504
Views
3
CrossRef citations to date
0
Altmetric
Review

Beneficial Effects of Bioactive Compounds Obtained from Agro-Industrial By-Products on Obesity and Metabolic Syndrome Components

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Kosseva, M. R. Recent European Legislation on Management of Wastes in the Food Industry. In Food Industry Wastes. Amsterdam, Netherlands: Elsevier Inc, 2013; pp 3–15.
  • Stenmarck, Å.; Jensen, C.; Quested, T.; Moates, G. Estimates of European Food Waste Levels; Institute, I. S. E. R., Ed.: Stockholm, 2016.
  • Galanakis, C. M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26(2), 68–87. DOI: 10.1016/j.tifs.2012.03.003.
  • Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of Ultrasound-Assisted Extraction of Polyphenolic Compounds from Pomegranate Peel Using Response Surface Methodology. Sep. Purif. Technol. 2018, 194, 40–47. DOI: 10.1016/j.seppur.2017.11.032.
  • Gullón, B.; Gullón, P.; Eibes, G.; Cara, C.; De Torres, A.; López-Linares, J. C.; Ruiz, E.; Castro, E. Valorisation of Olive Agro-Industrial by-Products as a Source of Bioactive Compounds. Sci. Total Environ. 2018, 645, 533–542. DOI: 10.1016/j.scitotenv.2018.07.155.
  • Goula, A. M.; Lazarides, H. N. Integrated Processes Can Turn Industrial Food Waste into Valuable Food By-Products And/or Ingredients: The Cases of Olive Mill and Pomegranate Wastes. J. Food Eng. 2015, 167, 45–50. DOI: 10.1016/j.jfoodeng.2015.01.003.
  • Mourtzinos, I.; Goula, A. M. Polyphenols in Agricultural Byproducts and Food Waste. In Polyphenols in Plants : Isolation, Purification and Extract Preparation; Watson, R.R., Ed.; Andre Gerhad Wolff: London, U.K, 2019; pp 23–38.
  • Bustamante, A.; Hinojosa, A.; Robert, P.; Escalona, V. Extraction and Microencapsulation of Bioactive Compounds from Pomegranate (Punica Granatum Var. Wonderful) Residues. Int. J. Food Sci. Technol. 2017, 52(6), 1452–1462. DOI: 10.1111/ijfs.13422.
  • Ambigaipalan, P.; de Camargo, A. C.; Shahidi, F. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. J. Agric. Food Chem. 2016, 64(34), 6584–6604. DOI: 10.1021/acs.jafc.6b02950.
  • de Bock, M.; Derraik, J. G. B.; Brennan, C. M.; Biggs, J. B.; Morgan, P. E.; Hodgkinson, S. C.; Hofman, P. L.; Cutfield, W. S. Olive (Olea Europaea L.) Leaf Polyphenols Improve Insulin Sensitivity in Middle-Aged Overweight Men: A Randomized, Placebo-Controlled, Crossover Trial. PLoS One. 2013, 8(3), e57622. DOI: 10.1371/journal.pone.0057622.
  • Rodriguez Lanzi, C.; Perdicaro, D. J.; Landa, M. S.; Fontana, A.; Antoniolli, A.; Miatello, R. M.; Oteiza, P. I.; Vazquez Prieto, M. A. Grape Pomace Extract Induced Beige Cells in White Adipose Tissue from Rats and in 3T3-L1 Adipocytes. J. Nutr. Biochem. 2018, 56, 224–233. DOI: 10.1016/j.jnutbio.2018.03.001.
  • Fierascu, R. C.; Fierascu, I.; Avramescu, S. M.; Sieniawska, E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules. 2019, 24(23), 4212. DOI: 10.3390/molecules24234212.
  • Sumere, B. R.; de Souza, M. C.; Dos Santos, M. P.; Bezerra, R. M. N.; Da Cunha, D. T.; Martinez, J.; Rostagno, M. A. Combining Pressurized Liquids with Ultrasound to Improve the Extraction of Phenolic Compounds from Pomegranate Peel (Punica Granatum L.). Ultrason. Sonochem. 2018, 48, 151–162. DOI: 10.1016/j.ultsonch.2018.05.028.
