 6(8), 46–53.
  • Mamat, R.; Aziz, A. A.; Halim, R. M. Waste Minimisation for Palm Oil Mills: A Case Study. Palm Oil Eng. Bull. 2017, 122, 29–41.
  • Sivasothy, K.; Halim, R. M.; Basiron, Y. A new system for continuous sterilization of oil palm fresh fruit bunches. J. Oil Palm Res. 2005, 17 (C), 145.
  • Kandiah, S.; Basiron, Y.; Suki, A.; Taha, R. M.; Tan, Y. Continuous sterilization: The new paradigm for modernizing palm oil milling. J. Oil Palm Res. 2006, 144–152.
  • Aletor, V. A.; Ikhena, G. A.; Egharevba, V. The quality of some locally processed Nigerian palm oils: An estimation of some critical processing variables. Food chemistry. 1990, 36(4), 311–317. DOI:10.1016/0308-8146(90)90071-B
  • Ohimain, E. I.; Izah, S. C. Energy self-sufficiency of smallholder oil palm processing in Nigeria. Renewable Energy. 2014, 63, 426–431. DOI: 10.1016/j.renene.2013.10.007
  • Osei-Amponsah, C.; Visser, L.; Adjei-Nsiah, S.; Struik, P. C.; Sakyi-Dawson, O.; Stomph, T. J. Processing practices of small-scale palm oil producers in the Kwaebibirem District, Ghana: A diagnostic study. NJAS-Wageningen Journal of Life Sciences. 2012, 60, 49–56. DOI: 10.1016/j.njas.2012.06.006
  • Gowen, A.; Abu-Ghannam, N.; Frias, J.; Oliveira, J. Optimisation of dehydration and rehydration properties of cooked chickpeas (Cicer arietinum L.) undergoing microwave–hot air combination drying. Trends Food Sci. Tech. 2006, 17(4), 177–183. DOI: 10.1016/j.tifs.2005.11.013
  • Fung, D. Y. C. Food Spoilage, Preservation and Quality Control. In Encyclopedia of Microbiology (Third Edition), Schaechter, M., Ed. Academic Press: Oxford, 2009; pp 54–79.
  • Vadivambal, R.; Jayas, D. Non-uniform temperature distribution during microwave heating of food materials—A review. Food Bioprocess Technol. 2010, 3(2), 161–171. DOI: 10.1007/s11947-008-0136-0
  • Nokkaew, R.; Punsuvon, V. Sterilization of oil palm fruits by microwave heating for replacing steam treatment in palm oil mill process. Adv Mat Res. 2014, 1025, 470–475. DOI: 10.4028/scientific.net/AMR.1025-1026.470
  • Gunes, G.; Blum, L.; Hotchkiss, J. Inactivation of Escherichia coli (ATCC 4157) in diluted apple cider by dense-phase carbon dioxide. J Food Prot. 2006, 69(1), 12–16. DOI: 10.4315/0362-028x-69.1.12
  • Omar, A. M.; Norsalwani, T. T.; Khalil, H. A.; Nagao, H.; Zuknik, M.; Hossain, M. S.; Norulaini, N. N. Waterless sterilization of oil palm fruitlets using supercritical carbon dioxide. J. Supercrit. Fluids 2017, 126, 65–71. DOI: 10.1016/j.supflu.2017.02.019
  • Amaral, G. V.; Silva, E. K.; Cavalcanti, R. N.; Cappato, L. P.; Guimaraes, J. T.; Alvarenga, V. O.; Esmerino, E. A.; Portela, J. B.; Sant’Ana, A. S.; Freitas, M. Q. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci. Tech. 2017, 64, 94–101. DOI: 10.1016/j.tifs.2017.04.004
  • Wang, J. K.; Luo, B.; Guneta, V.; Li, L.; Foo, S. E. M.; Dai, Y.; Tan, T. T. Y.; Tan, N. S.; Choong, C.; Wong, M. T. C. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 75, 349–358. DOI: 10.1016/j.msec.2017.02.002
  • Licence, P.; Ke, J.; Sokolova, M.; Ross, S. K.; Poliakoff, M. Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plant. Green Chem. 2003, 5(2), 99–104. DOI: 10.1039/B212220K
  • Prasertsan, S.; Prasertsan, P. Biomass residues from palm oil mills in Thailand: an overview on quantity and potential usage. Biomass and Bioenergy. 1996, 11(5), 387–395. DOI: 10.1016/S0961-9534(96)00034-7
  • Hassan, M. A.; Yacob, S.; Shirai, Y.; Hung, Y.-T. Treatment of Palm Oil Wastewaters. In Waste Treatment in the Food Processing Industry, Lawrence K. Wang, Y.-T. H., Howard H. Lo, Constantine Yapijakis, Ed. CRC Press: Boca Raton, 2006; pp 101–117.
