675
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Applications of Polysaccharides as Stabilizers in Acidified Milks

, , , , , , & ORCID Icon show all

References

  • Yousefi, M.; Jafari, S. M. Recent Advances in Application of Different Hydrocolloids in Dairy Products to Improve Their Techno-Functional Properties. Trends Food Sci. Technol. 2019, 88, 468–483. DOI: 10.1016/j.tifs.2019.04.015.
  • Du, B.; Li, J.; Zhang, H.; Huang, L.; Chen, P.; Zhou, J. Influence of Molecular Weight and Degree of Substitution of Carboxymethylcellulose on the Stability of Acidified Milk Drinks. Food Hydrocolloids. 2009, 23, 1420–1426. DOI: 10.1016/j.foodhyd.2008.10.004.
  • Wusigale,; Liang, L.; Luo, Y. Casein and Pectin: Structures, Interactions, and Applications. Trends Food Sci. Technol. 2020, 97, 391–403. DOI: 10.1016/j.tifs.2020.01.027.
  • Elzoghby, A. O.; Abo El-Fotoh, W. S.; Elgindy, N. A. Casein-Based Formulations as Promising Controlled Release Drug Delivery Systems. J. Controlled Release. 2011, 153, 206–216. DOI: 10.1016/j.jconrel.2011.02.010.
  • Gastaldi, E.; Lagaude, A.; De La Tarodo Fuente, B. Micellar Transition State in Casein between pH 5.5 And 5.0. J. Food Sci. 1996, 61, 59–64. DOI: 10.1111/j.1365-2621.1996.tb14725.x.
  • Tromp, R. H.; De Kruif, C. G.; Van Eijk, M.; Rolin, C. On the Mechanism of Stabilisation of Acidified Milk Drinks by Pectin. Food Hydrocolloids. 2004, 18, 565–572. DOI: 10.1016/j.foodhyd.2003.09.005.
  • Horne, D. S.;. Casein Micelle Structure: Models and Muddles. Curr. Opin. Colloid Interface Sci. 2006, 11, 148–153. DOI: 10.1016/j.cocis.2005.11.004.
  • Corredig, M.; Sharafbafi, N.; Kristo, E. Polysaccharide-Protein Interactions in Dairy Matrices, Control and Design of Structures. Food Hydrocolloids. 1833-1841, 2011(25). DOI: 10.1016/j.foodhyd.2011.05.014.
  • Hovjecki, M.; Miloradovic, Z.; Rac, V.; Pudja, P.; Miocinovic, J. Influence of Heat Treatment of Goat Milk on Casein Micelle Size, Rheological and Textural Properties of Acid Gels and Set Type Yoghurts. J. Texture Stud. 2020, 51(4), 680–687. DOI: 10.1111/jtxs.12524.
  • Jensen, S.; Rolin, C.; Ipsen, R. Stabilisation of Acidified Skimmed Milk with HM Pectin. Food Hydrocolloids. 2010, 24, 291–299. DOI: 10.1016/j.foodhyd.2009.10.004.
  • Matia-Merino, L.; Lau, K.; Dickinson, E. Effects of Low-Methoxyl Amidated Pectin and Ionic Calcium on Rheology and Microstructure of Acid-Induced Sodium Caseinate Gels. Food Hydrocolloids. 2004, 18, 271–281. DOI: 10.1016/S0268-005X(03)00083-3.
  • Azim, Z.; Alexander, M.; Koxholt, M.; Corredig, M. Influence of Cross-Linked Waxy Maize Starch on the Aggregation Behavior of Casein Micelles during Acid-Induced Gelation. Food Biophys. 2010, 5, 227–237. DOI: 10.1007/s11483-010-9164-1.
  • Altemimi, A. B.;. Extraction and Optimization of Potato Starch and Its Application as a Stabilizer in Yogurt Manufacturing. Foods. 2018, 7. DOI: 10.3390/foods7020014.
  • Doesburg, J. J.; De Vos, L. Pasteurized Mixtures of Fruit Jus and Milk, with Long Shelf Life. V Int. Fruit Jus Congr. 1959, 32–37.
