496
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Ultrasound on Milk Decontamination: Potential and Limitations Against Foodborne Pathogens and Spoilage Bacteria

, & ORCID Icon

References

  • Claeys, W. L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; De Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P.;, et al. Raw or Heated Cow Milk Consumption: Review of Risks and Benefits. Food Control.2013, 31(1), 251–262. DOI: 10.1016/j.foodcont.2012.09.035.
  • Smith, K.; Mittal, G. S.; Griffiths, M. W. Pasteurization of Milk Using Pulsed Electrical Field and Antimicrobials. J. Food Sci. 2002, 67, 2304–2308. DOI: 10.1111/j.1365-2621.2002.tb09545.x.
  • Evelyn, E.; Silva, F. V. M. Thermosonication versus Thermal Processing of Skim Milk and Beef Slurry: Modeling the Inactivation Kinetics of Psychrotrophic Bacillus Cereus Spores. Food Res. Int. 2015, 67, 67–74. DOI: 10.1016/j.foodres.2014.10.028.
  • Elagamy, E. I.;. Effect of Heat Treatment on Camel Milk Proteins with respect to Antimicrobial Factors: A Comparison with Cows’ and Buffalo Milk Proteins. Food Chem. 2000, 68, 227–232. DOI: 10.1016/S0308-8146(99)00199-5.
  • Coutinho, N. M.; Silveira, M. R.; Rocha, R. S.; Moraes, J.; Ferreira, M. V. S.; Pimentel, T. C.; Freitas, M. Q.; Silva, M. C.; Raices, R. S. L.; Ranadheera, C. S.;, et al. Cold Plasma Processing of Milk and Dairy Products. Trends Food Sci. Technol. 2018, 74, 56–68. DOI: 10.1016/j.tifs.2018.02.008.
  • Monteiro, S. H. M. C.; Silva, E. K.; Alvarenga, V. O.; Moraes, J.; Freitas, M. Q.; Silva, M. C.; Raices, R. S. L.; Sant’Ana, A. S.; Meireles, M. A. A.; Cruz, A. G. Effects of Ultrasound Energy Density on the Non-thermal Pasteurization of Chocolate Milk Beverage. Ultrason. Sonochem. 2018, 42, 1–10. DOI: 10.1016/j.ultsonch.2017.11.015.
  • Mussa, D. M.; Ramaswamy, H. S. Ultra High Pressure Pasteurization of Milk: Kinetics of Microbial Destruction and Changes in Physico-chemical Characteristics. LWT - Food Sci. Technol. 1997, 30(6), 551–557. DOI: 10.1006/fstl.1996.0223.
  • Thiebaud, M.; Dumay, E.; Picart, L.; Guiraud, J. P.; Cheftel, J. C. High-pressure Homogenization of Raw Bovine Milk. Effects on Fat Globule Size Distribution and Microbial Inactivation. Int. Dairy J. 2003, 13, 427–439. DOI: 10.1016/S0958-6946(03)00051-7.
  • Beolchini, F.; Cimini, S.; Mosca, L.; Veglio, F.; Barba, D. Microfiltration of Bovine and Ovine Milk for the Reduction of Microbial Content: Effect of Some Operating Conditions on Permeate Flux and Microbial Reduction. Sep. Sci. Technol. 2005, 40(4), 757–772. DOI: 10.1081/SS-200048160.
  • Beolchini, F.; Vegho’, F.; Barba, D. Microfiltration of Bovine and Ovine Milk for the Reduction of Microbial Content in a Tubular Membrane: A Preliminary Investigation. Desalination. 2004, 161, 251–258. DOI: 10.1016/S0011-9164(03)00705-7.
  • Makroo, H. A.; Rastogi, N. K.; Srivastava, B. Ohmic Heating Assisted Inactivation of Enzymes and Microorganisms in Foods: A Review. Trends Food Sci. Technol. 2020, 97, 451–465. DOI: 10.1016/j.tifs.2020.01.015.
  • Ansari, J. A.; Ismail, M.; Farid, M. Investigate the Efficacy of UV Pretreatment on Thermal Inactivation of Bacillus Subtilis Spores in Different Types of Milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 387–393. DOI: 10.1016/j.ifset.2019.02.002.