  • Elamin, K. E. Determination of the design and operating parameters of rotary cleaning sieves for combines. Retrospective Theses and Dissertations, Iowa State University, Ames, Iowa, 1981.
  • Larbi, P.; Dzisi, K.; Oti-Boateng, P.; Akowuah, J. Modification of a large-scale palm fruit stripper for local manufacture. In 3rd Ghana Soc. of Agric. Eng. (GSAE) National Conf., Kumasi, Ghana, 2006.
  • Gervajio, G. Bailey’s industrial oil and fat products. 6th ed.; Wiley-Interscience: New York, 2005; Vol. 1-6, p 56.
  • Asoiro, F. U.; Udo, U. C. Development of motorized oil palm fruit rotary digester. Niger. J. Technol. 2013, 32(3), 455–462.
  • Savoire, R.; Lanoisellé, J.-L.; Vorobiev, E. Mechanical continuous oil expression from oilseeds: a review. Food Bioprocess Technol. 2013, 6(1), 1–16. DOI: 10.1007/s11947-012-0947-x
  • Liu, S. X.; Mamidipally, P. K. Quality comparison of rice bran oil extracted with d‐limonene and hexane. Cereal Chem. 2005, 82(2), 209–215. DOI: 10.1094/CC-82-0209
  • Abd Majid, R.; Mohammad, A. W.; May, C. Y. Properties of residual palm pressed fibre oil. J. Oil Palm Res. 2012, 24, 1310–1317.
  • Kou, D.; Mitra, S. Extraction of semivolatile organic compounds from solid matrices. In Sample Preparation Techniques in Analytical Chemistry, Mitra, S., Ed. John Wiley & Sons: Hoboken, New Jersey, 2003; Vol. 162, pp 139–182.
  • Kumar, S. J.; Prasad, S. R.; Banerjee, R.; Agarwal, D. K.; Kulkarni, K. S.; Ramesh, K. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J. 2017, 11 (1), 9. DOI: 10.1186/s13065-017-0238-8
  • Cláudio, A. F. M.; Neves, M. C.; Shimizu, K.; Lopes, J. N. C.; Freire, M. G.; Coutinho, J. A. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chem. 2015, 17(7), 3948–3963. DOI: 10.1039/C55GC00712G
  • Ranjith Kumar, R.; Hanumantha Rao, P.; Arumugam, M. Lipid extraction methods from microalgae: a comprehensive review. Front. Energy Res. 2015, 2, 61. DOI: 10.3389/fenrg.2014.00061
  • Ma, C.-h.; Liu, T.-t.; Yang, L.; Zu, Y.-g.; Chen, X.; Zhang, L.; Zhang, Y.; Zhao, C. Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits. J. Chromatogr. A. 2011, 1218(48), 8573–8580. DOI: 10.1016/j.chroma.2011.09.075.
  • Asbahani, A. E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. H. A.; Casabianca, H.; Mousadik, A. E.; Hartmann, D.; Jilale, A.; Renaud, F. N. R.; Elaissari, A. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483(1), 220–243. DOI: 10.1016/j.ijpharm.2014.12.069
  • Cardoso-Ugarte, G. A.; Juárez-Becerra, G. P.; SosaMorales, M. E.; López-Malo, A. Microwave-assisted extraction of essential oils from herbs. J. Microw. Power Electromagn. Energy. 2013, 47(1), 63–72. DOI: 10.1080/08327823.2013.11689846
  • Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S. D. Microwave-assisted extraction in natural products isolation. In Natural products isolation. 2012, pp. 89–115. Humana Press.