  • Venkatakrishnan, K.; Chiu, H. F.; Wang, C. K. Extensive Review of Popular Functional Foods and Nutraceuticals against Obesity and Its Related Complications with a Special Focus on Randomized Clinical Trials. Food Funct. Royal Society of Chemistry. May, 2019, 1(5), 2313–2329. DOI:10.1039/C9FO00293F.
  • Chooi, Y. C.; Ding, C.; Magkos, F. The Epidemiology of Obesity. Metabolism. 2019, 92, 6–10. DOI: 10.1016/j.metabol.2018.09.005.
  • Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In Obesity and Lipotoxicity. Advances in Expertimental Medicine and Biology; Engin, A., Ed.; Springer: Cham, 2017; pp 1–17.
  • Manna, P.; Jain, S. K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13(10), 423–444. DOI: 10.1089/met.2015.0095.
  • Huang, P. L. A Comprehensive Definition for Metabolic Syndrome. DMM Dis. Models Mech. Company of Biologists. May, 2009, 2(5–6), 231–237. DOI:10.1242/dmm.001180.
  • Curioni, C. C.; Lourenço, P. M. Long-Term Weight Loss after Diet and Exercise: A Systematic Review. Int. J. Obes. 2005, 29(10), 1168–1174. DOI: 10.1038/sj.ijo.0803015.
  • Gul, K.; Singh, A. K.; Jabeen, R. Nutraceuticals and Functional Foods: The Foods for the Future World. Crit. Rev. Food Sci. Nutr. Taylor and Francis Inc. 2016, December 9, 56(16), 2617–2627. DOI: 10.1080/10408398.2014.903384.
  • Vuolo, M. M.; Lima, G. C.; Batista, Â. G.; Carazin, C. B. B.; Cintra, D. E.; Prado, M. A.; Júnior, M. R. M. Passion Fruit Peel Intake Decreases Inflammatory Response and Reverts Lipid Peroxidation and Adiposity in Diet-Induced Obese Rats. Nutr. Res. 2020, 76, 106–117. DOI: 10.1016/j.nutres.2019.08.007.
  • Harzallah, A.; Hammami, M.; Kȩpczyńska, M. A.; Hislop, D. C.; Arch, J. R. S.; Cawthorne, M. A.; Zaibi, M. S. Comparison of Potential Preventive Effects of Pomegranate Flower, Peel and Seed Oil on Insulin Resistance and Inflammation in High-Fat and High-Sucrose Diet-Induced Obesity Mice Model. Arch. Physiol. Biochem. 2016, 122(2), 75–87. DOI: 10.3109/13813455.2016.1148053.
  • Wang, Y.; Lee, P. S.; Chen, Y. F.; Ho, C. T.; Pan, M. H. Suppression of Adipogenesis by 5-Hydroxy-3,6,7,8,3′,4′-Hexamethoxyflavone from Orange Peel in 3T3-L1 Cells. J. Med. Food. 2016, 19(9), 830–835. DOI: 10.1089/jmf.2016.0060.
  • Brüll, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Müller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S., et al. Effects of A Quercetin-Rich Onion Skin Extract on 24 H Ambulatory Blood Pressure and Endothelial Function in Overweight-to-Obese Patients with (Pre-)hypertension: A Randomised Double-Blinded Placebo-Controlled Cross-over Trial. Br. J. Nutr. 2015, 114(8), 1263–1277.
  • Martínez-Maqueda, D.; Zapatera, B.; Gallego-Narbón, A.; Vaquero, M. P.; Saura-Calixto, F.; Pérez-Jiménez, J. A 6-Week Supplementation with Grape Pomace to Subjects at Cardiometabolic Risk Ameliorates Insulin Sensitivity, without Affecting Other Metabolic Syndrome Markers. Food Funct. 2018, 9(11), 6010–6019. DOI: 10.1039/C8FO01323C.
  • Guo, J.; Tao, H.; Cao, Y.; Ho, C. T.; Jin, S.; Huang, Q. Prevention of Obesity and Type 2 Diabetes with Aged Citrus Peel (Chenpi) Extract. J. Agric. Food Chem. 2016, 64(10), 2053–2061. DOI: 10.1021/acs.jafc.5b06157.
  • Ibrahim, M. Effects of Pomegranate and Onion Peels Extracts on Reducing Weight and Controlling Diabetes in Obese Diabetic Rats. Egypt. J. Nutr. Heal. 2015, 10(1), 1–17. DOI: 10.21608/ejnh.2015.4822.