  • Li, J.; Wang, J.; Zhao, X.; Wang, W.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Inactivation of Staphylococcus Aureus and Escherichia Coli in Milk by Different Processing Sequences of Ultrasound and Heat. Food Saf. 2019, 39(2), e12614. DOI: 10.1111/jfs.12614.
  • Chandrapala, J.; Leong, T. Ultrasonic Processing for Dairy Applications: Recent Advances. Food Eng. Rev. 2015, 7, 143–158. DOI: 10.1007/s12393-014-9105-8.
  • Awad, T. S.; Moharram, H. A.; Shaltout, O. E.; Asker, D.; Youssef, M. M. Applications of Ultrasound in Analysis, Processing and Quality Control of Food: A Review. Food Res. Int. 2012, 48(2), 410–427. DOI: 10.1016/j.foodres.2012.05.004.
  • Chemat, F.; Khan, M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18, 813–835. DOI: 10.1016/j.ultsonch.2010.11.023.
  • Do Rosário, D. K. A.; Da Silva Mutz, Y.; Peixoto, J. M. C.; Oliveira, S. B. S.; Carvalho, R. V.; Carneiro, J. C. S.; De São José, J. S. B.; Bernardes, P. C. Ultrasound Improves Chemical Reduction of Natural Contaminant Microbiota and Salmonella Enterica Subsp. Enterica on Strawberries. Int. J. Food Microbiol. 2017, 241, 23–29. DOI: 10.1016/j.ijfoodmicro.2016.10.009.
  • Duarte, A. L. A.; Do Rosário, D. K. A.; Oliveira, S. B. S.; De Souza, H. L. S.; Carvalho, R. V.; Carneiro, J. C. S.; Silva, P. I.; Bernardes, P. C. Ultrasound Improves Antimicrobial Effect of Sodium Dichloroisocyanurate to Reduce Salmonella Typhimurium on Purple Cabbage. Int. J. Food Microbiol. 2018, 269, 12–18. DOI: 10.1016/j.ijfoodmicro.2018.01.007.
  • Cárcel, J. A.; Benedito, J.; Bon, J.; Mulet, A. High Intensity Ultrasound Effects on Meat Brining. Meat Sci. 2007, 76(4), 611–619. DOI: 10.1016/j.meatsci.2007.01.022.
  • Siró, I.; Vén, C.; Balla, C.; Jonas, G.; Zeke, I. C.; Friedrich, L. Application of an Ultrasonic Assisted Curing Technique for Improving the Diffusion of Sodium Chloride in Porcine Meat. J. Food Eng. 2009, 91, 353–362. DOI: 10.1016/j.jfoodeng.2008.09.015.
  • Mohammadi, V.; Ghasemi-Varnamkhasti, M.; Ebrahimi, R.; Abbasvali, M. Ultrasonic Techniques for the Milk Production Industry. Measurement. 2014, 58, 93–102. DOI: 10.1016/j.measurement.2014.08.022.
  • Cameron, M.; McMaster, L. D.; Britz, T. J. Impact of Ultrasound on Dairy Spoilage Microbes and Milk Components. Dairy Sci. Technol. 2009, 89(1), 83–98. DOI: 10.1051/dst/2008037.
  • EFSA. European Food Safety Authority. https://ecdc.europa.eu/sites/portal/files/documents/summary-report-zoonoses-foodborne-outbreaks-2016.pdf ( accessed Mai 17, 2019).
  • CDC. Centers for Disease Control and Prevention. https://www.cdc.gov/fdoss/pdf/2016_FoodBorneOutbreaks_508.pdf ( accessed Mai 17, 2019).
  • CDC. Centers for Disease Control and Prevention. https://www.cdc.gov/listeria/outbreaks/raw-milk-03-16/index.html ( accessed Nov 19, 2018).
  • CDC. Centers for Disease Control and Prevention. https://www.cdc.gov/listeria/outbreaks/soft-cheese-03-17/index.html ( accessed Nov 19, 2018).
  • Costard, S.; Espejo, L.; Groenendaal, H.; Zagmutt, F. J. Outbreak-Related Disease Burden Associated with Consumption of Unpasteurized Cow’s Milk and Cheese, United States, 2009–2014. Emerg. Infect. Dis. 2017, 23, 957–964. DOI: 10.3201/eid2306.151603.