  • Zhang, H.; Chen, J.; Li, J.; Yan, L.; Li, S.; Ye, X.; Liu, D.; Ding, T.; Linhardt, R. J.; Orfila, C.; et al. Extraction and Characterization of RG-I Enriched Pectic Polysaccharides from Mandarin Citrus Peel. Food Hydrocolloids. 2018, 79, 579–586. DOI: 10.1016/j.foodhyd.2017.12.002.
  • Pereyra, R.; Schmidt, K. A.; Wicker, L. Interaction and Stabilization of Acidified Casein Dispersions with Low and High Methoxyl Pectins. J. Agric. Food Chem. 1997, 45, 3448–3451. DOI: 10.1021/jf970198f.
  • Peterson, R. B.; Rankin, S. A.; Ikeda, S. Short Communication: Stabilization of Milk Proteins at pH 5.5 Using Pectic Polysaccharides Derived from Potato Tubers. J. Dairy Sci. 2019, 102(10), 8691–8695. DOI: 10.3168/jds.2019-16393.
  • Khodaei, N.; Karboune, S. Extraction and Structural Characterisation of Rhamnogalacturonan I-type Pectic Polysaccharides from Potato Cell Wall. Food Chem. 2013, 139(1–4), 617–623. DOI: 10.1016/j.foodchem.2013.01.110.
  • Cai, Y.; Cai, B.; Ikeda, S. Stabilization of Milk Proteins in Acidic Conditions by Pectic Polysaccharides Extracted from Soy Flour. J. Dairy Sci. 2017, 100(10), 7793–7801. DOI: 10.3168/jds.2016-12190.
  • Nakamura, A.; Furuta, H.; Maeda, H.; Takao, T.; Nagamatsu, Y. Structural Studies by Stepwise Enzymatic Degradation of the Main Backbone of Soybean Soluble Polysaccharides Consisting of Galacturonan and Rhamnogalacturonan. Biosci. Biotechnol. Biochem. 2002, 66, 1301–1313. DOI: 10.1271/bbb.66.1301.
  • Nakamura, A.; Furuta, H.; Kato, M.; Maeda, H.; Nagamatsu, Y. Effect of Soybean Soluble Polysaccharides on the Stability of Milk Protein under Acidic Conditions. Food Hydrocolloids. 2003, 17, 333–343. DOI: 10.1016/S0268-005X(02)00095-4.
  • Nobuhara, T.; Matsumiya, K.; Nambu, Y.; Nakamura, A.; Fujii, N.; Matsumura, Y. Stabilization of Milk Protein Dispersion by Soybean Soluble Polysaccharide under Acidic pH Conditions. Food Hydrocolloids. 2014, 34, 39–45. DOI: 10.1016/j.foodhyd.2013.01.022.
  • Nakamura, A.; Yoshida, R.; Maeda, H.; Corredig, M. The Stabilizing Behaviour of Soybean Soluble Polysaccharide and Pectin in Acidified Milk Beverages. Int. Dairy J. 2006, 16(4), 361–369. DOI: 10.1016/j.idairyj.2005.01.014.
  • Liu, J.; Nakamura, A.; Corredig, M. Addition of Pectin and Soy Soluble Polysaccharide Affects the Particle Size Distribution of Casein Suspensions Prepared from Acidified Skim Milk. J. Agric. Food Chem. 2006, 54(17), 6241–6246. DOI: 10.1021/jf060113n.
  • Nakamura, A.; Fujii, N.; Tobe, J.; Adachi, N.; Hirotsuka, M. Characterization and Functional Properties of Soybean High-Molecular-Mass Polysaccharide Complex. Food Hydrocolloids. 2012, 29(1), 75–84. DOI: 10.1016/j.foodhyd.2012.01.018.
  • Liu, Q.; Qi, J.; Yin, S.; Wang, J.; Guo, J.; Feng, J.; Cheng, M.; Cao, J.; Yang, X. Preparation and Stabilizing Behavior of Octenyl Succinic Esters of Soybean Soluble Polysaccharide in Acidified Milk Beverages. Food Hydrocolloids. 2017, 63, 421–428. DOI: 10.1016/j.foodhyd.2016.09.020.
  • Cai, Z.; Wu, J.; Du, B.; Zhang, H. Impact of Distribution of Carboxymethyl Substituents in the Stabilizer of Carboxymethyl Cellulose on the Stability of Acidified Milk Drinks. Food Hydrocolloids. 2018, 76, 150–157. DOI: 10.1016/j.foodhyd.2016.12.034.