  • Gosslau, A.; Zachariah, E.; Li, S.; Ho, C.-T. Effects of a Flavonoid-Enriched Orange Peel Extract against Type 2 Diabetes in the Obese ZDF Rat Model. Food Sci. Hum. Wellness. 2018, 7(4), 244–251. DOI: 10.1016/j.fshw.2018.10.001.
  • Claro-Cala, C. M.; Quintela, J. C.; Pérez-Montero, M.; Miñano, J.; de Sotomayor, M. A.; Herrera, M. D.; Rodríguez-Rodríguez, R. Pomace Olive Oil Concentrated in Triterpenic Acids Restores Vascular Function, Glucose Tolerance and Obesity Progression in Mice. Nutrients. 2020, 12(2), 323. DOI: 10.3390/nu12020323.
  • Kalaycıoğlu, Z.; Erim, F. B. Total Phenolic Contents, Antioxidant Activities, and Bioactive Ingredients of Juices from Pomegranate Cultivars Worldwide. Food Chem. 2017, 221, 496–507. DOI: 10.1016/j.foodchem.2016.10.084.
  • Nations, F. and A. O. of the U. FAOSTAT http://www.fao.org/faostat/en/#data/QC (accessed Dec 11, 2020).
  • Benítez, V.; Mollá, E.; Martín-Cabrejas, M. A.; Aguilera, Y.; López-Andréu, F. J.; Cools, K.; Terry, L. A.; Esteban, R. M. Characterization of Industrial Onion Wastes (Allium Cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66(1), 48–57. DOI: 10.1007/s11130-011-0212-x.
  • Market and Policy Analysis of Raw Materials; Horticulture and Tropical (RAMHOT) Products Team, Citrus Fruit - Fresh and Processed, Statistical Bulletin. . Rome: Food and Agriculture Organization of the United Nations. 2017; pp. 1-48.
  • Food and Agriculture Organization (FAO); International Organisation of Vine and Wine Intergovernmental Organisation (OIV). Table and Dried Grapes. Non-alcoholic Products of the Vitivinicultural Sector Intended for Human Consumption http://www.oiv.int/public/medias/5268/fao-oiv-focus-2016.pdf (accessed Dec 15, 2020).
  • Arenas-Castro, S.; Gonçalves, J. F.; Moreno, M.; Villar, R. Projected Climate Changes are Expected to Decrease the Suitability and Production of Olive Varieties in Southern Spain. Sci. Total Environ. 2020, 709, 136161. DOI: 10.1016/j.scitotenv.2019.136161.
  • International Coffee Organization. World Coffee Production http://www.ico.org/#:~:text=Worldcoffeeproductionisestimated,millionbagsin2019%2F20 (accessed Dec 28, 2020).
  • Soares, I. D.; Okiyama, D. C. G.; Da C.rodrigues, C. E. Simultaneous Green Extraction of Fat and Bioactive Compounds of Cocoa Shell and Protein Fraction Functionalities Evaluation. Food Res. Int. 2020, 137, 109622. DOI: 10.1016/j.foodres.2020.109622.
  • Soares, I. D.; Okiyama, D. C. G.; Da C Rodrigues, C. E. Punica Granatum. In Exotic Fruits. Amsterdam, Netherlands: Elsevier, 2018; pp 355–361.
  • Lansky, E. P.; Newman, R. A. Punica Granatum (Pomegranate) and Its Potential for Prevention and Treatment of Inflammation and Cancer. J. Ethnopharmacol. 2007, 109(2), 177–206. DOI: 10.1016/j.jep.2006.09.006.
  • Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J. A. Pomegranate and Its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9(6), 635–654. DOI: 10.1111/j.1541-4337.2010.00131.x.
  • Wang, Z. Extract of Phenolics from Pomegranate Peels. Open Food Sci. J. 2011, 5(1), 17–25. DOI: 10.2174/1874256401105010017.
  • López-Rubira, V.; Conesa, A.; Allende, A.; Artés, F. Shelf Life and Overall Quality of Minimally Processed Pomegranate Arils Modified Atmosphere Packaged and Treated with UV-C. Postharvest Biol. Technol. 2005, 37(2), 174–185. DOI: 10.1016/j.postharvbio.2005.04.003.