  • Rangel, J. M.; Sparling, P. H.; Crowe, C.; Griffin, P. M.; Swerdlow, D. L. Epidemiology of Escherichia Coli O157:H7 Outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005, 11(4), 603–609. DOI: 10.3201/eid1104.040739.
  • Luinge, H. J.; Hop, E.; Lutz, E. T. G.; Van Hemert, J. A.; De Jong, E. A. M. Determination of the Fat, Protein and Lactose Content of Milk Using Fourier Transform Infrared Spectrometry. Anal. Chim. Acta. 1993, 284, 419–433. DOI: 10.1016/0003-2670(93)85328-H.
  • Cousin, M. A.;. Presence and Activity of Psychrotrophic Microorganisms in Milk and Dairy Products: A Review. J. Food Prot. 1982, 45(2), 172–207. DOI: 10.4315/0362-028X-45.2.172.
  • De Jonghe, V.; Coorevits, A.; Van Hoorde, K.; Messens, W.; Van Landschoot, A.; De Vos, P.; Heyndrickx, M. Influence of Storage Conditions on the Growth of Pseudomonas Species in Refrigerated Raw Milk. Appl. Environ. Microbiol. 2011, 77, 460–470. DOI: 10.1128/AEM.00521-10.
  • Meer, R. R.; Baker, J.; Bodyfelt, F. W.; Griffiths, M. W. Psychrotrophic Bacillus Spp. In Fluid Milk Products: A Review. J. Food Prot. 1991, 54(12), 969–979. DOI: 10.4315/0362-028X-54.12.969.
  • Gao, T.; Ding, Y.; Wu, Q. Wang, J.; Zhang, J.; Yu, S.; Yu, P.; Liu, C.; Kong, L.; Feng, Z.; et al. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Bacillus Cereus Isolated from Pasteurized Milk in China. Front Microbiol. 2018, 9, 533. DOI: 10.3389/fmicb.2018.00533.
  • Dong, H.; Tang, X.; Zhang, Z.; Dong, C.; Structural Insight into Lipopolysaccharide Transport from the Gram-Negative Bacterial Inner Membrane to the Outer Membrane. Biochim BiophysActa (BBA) – Mol Cell Biol Lipids. 2017, 186211, 1461–1467. DOI:10.1016/j.bbalip.2017.08.003.
  • Drakopoulou, S.; Terzakis, S.; Fountoulakis, M. S.; Mantzavinos, D.; Manios, M. T. Ultrasound-induced Inactivation of Gram-negative and Gram-positive Bacteria in Secondary Treated Municipal Wastewater. Ultrason. Sonochem. 2009, 16(5), 629–634. DOI: 10.1016/j.ultsonch.2008.11.011.
  • Liao, X.; Li, J.; Suo, Y.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Multiple Action Sites of Ultrasound on Escherichia Coli and Staphylococcus Aureus. Food Sci. Hum. Wellness. 2018, 7(1), 102–109. DOI: 10.1016/j.fshw.2018.01.002.
  • Ananta, E.; Voigt, D.; Zenker, M.; Heinz, V.; Knorr, D. Cellular Injuries upon Exposure of Escherichia Coli and Lactobacillus Rhamnosus to High-Intensity Ultrasound. J. Appl. Microbiol. 2005, 99(2), 271–278. DOI: 10.1111/j.1365-2672.2005.02619.x.
  • Liu, H.; Bergman, N. H.; Thomason, B.; Shallom, S.; Hazen, A.; Crossno, J.; Rasko, D. A.; Ravel, J.; Read, T. D.; Peterson, S. N.;, et al. Formation and Composition of the Bacillus Anthracis Endospore. JB.2004, 186(1), 164–178. DOI: 10.1128/JB.186.1.164-178.2004.
  • Cho, W.-I.; Chung, M.-S. Bacillus Spores: A Review of Their Properties and Inactivation Processing Technologies. Food Sci. Biotechnol. 2020, 29(11), 1447–1461. DOI: 10.1007/s10068-020-00809-4.
  • Setlow, P.; Li, L. Photochemistry and Photobiology of the Spore Photoproduct: A 50-Year Journey. Photochem. Photobiol. 2015, 91(6), 1263–1290. DOI: 10.1111/php.12506.
  • Molina-Höppner, A.; Doster, W.; Vogel, R. F.; Gänzle, M. G. Protective Effect of Sucrose and Sodium Chloride for Lactococcus Lactis during Sublethal and Lethal High-Pressure Treatments. AEM. 2004, 70(4), 2013–2020. DOI: 10.1128/AEM.70.4.2013-2020.2004.