  • Du, B.; The Interaction between Carboxymethylcellulose (CMC) and Casein Micelle and the Stabilization Mechanism of Acidified Milk Drinks Induced by CMC. Ph.D. Dissertation. School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai, 2008.
  • Wu, J.; Liu, J.; Dai, Q.; Zhang, H. The Stabilisation of Acidified Whole Milk Drinks by Carboxymethylcellulose. Int. Dairy J. 2013, 28(1), 40–42. DOI: 10.1016/j.idairyj.2012.05.005.
  • Sorlier, P.; Denuzière, A.; Viton, C.; Domard, A. Relation between the Degree of Acetylation and the Electrostatic Properties of Chitin and Chitosan. Biomacromolecules. 2001, 2, 765–772. DOI: 10.1021/bm015531.
  • Hu, B.; Wang, S. S.; Li, J.; Zeng, X. X.; Huang, Q. R. Assembly of Bioactive Peptide-Chitosan Nanocomplexes. J. Phys. Chem. B. 2011, 115, 7515–7523. DOI: 10.1021/jp2013557.
  • Ding, L.; Huang, Y.; Cai, X.; Wang, S. Impact of pH, Ionic Strength and Chitosan Charge Density on Chitosan/Casein Complexation and Phase Behavior. Carbohydr. Polym. 2019, 208, 133–141. DOI: 10.1016/j.carbpol.2018.12.015.
  • Andriamanantoanina, H.; Rinaudo, M. Characterization of the Alginates from Five Madagascan Brown Algae. Carbohydr. Polym. 2010, 82(3), 555–560. DOI: 10.1016/j.carbpol.2010.05.002.
  • Pawar, S. N.; Edgar, K. J. Alginate Esters Via Chemoselective Carboxyl Group Modification. Carbohydr. Polym. 2013, 98(2), 1288–1296. DOI: 10.1016/j.carbpol.2013.08.014.
  • Yang, J.; He, W. Synthesis of Lauryl Grafted Sodium Alginate and Optimization of the Reaction Conditions. Int. J. Biol. Macromol. 2012, 50(2), 428–431. DOI: 10.1016/j.ijbiomac.2011.12.027.
  • Xia, K.; Zong, P.; Liu, X.; Zhao, J.; Zhang, X. Preparation of Methyl Alginate and Its Application in Acidified Milk Drinks. Int. J. Biol. Macromol. 2019, 132, 651–657. DOI: 10.1016/j.ijbiomac.2019.03.243.
  • Martinez, M. J.; Pizones Ruiz-Henestrosa, V. M.; Carrera Sánchez, C.; Rodríguez Patino, J. M.; Pilosof, A. M. R. Interfacial and Foaming Interactions between Casein Glycomacropeptide (CMP) and Propylene Glycol Alginate. Colloids Surf. B. 2012, 95, 214–221. DOI: 10.1016/j.colsurfb.2012.02.045.
  • Pettitt, D. J.; Wayna, J. E. B.; Nantz, J. J. R.; Shoemaker, C. F. Rheological Properties of Solutions and Emulsions Stabilized with Xanthan Gum and Propylene Glycol Alginate. J. Food Sci. 1995, 60, 528–531. DOI: 10.1111/j.1365-2621.1995.tb09819.x.
  • Nilsen-Nygaard, J.; Hattrem, M. N.; Draget, K. I. Propylene Glycol Alginate (PGA) Gelled Foams: A Systematic Study of Surface Activity and Gelling Properties as A Function of Degree of Esterification. Food Hydrocolloids. 2016, 57, 80–91. DOI: 10.1016/j.foodhyd.2016.01.011.
  • Li, N.; Zhong, Q. Stable Casein Micelle Dispersions at pH 4.5 Enabled by Propylene Glycol Alginate following a pH-cycle Treatment. Carbohydr. Polym. 2020, 233, 115834. DOI: 10.1016/j.carbpol.2020.115834.
  • Richardson, R. K.; Kasapis, S. Rheological Methods in the Characterisation of Food Biopolymers. Dev. Food Sci. 1998, 39, 1–48. DOI: 10.1016/S0167-4501(98)80006-X.