  • Rassem, H. H.; Nour, A. H.; Yunus, R. M. Techniques for extraction of essential oils from plants: a review. Aust. J. Basic & Appl. Sci. 2016, 10(16), 117–127.
  • Rostagno, M. A.; D’Arrigo, M.; Martínez, J. A. Combinatory and hyphenated sample preparation for the determination of bioactive compounds in foods. TrAC Trend. Anal. Chem. 2010, 29(6), 553–561. DOI: 10.1016/j.trac.2010.02.015
  • Jiménez, A.; Beltrán, G.; Uceda, M. High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. Ultrason. Sonochem. 2007, 14(6), 725–731. DOI: 10.1016/j.ultsonch.2006.12.006
  • Bhargavi, G.; Rao, P. N.; Renganathan, S. In Review on the Extraction Methods of Crude oil from all Generation Biofuels in last few Decades, IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing: 2018; p 012024.
  • Li, H.; Pordesimo, L.; Weiss, J. High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 2004, 37(7), 731–738. DOI: 10.1016/j.foodres.2004.02.016
  • Zhang, Z.-S.; Wang, L.-J.; Li, D.; Jiao, S.-S.; Chen, X. D.; Mao, Z.-H. Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol. 2008, 62(1), 192–198. DOI: 10.1016/j.seppur.2008.01.014
  • Yousuf, O.; Gaibimei, P.; Singh, A. Ultrasound assisted extraction of oil from soybean. Int. J. Curr. Microbiol. and Appl. Sci 2018, 7(7), 843–52. DOI: 10.20546/ijcmas.2018.707.103
  • Wu, J.; Lin, L.; Chau, F.-t. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem. 2001, 8(4), 347–352. DOI: 10.1016/S1350-4177(01)00066-9
  • Hromadkova, Z.; Kováčiková, J.; Ebringerová, A. Study of the classical and ultrasound-assisted extraction of the corn cob xylan. Ind. Crop Prod. 1999, 9(2), 101–109. DOI: 10.1016/S0926-6690(98)00020-X
  • Rosenthal, A.; Pyle, D.; Niranjan, K. Aqueous and enzymatic processes for edible oil extraction. Enzyme Microb. Tech. 1996, 19(6), 402–420. DOI: 10.1016/S0141-0229(96)80004-F
  • Dominguez, H.; Nunez, M. J.; Lema, J. M. Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food chemistry. 1994, 49(3), 271–286. DOI: 10.1016/0308-8146(94)90172-4
  • Teixeira, C. B.; Macedo, G. A.; Macedo, J. A.; da Silva, L. H. M.; Rodrigues, A. M. d. C. Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeis guineensis) by an aqueous enzymatic process. Bioresour Technol. 2013, 129, 575–581. DOI: 10.1016/j.biortech.2012.11.057
  • Lamsal, B.; Murphy, P.; Johnson, L. Flaking and extrusion as mechanical treatments for enzyme‐assisted aqueous extraction of oil from soybeans. J. Am. Oil Chem. Soc. 2006, 83(11), 973–979. DOI: 10.1007/s11746-006-5055-5
  • Cheng, M. H.; Rosentrater, K. A.; Sekhon, J.; Wang, T.; Jung, S.; Johnson, L. A. Economic feasibility of soybean oil production by enzyme-assisted aqueous extraction processing. Food and Bioprocess Technology. 2019, 12(3), 539–550. DOI: 10.1007/s11947-018-2228-9
  • Abd Manaf, F. Y.; Chung, A. Y. K. Automatic crude oil dilution control with premium oil segregation using near infrared (NIR) on-line system. J. Oil Palm Res. 2018, 30(2), 306–314. DOI: 10.21894/jopr.2018.0012
  • Wolves Perges, A. Factors affecting the quality of palm oil In The quality and marketing of palm products Turner, P., Ed. The Society of Planters: Malaysia, 1969; pp 42–57.
  • Johansson, G.; Pehlergard, P. O. Aspect on quality of palm oil. In International developments in palm oil. Earp, D.; Newall, W., Eds. Society of planters: Malaysia, 1977.
  • Hartley, C. W. S. The oil palm. 3rd ed.; Longman: London/New York, 1988.