  • Fernandes, L.; Pereira, J. A.; Lopéz-Cortés, I.; Salazar, D. M.; González-Álvarez, J.; Ramalhosa, E. Physicochemical Composition and Antioxidant Activity of Several Pomegranate (Punica Granatum L.) Cultivars Grown in Spain. Eur. Food Res. Technol. 2017, 243(10), 1799–1814. DOI: 10.1007/s00217-017-2884-4.
  • Ullah, N.; Ali, J.; Ali Khan, F.; Khurram, M.; Hussain, A.; Inayat-ur-rahman,; Zia-ur-rahman; Shafqatullah. Proximate Composition, Minerals Content, Antibacterial and Antifungal Activity Evaluation of Pomegranate (Punica Granatum L.) Peels Powder. Middle East J. Sci. Res. 2012, 11(3), 396–401.
  • Russo, M.; Fanali, C.; Tripodo, G.; Dugo, P.; Muleo, R.; Dugo, L.; De Gara, L.; Mondello, L. Analysis of Phenolic Compounds in Different Parts of Pomegranate (Punica Granatum) Fruit by HPLC-PDA-ESI/MS and Evaluation of Their Antioxidant Activity: Application to Different Italian Varieties. Anal. Bioanal. Chem. 2018, 410(15), 3507–3520. DOI: 10.1007/s00216-018-0854-8.
  • Çam, M.; Hışıl, Y. Pressurised Water Extraction of Polyphenols from Pomegranate Peels. Food Chem. 2010, 123(3), 878–885. DOI: 10.1016/j.foodchem.2010.05.011.
  • Trichur Khabeer, S.; Prashant, A.; Haravey Krishnan, M. Dietary Fatty Acids from Pomegranate Seeds (Punica Granatum) Inhibit Adipogenesis and Impact the Expression of the Obesity-Associated MRNA Transcripts in Human Adipose-Derived Mesenchymal Stem Cells. J. Food Biochem. 2019, 43(3), 1–17. DOI: 10.1111/jfbc.12739.
  • Khabeer Shamsiya, T.; M., J. R.; M, H. K. Lipase Inhibitors from Nigella Sativa and Punica Granatum as an Effective Approach Towards Controlling Obesity. LIFE Int. J. Heal. Life-Sci. 2016, 2(2), 01–19. DOI: 10.20319/lijhls.2016.22.0119.
  • Li, G.; Chen, M.; Chen, J.; Shang, Y.; Lian, X.; Wang, P.; Lei, H.; Ma, Q. Chemical Composition Analysis of Pomegranate Seeds Based on Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole-Orbitrap High-Resolution Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 187, 113357. DOI: 10.1016/j.jpba.2020.113357.
  • Zhao, R.; Long, X.; Yang, J.; Du, L.; Zhang, X.; Li, J.; Hou, C. Pomegranate Peel Polyphenols Reduce Chronic Low-Grade Inflammatory Responses by Modulating Gut Microbiota and Decreasing Colonic Tissue Damage in Rats Fed a High-Fat Diet. Food Funct. 2019, 10(12), 8273–8285. DOI: 10.1039/C9FO02077B.
  • Neyrinck, A. M.; Van Hée, V. F.; Bindels, L. B.; De Backer, F.; Cani, P. D.; Delzenne, N. M. Polyphenol-Rich Extract of Pomegranate Peel Alleviates Tissue Inflammation and Hypercholesterolaemia in High-Fat Diet-Induced Obese Mice: Potential Implication of the Gut Microbiota. Br. J. Nutr. 2013, 109(5), 802–809. DOI: 10.1017/S0007114512002206.
  • de Melo, I. L. P.; de Oliveira E, A. M.; de Carvalho, E. B. T.; Yoshime, L. T.; Sattler, J. A. G.; Mancini-Filho, J. A. G. Incorporation and Effects of Punicic Acid on Muscle and Adipose Tissues of Rats. Lipids in Health and Disease. 2016, 15(1), 40. DOI: 10.1186/s12944-016-0214-7.
  • Sorrenti, V.; Randazzo, C. L.; Caggia, C.; Ballistreri, G.; Romeo, F. V.; Fabroni, S.; Timpanaro, N.; Raffaele, M.; Vanella, L. Beneficial Effects of Pomegranate Peel Extract and Probiotics on Pre-Adipocyte Differentiation. Front. Microbiol. 2019, 10(660), 1–11. DOI: 10.3389/fmicb.2019.00660.