  • Gera, N.; Doores, D. S. Kinetics and Mechanism of Bacterial Inactivation by Ultrasound Waves and Sonoprotective Effect of Milk Components. J. Food Sci. 2011, 76(2), M111–M119. DOI: 10.1111/j.1750-3841.2010.02007.x.
  • Kempf, B.; Bremer, E. Uptake and Synthesis of Compatible Solutes as Microbial Stress Responses to High-Osmolality Environments. 12.
  • Roberts, M. F. Organic Compatible Solutes of Halotolerant and Halophilic Microorganisms. Saline Syst. 2005, 11, 5. DOI:10.1186/1746-1448-1-5.
  • D’Amico, D. J.; Silk, T. M.; Wu, J.; Guo, M. Inactivation of Microorganisms in Milk and Apple Cider Treated with Ultrasound. J. Food Prot. 2006, 69(3), 556–563. DOI: 10.4315/0362-028X-69.3.556.
  • Bermúdez-Aguirre, D.; Corradini, M. G.; Mawson, R.; Barbosa-Cánovas, G. V. Modeling the Inactivation of Listeria Innocua in Raw Whole Milk Treated under Thermo-sonication. Innov. Food Sci. Emerg. Technol. 2009, 10, 172–178. DOI: 10.1016/j.ifset.2008.11.005.
  • Noci, F.; Walkling-Ribeiro, M.; Cronin, D. A.; Morgan, D. J.; Lyng, J. G. Effect of Thermosonication, Pulsed Electric Field and Their Combination on Inactivation of Listeria Innocua in Milk. Int. Dairy J. 2009, 19(1), 30–35. DOI: 10.1016/j.idairyj.2008.07.002.
  • Dhahir, N.; Feugang, J.; Witrick, K.; Park, S.; AbuGhazaleh, A. Impact of Ultrasound Processing on Some Milk-Borne Microorganisms and the Components of Camel Milk. Emir. J. Food Agric. 2020, 245. DOI: 10.9755/ejfa.2020.v32.i4.2088.
  • Cregenzán-Alberti, O.; Halpin, R. M.; Whyte, P.; Lyng, J.; Noci, F. Suitability of ccRSM as a Tool to Predict Inactivation and Its Kinetics for Escherichia Coli, Staphylococcus Aureus and Pseudomonas Fluorescens in Homogenized Milk Treated by Manothermosonication (MTS). Food Control. 2014, 39, 41–48. DOI: 10.1016/j.foodcont.2013.10.007.
  • Herceg, Z.; Jambrak, A. R.; Lelas, V.; Thagard, S. M. The Effect of High Intensity Ultrasound Treatment on the Amount of Staphylococcus Aureus and Escherichia Coli in Milk. Food Technol. Biotechnol. 2012, 50, 46–52.
  • Cameron, M.; McMaster, L. D.; Britz, T. J. Electron Microscopic Analysis of Dairy Microbes Inactivated by Ultrasound. Ultrason. Sonochem. 2008, 15(6), 960–964. DOI: 10.1016/j.ultsonch.2008.02.012.
  • Villamiel, M.; De Jong, P. Inactivation of Pseudomonas Fluorescens and Streptococcus Thermophilus in Trypticase® Soy Broth and Total Bacteria in Milk by Continuous-flow Ultrasonic Treatment and Conventional Heating. J. Food Eng. 2000, 45(3), 171–179. DOI: 10.1016/S0260-8774(00)00059-5.
  • Ansari, J. A.; Ismail, M.; Farid, M. Investigation of the Use of Ultrasonication Followed by Heat for Spore Inactivation. Food Bioprod. Process. 2017, 104, 32–39. DOI: 10.1016/j.fbp.2017.04.005.
  • Khanal, S. N.; Anand, S.; Muthukumarappan, K. Evaluation of High-intensity Ultrasonication for the Inactivation of Endospores of 3 Bacillus Species in Nonfat Milk. J. Dairy Sci. 2014, 97(10), 5952–5963. DOI: 10.3168/jds.2014-7950.