  • Kandiah, S.; Batumalai, R. Method for extracting crude palm oil. WO2009017389A2, April 9, 2009.
  • Lim, N. B., & Tiong, K. H. Control of crude oil dilution in palm oil mills. Journal of the American Oil Chemists’ Society. 1988, 65(12), 1953–1958.
  • Chung, A. Y. K. Clarification tank simulation. Palm Oil Eng. Bull. 2006, 79, 13–19.
  • Voutchkov, N. Settling Tanks. In Water Encyclopedia, Lehr, J. H.; Keeley, J., Eds. John Wiley & Sons: Hoboken, New Jersey, 2005; Vol. 1, pp 452–457.
  • Igwe, J.; Onyegbado, C. A review of palm oil mill effluent (POME) water treatment. Global J. Environ. Res. 2007, 1(2), 54–62.
  • Kandiah, S.; Batumalai, R. Palm oil clarification using evaporation. J. Oil Palm Res. 2013, 25(2), 235–244.
  • Sivasothy, K.; Ramachandran, B. Process For Extracting Palm Oil Using Evaporation. WO2010101454A2, December 9, 2010.
  • Sahad, N.; Som, A. M.; Baharuddin, A. S.; Mokhtar, N.; Busu, Z.; Sulaiman, A. Physicochemical characterization of oil palm decanter cake (OPDC) for residual oil recovery. BioResources 2014, 9(4), 6361–6372. DOI: 10.15376/biores.9.4.6361-6372
  • Kandiah, S.; Batumalai, R.; Beng, L. C.; Hwa, T. Y. Zero Liquid Discharge Palm Oil Clarification Process. WO/2015/037980, March 19, 2015.
  • Hruschka, S. M. In ECO-D The ecological and economical palm oil recovery process, International Palm Oil Congress, PIPOC 2003. Palm Oil: the Power-house for the Global Oils Fats Economy 24-28 August (Chemistry and Technology Conference), Putrajaya, Malasia, MPOB: Putrajaya, Malasia, 2003.
  • Schuchardt, F.; Wulfert, K.; Darnoko, D.; Herawan, T. Effect of new palm oil mill processes on the EFB and POME utilization. J. Oil Palm Res. 2008, 20, 115–126.
  • Wong, P. W.; Sivasothy, K. Emerging trends in palm oil milling technology. In PIPOC International Palm Oil Congress, 2007.
  • Vallero, D. A.; Letcher, T. M. Chapter 7 - Fires. In Unraveling Environmental Disasters, Vallero, D. A.; Letcher, T. M., Eds. Elsevier: Boston, 2013; pp 163–181.
  • Leong, T.; Juliano, P.; Knoerzer, K. Advances in ultrasonic and megasonic processing of foods. Food. Eng. Rev. 2017, 9(3), 237–256. DOI: 10.1007/s12393-017-9167-5
  • Pangu, G. D.; Feke, D. L. Droplet transport and coalescence kinetics in emulsions subjected to acoustic fields. Ultrasonics 2007, 46(4), 289–302. DOI: 10.1016/j.ultras.2007.03.004
  • Juliano, P.; Swiergon, P.; Lee, K.; Gee, P.; Clarke, P.; Augustin, M. Effects of pilot plant-scale ultrasound on palm oil separation and oil quality. J. Am. Oil Chem. Soc. 2013, 90(8), 1253–1260. DOI: 10.1007/s11746-013-2259-3
  • Leong, T.; Johansson, L.; Juliano, P.; McArthur, S. L.; Manasseh, R. Ultrasonic separation of particulate fluids in small and large scale systems: a review. Industrial & Engineering Chemistry Research. 2013, 52(47), 16555–16576. DOI: 10.1021/ie402295r
  • Leong, T., Knoerzer, K., Trujillo, F. J., Johansson, L., Manasseh, R., Barbosa-Cánovas, G. V., & Juliano, P. Megasonic separation of food droplets and particles: Design considerations. Food engineering reviews 2015, 7(3),298–320. DOI: 10.1007/s12393-015-9112-4
  • Juliano, P.; Swiergon, P.; Mawson, R.; Knoerzer, K.; Augustin, M. Application of ultrasound for oil separation and recovery of palm oil. J. Am. Oil Chem. Soc. 2013, 90(4), 579–588. DOI: 10.1007/s11746-012-2191-y
  • Oberti, S.; Neild, A.; Möller, D.; Dual, J. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics. Ultrasonics 2008, 48 (6–7), 529–536. DOI: 10.1016/j.ultras.2008.06.004
  • Juliano, P.; Temmel, S.; Rout, M.; Swiergon, P.; Mawson, R.; Knoerzer, K. Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrason. Sonochem. 2013, 20(1), 52–62. DOI: 10.1016/j.ultsonch.2012.07.018
  • Garcia-Lopez, A.; Sinha, D. Enhanced acoustic separation of oil-water emulsion in resonant cavities. The Open Acoust. J. 2008, 1(1), 66–71. DOI: 10.2174/1874837600801010066
  • Goodson, J. M.; Kheng, L. T. Ultrasonic and megasonic method for extracting palm oil. US9388363B2, July, 12, 2016.