  • Salwe, K. J.; Sachdev, D. O.; Bahurupi, Y.; Kumarappan, M. Evaluation of Antidiabetic, Hypolipedimic and Antioxidant Activity of Hydroalcoholic Extract of Leaves and Fruit Peel of Punica Granatum in Male Wistar Albino Rats. J. Nat. Sci. Biol. Med. 2015, 6(1), 56–62. DOI: 10.4103/0976-9668.149085.
  • Echeverría, F.; Jimenez, P.; Castro-Sepulveda, M.; Bustamante, A.; García, P.; Poblete-Aro, C.; Valenzuela, R.; García-Díaz, D. F. Microencapsulated Pomegranate Peel Extract Induces Mitochondrial Complex IV Activity and Prevents Mitochondrial Cristae Alteration in Brown Adipose Tissue in Mice Fed on a High-Fat Diet. Br. J. Nutr. 2020, 126, 1–12.
  • Haghighian, M. K.; Rafraf, M.; Moghaddam, A.; Hemmati, S.; Jafarabadi, M. A.; Gargari, B. P. Pomegranate (Punica Granatum L.) Peel Hydro Alcoholic Extract Ameliorates Cardiovascular Risk Factors in Obese Women with Dyslipidemia: A Double Blind, Randomized, Placebo Controlled Pilot Study. Eur. J. Integr. Med. 2016, 8(5), 676–682. DOI: 10.1016/j.eujim.2016.06.010.
  • Grabež, M.; Škrbićb, R.; Stojiljkovi, M. P.; Rudić-Grujić, V.; Paunović, M.; Arsić, A.; Petrović, S.; Vučić, V.; Mirjanić-Azarić, B.; Šavikin, K., et al. Beneficial Effects of Pomegranate Peel Extract on Plasma Lipid Profile, Fatty Acids Levels and Blood Pressure in Patients with Diabetes Mellitus Type-2 : A Randomized, Double-Blind, Placebo-Controlled Study. J. Funct. Foods. 2020, 64, 103692. DOI: 10.1016/j.jff.2019.103692.
  • Waldron, K. Waste Utilization - Useful Ingredients from Onion Waste. Food Sci. Technol. Today. 2001, 15(2), 38–39.
  • Salgado, B. S.; Monteiro, L. N.; Rocha, N. S. Allium Species Poisoning in Dogs and Cats. J. Venomous Anim. Toxins Incl. Trop. Dis. CEVAP. 2011, 17(1), 4–11. DOI: 10.1590/S1678-91992011000100002.
  • Bello, M.; Oluremi, O. L.; Abdul-Hammed, M.; Okunade, T. Characterization of Domestic Onion Wastes and Bulb (Allium Cepa L.): Fatty Acids and Metal Contents. Int. Food Res. J. 2013, 20, 2153–2158.
  • Lee, S. G.; Parks, J. S.; Kang, H. W. Quercetin, a Functional Compound of Onion Peel, Remodels White Adipocytes to Brown-like Adipocytes. J. Nutr. Biochem. 2017, 42, 62–71. DOI: 10.1016/j.jnutbio.2016.12.018.
  • Choi, E. Y.; Lee, H.; Woo, J. S.; Jang, H. H.; Hwang, S. J.; Kim, H. S.; Kim, W. S.; Kim, Y. S.; Choue, R.; Cha, Y. J., et al. Effect of Onion Peel Extract on Endothelial Function and Endothelial Progenitor Cells in Overweight and Obese Individuals. Nutrition. 2015, 31(9), 1131–1135.
  • Lee, K. A.; Kim, K. T.; Kim, H. J.; Chung, M. S.; Chang, P. S.; Park, H.; Pai, H. D. Antioxidant Activities of Onion (Allium Cepa L.) Peel Extracts Produced by Ethanol, Hot Water, and Subcritical Water Extraction. Food Sci. Biotechnol. 2014, 23(2), 615–621. DOI: 10.1007/s10068-014-0084-6.
  • Kim, K.-A.; Yim, J.-E. The Effect of Onion Peel Extract on Inflammatory Mediators in Korean Overweight and Obese Women. Clin. Nutr. Res. 2016, 5(4), 261. DOI: 10.7762/cnr.2016.5.4.261.