  • Dieterich, G.;. LEGER: Knowledge Database and Visualization Tool for Comparative Genomics of Pathogenic and Non-pathogenic Listeria Species. Nucleic Acids Res. 2006, 34(90001), D402–D406. DOI: 10.1093/nar/gkj071.
  • Ramaswamy, V.; Cresence, V. M.; Rejitha, J. S.; Lekshmi, M. U.; Dharsana, K. S.; Prasad, S. P.; Vijila, H. M. Listeria—Review of Epidemiology and Pathogenesis. J. Microbiol. Immunol. Infect. 2007, 40, 4–13.
  • Joyce, E.; Phull, S. S.; Lorimer, J. P.; Mason, T. J. The Development and Evaluation of Ultrasound for the Treatment of Bacterial Suspensions. A Study of Frequency, Power and Sonication Time on Cultured Bacillus Species. Ultrason. Sonochem. 2003, 10, 315–318. DOI: 10.1016/S1350-4177(03)00101-9.
  • Piyasena, P.; Mohareb, E.; McKellar, R. C. Inactivation of Microbes Using Ultrasound: A Review. Int. J. Food Microbiol. 2003, 87, 207–216. DOI: 10.1016/S0168-1605(03)00075-8.
  • Inguglia, E. S.; Tiwari, B. K.; Kerry, J. P.; Burgess, C. M. Effects of High Intensity Ultrasound on the Inactivation Profiles of Escherichia Coli K12 and Listeria Innocua with Salt and Salt Replacers. Ultrason. Sonochem. 2018, 48, 492–498. DOI: 10.1016/j.ultsonch.2018.05.007.
  • Pyatkovskyy, T. I.; Shynkaryk, M. V.; Mohamed, H. M.; Yousef, A. E.; Sastry, S. K. Effects of Combined High Pressure (HPP), Pulsed Electric Field (PEF) and Sonication Treatments on Inactivation of Listeria Innocua. J. Food Eng. 2018, 233, 49–56. DOI: 10.1016/j.jfoodeng.2018.04.002.
  • Mortazavi, N.; Aliakbarlu, J. Antibacterial Effects of Ultrasound, Cinnamon Essential Oil, and Their Combination against Listeria Monocytogenes and Salmonella Typhimurium in Milk. J. Food Sci. 2019, 84(12), 3700–3706. DOI: 10.1111/1750-3841.14914.
  • Ahmed, F. I. K.; Russell, C. Synergism between Ultrasonic Waves and Hydrogen Peroxide in the Killing of Micro-organisms. J. Appl. Bacteriol. 1975, 39, 31–40. DOI: 10.1111/j.1365-2672.1975.tb00542.x.
  • Al Haj, O.; Al Kanhal, H. A. Compositional, Technological and Nutritional Aspects of Dromedary Camel Milk. Int. Dairy J. 2010, 11. DOI: 10.1016/j.idairyj.2010.04.003.
  • Rosario, D. K. A.; Rodrigues, B. L.; Bernardes, P. C.; Conte-Junior, C. A. Principles and Applications of Non-thermal Technologies and Alternative Chemical Compounds in Meat and Fish. Crit. Rev. Food Sci. Nutr. 2020, 1–21. DOI: 10.1080/10408398.2020.1754755.
  • Juraga, E.; Šalamon, B. S.; Herceg, Z.; Jambrak, A. R. Application of High Intensity Ultrasound Treatment on Enterobacteriae Count in Milk. Mljekarstvo. 2011, 61, 125–134.
  • Guimarães, J. T.; Silva, E. K.; Alvarenga, V. O.; Costa, A. L. R.; Cunha, R. L.; Sant’Ana, A. S.; Freitas, M. Q.; Meireles, M. A. A.; Cruz, A. G. Physicochemical Changes and Microbial Inactivation after High-intensity Ultrasound Processing of Prebiotic Whey Beverage Applying Different Ultrasonic Power Levels. Ultrason. Sonochem. 2018, 44, 251–260. DOI: 10.1016/j.ultsonch.2018.02.012.
  • Manasa, K.; Reddy, R. S.; Triveni, S. Isolation and Characterization of Pseudomonas Fluorescens Isolates from Different Rhizosphere Soils of Telangana. J Pharmacogn Phytochem. 2017, 6, 224–229.
  • Dogan, B.; Boor, K. J. Genetic Diversity and Spoilage Potentials among Pseudomonas Spp. Isolated from Fluid Milk Products and Dairy Processing Plants. Appl. Environ. Microbiol. 2003, 69, 130–138. DOI: 10.1128/AEM.69.1.130-138.2003.