  • Pang, Z.; Deeth, H.; Sharma, R.; Bansal, N. Effect of Addition of Gelatin on the Rheological and Microstructural Properties of Acid Milk Protein Gels. Food Hydrocolloids. 2015, 43, 340–351. DOI: 10.1016/j.foodhyd.2014.06.005.
  • Karim, A. A.; Bhat, R. Gelatin Alternatives for the Food Industry: Recent Developments, Challenges and Prospects. Trends Food Sci. Technol. 2008, 19, 644–656. DOI: 10.1016/j.tifs.2008.08.001.
  • Sanchez, C.; Zuniga-Lopez, R.; Schmitt, C.; Despond, S.; Hardy, J. Microstructure of Acid–Induced Skim Milk–Locust Bean Gum–Xanthan Gels. Int. Dairy J. 2000, 10(3), 199–212. DOI: 10.1016/S0958-6946(00)00030-3.
  • Everett, D. W.; McLeod, R. E. Interactions of Polysaccharide Stabilisers with Casein Aggregates in Stirred Skim-Milk Yoghurt. Int. Dairy J. 2005, 15(11), 1175–1183. DOI: 10.1016/j.idairyj.2004.12.004.
  • Maroziene, A.; De Kruif, C. G. Interaction of Pectin and Casein Micelles. Food Hydrocolloids. 2000, 14, 391–394. DOI: 10.1016/S0268-005X(00)00019-9.
  • Complexation Between, Y. A.;. Milk Proteins and Polysaccharides via Electrostatic Interaction: Principles and Applications - A Review. Int. J. Food Sci. Technol. 2008, 43, 406–415. DOI: 10.1111/j.1365-2621.2006.01454.x.
  • Pang, Z.; Deeth, H.; Bansal, N. Effect of Polysaccharides with Different Ionic Charge on the Rheological, Microstructural and Textural Properties of Acid Milk Gels. Food Res. Int. 2015, 72, 62–73. DOI: 10.1016/j.foodres.2015.02.009.
  • Langendorff, V.; Cuvelier, G.; Launay, B.; Michon, C.; Parker, A.; De Kruif, C. G. Casein Micelle/Iota Carrageenan Interactions in Milk: Influence of Temperature. Food Hydrocolloids. 1999, 13(3), 211–218. DOI: 10.1016/S0268-005X(98)00087-3.
  • Rohart, A.; Moulin, G.; Michon, C. Interplay between Phase Separation and Gel Formation in Stirred Acid Milk/Guar Gum Gels: Effect of Acidification Rate. Biopolymers. 2014, 101(9), 966–974. DOI: 10.1002/bip.22484.
  • Schorsch, C.; Jones, M. G.; Norton, I. T. Phase Behaviour of Pure Micellar Casein/Κ-Carrageenan Systems in Milk Salt Ultrafiltrate. Food Hydrocolloids. 2000, 14, 347–358. DOI: 10.1016/S0268-005X(00)00011-4.
  • Ji, S.; Corredig, M.; Goff, H. D. Aggregation of Casein Micelles and κ-Carrageenan in Reconstituted Skim Milk. Food Hydrocolloids. 2008, 22(1), 56–64. DOI: 10.1016/j.foodhyd.2007.04.005.
  • Arltoft, D.; Ipsen, R.; Madsen, F.; De Vries, J. Interactions between Carrageenans and Milk Proteins: A Microstructural and Rheological Study. Biomacromolecules. 2007, 8(2), 729–736. DOI: 10.1021/bm061099q.
  • Pang, Z.; Xu, R.; Luo, T.; Che, X.; Bansal, N.; Liu, X. Physiochemical Properties of Modified Starch under Yogurt Manufacturing Conditions and Its Relation to the Properties of Yogurt. J. Food Eng. 2019, 245, 11–17. DOI: 10.1016/j.jfoodeng.2018.10.003.
  • Mudgil, D.; Barak, S.; Khatkar, B. S. Texture Profile Analysis of Yogurt as Influenced by Partially Hydrolyzed Guar Gum and Process Variables. J. Food Sci. Technol. 2017, 54(12), 3810–3817. DOI: 10.1007/s13197-017-2779-1.