  • Darband, S. G.; Sadighparvar, S.; Yousefi, B.; Kaviani, M.; Ghaderi-Pakdel, F.; Mihanfar, A.; Rahimi, Y.; Mobaraki, K.; Majidinia, M. Quercetin Attenuated Oxidative DNA Damage through NRF2 Signaling Pathway in Rats with DMH Induced Colon Carcinogenesis. Life Sci. 2020, 253, 117584. DOI: 10.1016/j.lfs.2020.117584.
  • Li, C.; Zhang, W. J.; Frei, B. Quercetin Inhibits LPS-Induced Adhesion Molecule Expression and Oxidant Production in Human Aortic Endothelial Cells by P38-Mediated Nrf2 Activation and Antioxidant Enzyme Induction. Redox Biol. 2016, 9, 104–113. DOI: 10.1016/j.redox.2016.06.006.
  • Illesca, P.; Valenzuela, R.; Espinosa, A.; Echeverría, F.; Soto-Alarcon, S.; Ortiz, M.; Videla, L. A. Hydroxytyrosol Supplementation Ameliorates the Metabolic Disturbances in White Adipose Tissue from Mice Fed a High-Fat Diet through Recovery of Transcription Factors Nrf2, SREBP-1c, PPAR-γ and NF-ΚB. Biomed. Pharmacother. 2019, 109, 2472–2481. DOI: 10.1016/j.biopha.2018.11.120.
  • Pei, Y.; Kang, H. W. The Effects of Quercetin on High Fat Diet-Induced Inflammation and Oxidative Stress in Brown Adipose Tissue. Curr. Dev. Nutr. 2020, 4(Supplement_2), 1669. DOI: 10.1093/cdn/nzaa063_067.
  • Galavi, A.; Hosseinzadeh, H.; Razavi, B. M. The Effects of Allium Cepa L. (Onion) and Its Active Constituents on Metabolic Syndrome: A Review. Iran. J. Basic Med. Sci. 2020, 24(1), 3–16.
  • Singh, B.; Singh, J. P.; Kaur, A.; Singh, N. Phenolic Compounds as Beneficial Phytochemicals in Pomegranate (Punica Granatum L.) Peel: A Review. Food Chem. 2018, 261, 75–86. DOI: 10.1016/j.foodchem.2018.04.039.
  • Lv, X.; Zhao, S.; Ning, Z.; Zeng, H.; Shu, Y.; Tao, O.; Xiao, C.; Lu, C.; Liu, Y. Citrus Fruits as a Treasure Trove of Active Natural Metabolites that Potentially Provide Benefits for Human Health. Chem. Cent. J. 2015, 9(1), 68. DOI: 10.1186/s13065-015-0145-9.
  • Stinco, C. M.; Escudero-Gilete, M. L.; Heredia, F. J.; Vicario, I. M.; Meléndez-Martínez, A. J. Multivariate Analyses of a Wide Selection of Orange Varieties Based on Carotenoid Contents, Color and in Vitro Antioxidant Capacity. Food Res. Int. 2016, 90, 194–204. DOI: 10.1016/j.foodres.2016.11.005.
  • Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-Refinery of Orange Peels Waste: A New Concept Based on Integrated Green and Solvent Free Extraction Processes Using Ultrasound and Microwave Techniques to Obtain Essential Oil, Polyphenols and Pectin. Ultrason. Sonochem. 2015, 24, 72–79. DOI: 10.1016/j.ultsonch.2014.11.015.
  • Satari, B.; Karimi, K. Citrus Processing Wastes: Environmental Impacts, Recent Advances, and Future Perspectives in Total Valorization. Resour. Conserv. Recycl. Elsevier B.V. February 1, 2018, 129, 153–167. DOI: 10.1016/j.resconrec.2017.10.032.
  • Rincon, A.; Vasquez, A. M.; Padilla, F. C. Chemical Composition and Bioactive Compounds of Flour of Orange (Citrus Sinensis), Tangerine (Citrus Reticulata) and Grapefruit (Citrus Paradisi) Peels Cultivated in Venezuela. ALAN. 2005, 55(3), 305–310.
  • Casquete, R.; Castro, S. M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P. Evaluation of the Effect of High Pressure on Total Phenolic Content, Antioxidant and Antimicrobial Activity of Citrus Peels. Innovative Food Science & Emerging Technologies. 2015, 31, 37–44. DOI: 10.1016/j.ifset.2015.07.005.
  • Singh, B.; Singh, J. P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. DOI: 10.1016/j.foodres.2020.109114.