  • Gao, S.; Lewis, G. D.; Ashokkumar, M.; Hemar, Y. Inactivation of Microorganisms by Low-frequency High-power Ultrasound: 1. Effect of Growth Phase and Capsule Properties of the Bacteria. Ultrason. Sonochem. 2014, 21, 446–453. DOI: 10.1016/j.ultsonch.2013.06.006.
  • Frosch, M.; Edwards, U.; Bousset, K.; Krauße, B.; Weisgerber, C. Evidence for a Common Molecular Origin of the Capsule Gene Loci in Gram-negative Bacteria Expressing Group II Capsular Polysaccharides. Mol. Microbiol. 1991, 5(5), 1251–1263. DOI: 10.1111/j.1365-2958.1991.tb01899.x.
  • Fan, L.; Hou, F.; Muhammad, A. I.; Ruiling, L. V.; Watharkar, R. B.; Guo, M.; Ding, T.; Liu, D. Synergistic Inactivation and Mechanism of Thermal and Ultrasound Treatments against Bacillus Subtilis Spores. Food Res. Int. 2019, 116, 1094–1102. DOI: 10.1016/j.foodres.2018.09.052.
  • Gao, S.; Lewis, G. D.; Ashokkumar, M.; Hemar, Y. Inactivation of Microorganisms by Low-frequency High-power Ultrasound: 2. A Simple Model for the Inactivation Mechanism. Ultrason. Sonochem. 2014, 21(1), 454–460. DOI: 10.1016/j.ultsonch.2013.06.007.
  • Peng, J.-S.; Tsai, W.-C.; Chou, -C.-C. Surface Characteristics of Bacillus Cereus and Its Adhesion to Stainless Steel. Int. J. Food Microbiol. 2001, 65, 105–111. DOI: 10.1016/S0168-1605(00)00517-1.
  • Earnshaw, R. G.; Appleyard, J.; Hurst, R. M. Understanding Physical Inactivation Processes: Combined Preservation Opportunities Using Heat, Ultrasound and Pressure. Int. J. Food Microbiol. 1995, 28, 197–219. DOI: 10.1016/0168-1605(95)00057-7.
  • Marchesini, G.; Balzan, S.; Montemurro, F.; Fasolato, L.; Andrighetto, I.; Segato, S.; Novelli, E. Effect of Ultrasound Alone or Ultrasound Coupled with CO2 on the Chemical Composition, Cheese-making Properties and Sensory Traits of Raw Milk. Innov. Food Sci. Emerg. Technol. 2012, 16, 391–397. DOI: 10.1016/j.ifset.2012.09.003.
  • Marchesini, G.; Fasolato, L.; Novelli, E.; Balzan, S.; Contiero, B.; Montemurro, F.; Andrighetto, I.; Segato, S. Ultrasonic Inactivation of Microorganisms: A Compromise between Lethal Capacity and Sensory Quality of Milk. Innov. Food Sci. Emerg. Technol. 2015, 29, 215–221. DOI: 10.1016/j.ifset.2015.03.015.
  • Chouliara, E.; Georgogianni, K. G.; Kanellopoulou, N.; Kontominas, M. G. Effect of Ultrasonication on Microbiological, Chemical and Sensory Properties of Raw, Thermized and Pasteurized Milk. Int. Dairy J. 2010, 20, 307–313. DOI: 10.1016/j.idairyj.2009.12.006.
  • Balthazar, C. F.; Santillo, A.; Guimarães, J. T.; Bevilacqua, A.; Corbo, M. R.; Caroprese, M.; Marino, R.; Esmerino, E. A.; Silva, M. C.; Raices, R. S. L.;, et al. Ultrasound Processing of Fresh and Frozen Semi-skimmed Sheep Milk and Its Effects on Microbiological and Physical-chemical Quality. Ultrason. Sonochem. 2019, 51, 241–248. DOI: 10.1016/j.ultsonch.2018.10.017.
  • Bermúdez-Aguirre, D.; Barbosa-Cánovas, G. V. Study of Butter Fat Content in Milk on the Inactivation of Listeria Innocua ATCC 51742 by Thermo-sonication. Innov. Food Sci. Emerg. Technol. 2008, 9, 176–185. DOI: 10.1016/j.ifset.2007.07.008.