  • Hussain, M.; Bakalis, S.; Gouseti, O.; Akhtar, S.; Hameed, A.; Ismail, A. Microstructural and Dynamic Oscillatory Aspects of Yogurt as Influenced by Hydrolysed Guar Gum. Int. J. Food Sci. Technol. 2017, 52(10), 2210–2216. DOI: 10.1111/ijfs.13500.
  • Agoda-Tandjawa, G.; Le Garnec, C.; Boulenguer, P.; Gilles, M.; Langendorff, V. Rheological Behavior of Starch/Carrageenan/Milk Proteins Mixed Systems: Role of Each Biopolymer Type and Chemical Characteristics. Food Hydrocolloids. 2017, 73, 300–312. DOI: 10.1016/j.foodhyd.2017.07.012.
  • Wong, S.; Wicklund, R.; Bridges, J.; Whaley, J.; Koh, Y. B. Starch Swelling Behavior and Texture Development in Stirred Yogurt. Food Hydrocolloids. 2020, 98, 105274. DOI: 10.1016/j.foodhyd.2019.105274.
  • Noisuwan, A.; Hemar, Y.; Wilkinson, B.; Bronlund, J. E. Dynamic Rheological and Microstructural Properties of Normal and Waxy Rice Starch Gels Containing Milk Protein Ingredients. Starch/Staerke. 2009, 61, 214–227. DOI: 10.1002/star.200800049.
  • Verbeken, D.; Bael, K.; Thas, O.; Dewettinck, K. Interactions between κ-Carrageenan, Milk Proteins and Modified Starch in Sterilized Dairy Desserts. Int. Dairy J. 2006, 16(5), 482–488. DOI: 10.1016/j.idairyj.2005.06.006.
  • Rodríguez-Marín, M. L.; Núñez-Santiago, C.; Wang, Y. J.; Bello-Pérez, L. A. Physicochemical and Structural Characteristics of Cross-Linked Banana Starch Using Three Cross-Linking Reagents. Starch/Staerke. 2010, 62, 530–537. DOI: 10.1002/star.201000025.
  • Azim, Z.; Corredig, M.; Koxholt, M.; Alexander, M. Sol Gel Transitions during Acid Gelation of Milk Containing Modified Waxy Maize Starch. Differences between Chemical and Bacterial Acidification Measured Using Rheological and Spectroscopic Techniques. Int. Dairy J. 2010, 20(11), 785–791. DOI: 10.1016/j.idairyj.2010.04.004.
  • Kurakake, M.; Akiyama, Y.; Hagiwara, H.; Komaki, T. Effects of Cross-Linking and Low Molecular Amylose on Pasting Characteristics of Waxy Corn Starch. Food Chem. 2009, 116(1), 66–70. DOI: 10.1016/j.foodchem.2009.02.006.
  • Cui, B.; Tan, C.; Lu, Y.; Liu, X.; Li, G. The Interaction between Casein and Hydroxypropyl Distarch Phosphate (HPDSP) in Yoghurt System. Food Hydrocolloids. 2014, 37, 111–115. DOI: 10.1016/j.foodhyd.2013.10.032.
  • Cui, B.; Lu, Y. M.; Tan, C. P.; Wang, G. Q.; Li, G. H. Effect of Cross-Linked Acetylated Starch Content on the Structure and Stability of Set Yoghurt. Food Hydrocolloids. 2014, 35, 576–582. DOI: 10.1016/j.foodhyd.2013.07.018.
  • Loveday, S. M.; Sarkar, A.; Singh, H. Innovative Yoghurts: Novel Processing Technologies for Improving Acid Milk Gel Texture. Trends Food Sci. Technol. 2013, 33(1), 5–20. DOI: 10.1016/j.tifs.2013.06.007.
  • Corredig, M.; Dalgleish, D. G. The Mechanisms of the Heat-Induced Interaction of Whey Proteins with Casein Micelles in Milk. Int. Dairy J. 1999, 9(3–6), 233–236. DOI: 10.1016/S0958-6946(99)00066-7.
  • Wu, J.; Du, B.; Li, J.; Zhang, H. Influence of Homogenisation and the Degradation of Stabilizer on the Stability of Acidified Milk Drinks Stabilized by Carboxymethylcellulose. LWT - Food Sci. Technol. 2014, 56(2), 370–376. DOI: 10.1016/j.lwt.2013.12.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.