  • Barrales, F. M.; Silveira, P.; Barbosa, P. P. M.; de Ruviaro, A. R.; Paulino, B. N.; Pastore, G. M.; Macedo, G. A.; Martinez, J. Recovery of Phenolic Compounds from Citrus By-Products Using Pressurized Liquids — An Application to Orange Peel. Food Bioprod. Process. 2018, 112, 9–21. DOI: 10.1016/j.fbp.2018.08.006.
  • Choi, M. Y.; Chai, C.; Park, J. H.; Lim, J.; Lee, J.; Kwon, S. W. Effects of Storage Period and Heat Treatment on Phenolic Compound Composition in Dried Citrus Peels (Chenpi) and Discrimination of Chenpi with Different Storage Periods through Targeted Metabolomic Study Using HPLC-DAD Analysis. J. Pharm. Biomed. Anal. 2011, 54(4), 638–645. DOI: 10.1016/j.jpba.2010.09.036.
  • Sung, J.; Suh, J. H.; Wang, Y. Effects of Heat Treatment of Mandarin Peel on Flavonoid Profiles and Lipid Accumulation in 3T3-L1 Adipocytes. J. Food Drug Anal. 2019, 27(3), 729–735. DOI: 10.1016/j.jfda.2019.05.002.
  • El-Shazly, A. H. M.; Ahmed, N. S.; Mohamed, A. Y. I.; Elhossary, G. G.; Elsebaee, F. M. M. The Potential Prophylactic Effect of Orange Peel Administration on Fatty Liver and Hyperlipidemia in an Animal Model of Diet Induced Obesity. J. Food Sci. 2017, 45, 57–66.
  • Razavi, B. M.; Hosseinzadeh, H. A Review of the Effects of Citrus Paradisi (Grapefruit) and Its Flavonoids, Naringin, and Naringenin in Metabolic Syndrome. In Bioactive Food as Dietary Interventions for Diabetes; Amsterdam, Netherlands: Elsevier, 2019; pp 515–543.
  • Hashemi, M.; Khosravi, E.; Ghannadi, A.; Hashemipour, M.; Kelishadi, R. Effect of the Peels of Two Citrus Fruits on Endothelium Function in Adolescents with Excess Weight: A Triple-Masked Randomized Trial. J. Res. Med. Sci. 2015, 20(8), 721–726. DOI: 10.4103/1735-1995.168273.
  • Lin, J.; Massonnet, M.; Cantu, D. The Genetic Basis of Grape and Wine Aroma. Hortic. Res. 2019, 6(1), 1. DOI: 10.1038/s41438-019-0163-1.
  • Fontana, A. R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61(38), 8987–9003. DOI: 10.1021/jf402586f.
  • Spigno, G.; Marinoni, L.; Garrido, G. D. State of the Art in Grape Processing By-Products. In Charis Galanakis, Handbook of Grape Processing By-Products: Sustainable Solutions; Amsterdam, Netherlands: Elsevier Inc, 2017; pp 1–27.
  • Maria de Carvalho Tavares, I.; Bonatto Machado de Castilhos, M.; Aparecida Mauro, M.; Mota Ramos, A.; Teodoro de Souza, R.; Gómez-Alonso, S.; Gomes, E.; Da-Silva, R.; Hermosín-Gutiérrez, I.; Silva Lago-Vanzela, E. BRS Violeta (BRS Rúbea × IAC 1398–21) Grape Juice Powder Produced by Foam Mat Drying. Part I: Effect of Drying Temperature on Phenolic Compounds and Antioxidant Activity. Food Chem. 2019, 298, 124971. DOI: 10.1016/j.foodchem.2019.124971.
  • Rasines-Perea, Z.; Ky, I.; Cros, G.; Crozier, A.; Teissedre, P.-L. Grape Pomace: Antioxidant Activity, Potential Effect against Hypertension and Metabolites Characterization after Intake. Diseases. 2018, 6(3), 60. DOI: 10.3390/diseases6030060.
  • Carmona-Jiménez, Y.; García-Moreno, M. V.; García-Barroso, C. Effect of Drying on the Phenolic Content and Antioxidant Activity of Red Grape Pomace. Plant Foods Hum. Nutr. 2018, 73(1), 74–81. DOI: 10.1007/s11130-018-0658-1.