  • Potoroko, I.; Kalinina, I.; Botvinnikova, V.; Krasulya, O.; Fatkullin, R.; Bagale, U.; Sonawane, S. H. Ultrasound Effects Based on Simulation of Milk Processing Properties. Ultrason. Sonochem. 2018, 48, 463–472. DOI: 10.1016/j.ultsonch.2018.06.019.
  • Sutariya, S.; Sunkesula, V.; Kumar, R.; Shah, K. Emerging Applications of Ultrasonication and Cavitation in Dairy Industry: A Review. Cogent Food Agric. 2018, (4). DOI: 10.1080/23311932.2018.1549187.
  • Shanmugam, A.; Chandrapala, J.; Ashokkumar, M. The Effect of Ultrasound on the Physical and Functional Properties of Skim Milk. Innov. Food Sci. Emerg. Technol. 2012, 16, 251–258. DOI: 10.1016/j.ifset.2012.06.005.
  • Ohja, K. S.; Tiwari, B. K.; O’Donnell, C. P. Effect of Ultrasound Technology on Food and Nutritional Quality. Adv. Food Nut. Res. 2018, 84, 207–240. DOI: 10.1016/bs.afnr.2018.01.001.
  • Khan, S. A.; Dar, A. H.; Bhat, S. A.; Fayaz, J.; Makroo, H. A.; Dwivedi, M. High Intensity Ultrasound Processing in Liquid Foods. Food Rev. Int. 2020. DOI: 10.1080/87559129.2020.1768404.
  • Long, T. B.; Blok, V.; Coninx, I. Barriers to the Adoption and Diffusion of Technological Innovations for Climate-smart Agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. DOI: 10.1016/j.jclepro.2015.06.044.
  • Golembiewski, B.; Sick, N.; Bröring, S. The Emerging Research Landscape on Bioeconomy: What Has Been Done so Far and What Is Essential from a Technology and Innovation Management Perspective? Innov. Food Sci. Emerg. Technol. 2015, 29, 308–317. DOI: 10.1016/j.ifset.2015.03.006.
  • Perrea, T.; Grunert, K. G.; Krystallis, A. Consumer Value Perceptions of Food Products from Emerging Processing Technologies: A Cross-cultural Exploration. Food. Qual. Prefer. 2015, 39, 95–108. DOI: 10.1016/j.foodqual.2014.06.009.
  • Van Hekken, D. L.; Renye, J.; Bucci, A. J.; Tomasula, P. M. Characterization of the Physical, Microbiological, and Chemical Properties of Sonicated Raw Bovine Milk. J. Dairy Sci. 2019, 102, 6928–6942. DOI: 10.3168/jds.2018-1.
  • Pagán, R.; Mañas, P.; Raso, J.; Condòn, C. S. Bacterial Resistance to Ultrasonic Waves under Pressure at Nonlethal (Manosonication) and Lethal (Manothermosonication) Temperatures. Appl. Environ. Microbiol. 1999, 65(1), 297–300. DOI: 10.1128/AEM.65.1.297-300.1999.
  • Leistner, L.;. Basic Aspects of Food Preservation by Hurdle Technology. Int. J. Food Microbiol. 2000, 55(1–3), , 1–186. DOI: 10.1016/S0168-1605(00)00161-6.
  • EFSA. European Food Safety Authority. https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scv_out25_en.pdf (accessed Aug 27, 2020).
  • FDA. Food and Drug Administration. https://www.fda.gov/media/77760/download (accessed Aug 27, 2020).
  • Mutz, Y. S.; Rosario, D. K. A.; Paschoalin, V. M. F.; Conte-Junior, C. A. Salmonella Enterica: A Hidden Risk for Dry-cured Meat Consumption? Crit. Rev. Food Sci. Nutr. 2019, 60, 976–990. DOI: 10.1080/10408398.2018.1555132.
  • Rosário, A. I. L. S.; Mutz, Y. S.; Castro, V. S.; Silva, M. C. A.; Conte-Junior, C. A.; Costa, M. P. Everybody Loves Cheese: Crosslink between Persistence and Virulence of Shiga-toxin Escherichia Coli. Crit. Rev. Food Sci. Nutr. 2020. DOI: 10.1080/10408398.2020.176703.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.