  • PORAM. PORAM Standard Specifications for Processed Palm Oil. http://poram.org.my/p/wp-content/uploads/2013/12/1.-PORAM-Standard-Specification.pdf ( Accessed: 22 March 2019).
  • Mahesar, S.; Sherazi, S.; Khaskheli, A. R.; Kandhro, A. A. Analytical approaches for the assessment of free fatty acids in oils and fats. Anal. Methods. 2014, 6(14), 4956–4963. DOI: 10.1039/C4AY00344F
  • Chong, C. L.; Sambanthamurthi, R. Effects of mesocarp bruising on the rate of free fatty acid release in oil palm fruits. J. Int. Biodeter. Biodegrad. 1993, 31(1), 65–70. DOI: 10.1016/0964-8305(93)90015-T
  • Tagoe, S.; Dickinson, M.; Apetorgbor, M. Factors influencing quality of palm oil produced at the cottage industry level in Ghana. Int. Food Res. J. 2012, 19(1), 271–278.
  • Silva, S. M.; Sampaio, K. A.; Ceriani, R.; Verhé, R.; Stevens, C.; De Greyt, W.; Meirelles, A. J. A. Effect of type of bleaching earth on the final color of refined palm oil. LWT - Food Sci. Technol. 2014, 59 (2, Part 2), 1258–1264. DOI: 10.1016/j.lwt.2014.05.028
  • Pal, U.; Patra, R.; Sahoo, N.; Bakhara, C.; Panda, M. Effect of refining on quality and composition of sunflower oil. J. Food. Sci. Technol. 2015, 52(7), 4613–4618. DOI: 10.1007/s13197-014-1461-0.
  • Lau, H. L. N.; Choo, Y. M.; Ma, A. N.; Chuah, C. H. Characterization and supercritical carbon dioxide extraction of palm oil (Elaeis guineensis). Journal of Food Lipids. 2006, 13(2), 210–221. DOI: 10.1111/j.1745-4522.2006.00046.x
  • Franke, K.; Strijowski, U.; Fleck, G.; Pudel, F. Influence of chemical refining process and oil type on bound 3-chloro-1, 2-propanediol contents in palm oil and rapeseed oil. LWT - Food Sci. Technol. 2009, 42(10), 1751-1754. DOI: 10.1016/j.lwt.2009.05.021
  • Ramli, M. R.; Siew, W. L.; Ibrahim, N. A.; Hussein, R.; Kuntom, A.; Abd. Razak, R. A.;Nesaretnam, K. Effects of degumming and bleaching on 3‐MCPD esters formation during physical refining. J. Am. Oil Chem. Soc. 2011, 88(11), 1839-1844. DOI: 10.1007/s11746-011-1858-0
  • Oey, S.B.; van der Fels‐Klerx, H.; Fogliano, V.; van Leeuwen, S.P. Mitigation Strategies for the Reduction of 2‐ and 3‐MCPD Esters and Glycidyl Esters in the Vegetable Oil Processing Industry. Compr. Rev. Food Sci. Food Saf. 2019, 18, 349–361. DOI: 10.1111/1541-4337.12415
  • Craft, B. D.; Nagy, K.; Sandoz, L.; Destaillats, F. Factors impacting the formation of Monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012, 29(3), 354–361. DOI: 10.1080/19440049.2011.639034
  • Šmidrkal, J.; Tesařová, M.; Hrádková, I.; Berčíková, M.; Adamčíková, A.; Filip, V. Mechanism of formation of 3-chloropropan-1, 2-diol (3-MCPD) esters under conditions of the vegetable oil refining. Food Chem. 2016, 211, 124–129. DOI: 10.1016/j.foodchem.2016.05.039.
  • Tiong, S. H.; Saparin, N.; Teh, H. F.; Ng, T. L. M.; Md. Zain, M. Z. b.; Neoh, B. K.; Md Noor, A.; Tan, C. P.; Lai, O. M.; Appleton, D. R. Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils. J. Agr. Food Chem. 2018, 66(4), 999–1007. DOI: 10.1021/acs.jafc.7b04995
  • Cheng, W. w.; Liu, G. q.; Wang, L. q.; Liu, Z. s. Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Compr. Rev. Food. Sci. F. 2017, 16(2), 263–281. DOI: 10.1111/1541-4337.12251
  • MPOB. Sharing Experience and Recent Updates on 3-MCPDE. Malaysia Palm Oil Board, Bangi, Malaysia. August 3, 2019.
  • Authority, E. F. S. Statement of the Scientific Panel on Contaminants in the Food chain (CONTAM) on a request from the European Commission related to 3‐MCPD esters. EFSA J. 2008, 6 (3), 1048. DOI: 10.2903/j.efsa.2008.1048
  • Kaur, D. Oil palm estates to get certified by 2020 or risk losing licence. The Malaysian Reserve, November 20, 2019, https://themalaysianreserve.com/2019/11/20/oil-palm-estates-to-get-certified-by-2020-or-risk-losing-licence/ (accessed April 22, 2020).
  • Vijaya, S.; Ma, A.; Choo, Y.; Nik Meriam, N. Life cycle inventory of the production of crude palm oil–a gate to gate case study of 12 palm oil mills. J. Oil Palm Res. 2008, 20 (JUNE), 484–494.
  • Syed Hilmi, S. M. H.; Othman, N. H.; Saparin, N.; Jahaya, S. S.; A., M. N.; A.J., A. Process for producing a refined palm fruit oil having a reduced 3-mcpd content. WO2019027315A2, February 7, 2018.
  • Matthäus, B.; Pudel, F. Mitigation of 3‐MCPD and glycidyl esters within the production chain of vegetable oils especially palm oil. Lipid Technol. 2013, 25(7), 151–155. DOI: 10.1002/lite.201300288
  • Chew, C. L.; Ab Karim, N. A.; Kong, P. S.; Tang, S. Y.; Chan, E. S. A Sustainable in-situ Treatment Method to Improve the Quality of Crude Palm Oil by Repurposing Treated Aerobic Liquor. Food and Bioprocess Technol. 2021. DOI: 10.1007/s11947-021-02582-6.
  • Alfa Laval VO Separator. https://www.alfalaval.ru/products/separation/centrifugal-separators/separators/vo/ (accessed September 22, 2019).
  • Ramli, M. R.; Siew, W. L.; Ibrahim, N. A.; Kuntom, A.; Abd. Razak, R. A. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015, 32(6), 817–824. DOI: 10.1080/19440049.2015.1032368.
  • Matthäus, B.; Pudel, F.; Fehling, P.; Vosmann, K.; Freudenstein, A. Strategies for the reduction of 3‐MCPD esters and related compounds in vegetable oils. Eur. J. Lipid Sci. Technol. 2011, 113(3), 380–386. DOI: 10.1002/ejlt.201000300
  • Ebongue, G. N.; Dhouib, R.; Carriere, F.; Zollo, P.-H. A.; Arondel, V. Assaying lipase activity from oil palm fruit (Elaeis guineensis Jacq.) mesocarp. Plant Physiol. Bioch. 2006, 44(10), 611–617. DOI: 10.1016/j.plaphy.2006.09.006
  • Junaidah, M.; Norizzah, A.; Zaliha, O.; Mohamad, S. Optimisation of sterilisation process for oil palm fresh fruit bunch at different ripeness. Int. Food Res. J. 2015, 22(1), 275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.