  • Costa, G. N.; Tonon, R. V.; Mellinger‐Silva, C.; Galdeano, M. C.; Iacomini, M.; Santiago, M. C.; Almeida, E. L.; Freitas, S. P. Grape Seed Pomace as a Valuable Source of Antioxidant Fibers. J. Sci. Food Agric. 2019, 99(10), 4593–4601. DOI: 10.1002/jsfa.9698.
  • Beres, C.; Freitas, S. P.; de O. Godoy, R. L.; de Oliveira, D. C. R.; Deliza, R.; Iacomini, M.; Mellinger-Silva, C.; Cabral, L. M. C. Antioxidant Dietary Fibre from Grape Pomace Flour or Extract: Does It Make Any Difference on the Nutritional and Functional Value? J. Funct. Foods. 2019, 56, 276–285. DOI: 10.1016/j.jff.2019.03.014.
  • Van Hul, M.; Geurts, L.; Plovier, H.; Druart, C.; Everard, A.; Ståhlman, M.; Rhimi, M.; Chira, K.; Teissedre, P. L.; Delzenne, N. M., et al. Reduced Obesity, Diabetes, and Steatosis upon Cinnamon and Grape Pomace are Associated with Changes in Gut Microbiota and Markers of Gut Barrier. Am. J. Physiol. - Endocrinol. Metab. 2018, 314(4), E334–E352.
  • Brezoiu, A. M.; Matei, C.; Deaconu, M.; Stanciuc, A. M.; Trifan, A.; Gaspar-Pintiliescu, A.; Berger, D. Polyphenols Extract from Grape Pomace. Characterization and Valorisation through Encapsulation into Mesoporous Silica-Type Matrices. Food Chem. Toxicol. 2019, 133, 110787. DOI: 10.1016/j.fct.2019.110787.
  • Akaberi, M.; Hosseinzadeh, H. Grapes (Vitis Vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome. Phytotherapy Res. John Wiley and Sons Ltd. 2016, April 1, 30(4), 540–556. DOI: 10.1002/ptr.5570.
  • Li, L.; Huali, W.; Min, A.; Jian, P. Prevention of Obesity-Induced Nonalcoholic Fatty Liver Disease Using Grape Pomace Extract. Curr. Top. Nutraceutical Res. 2018, 17(4), 415–421. DOI: 10.37290/ctnr2641-452X.17:415-421.
  • Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Hassan, S. T. S.; Tenore, G. C.; Novellino, E. Effect of Grape Pomace Polyphenols with or without Pectin on TMAO Serum Levels Assessed by LC/MS-Based Assay: A Preliminary Clinical Study on Overweight/Obese Subjects. Front. Pharmacol. 2019, 10, 1–11. DOI: 10.3389/fphar.2019.00575.
  • Trigo, J. P.; Alexandre, E. M. C.; Saraiva, J. A.; Pintado, M. E. High Value-Added Compounds from Fruit and Vegetable by-Products–Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit Rev Food Sci Nutr. 2020, 60(8), pp. 1388–1416. doi:10.1080/10408398.2019.1572588.
  • Malapert, A.; Reboul, E.; Loonis, M.; Dangles, O.; Tomao, V. Direct and Rapid Profiling of Biophenols in Olive Pomace by UHPLC-DAD-MS. Food Anal. Methods. 2018, 11(4), 1001–1010. DOI: 10.1007/s12161-017-1064-2.
  • Alves, R. C.; Rodrigues, F.; Antónia Nunes, M.; Vinha, A. F.; Oliveira, M. B. P. P. State of the Art in Coffee Processing By-Products. In Handbook of Coffee Processing By-Products: Sustainable Applications; Elsevier Inc, 2017; pp 1–26.
  • Panak Balentić, J.; Ačkar, Đ.; Jokić, S.; Jozinović, A.; Babić, J.; Miličević, B.; Šubarić, D.; Pavlović, N. Cocoa Shell: A By-Product with Great Potential for Wide Application. Molecules. 2018, 23(6), 1404. DOI: 10.3390/molecules23061404.
  • Nzekoue, F. K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L. A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee Silverskin Extracts: Quantification of 30 Bioactive Compounds by a New HPLC-MS/MS Method and Evaluation of Their Antioxidant and Antibacterial Activities. Food Res. Int. 2020, 133, 109128. DOI: 10.1016/j.foodres.2020.109128.
  • Madureira, J.; Dias, M. I.; Pinela, J.; Calhelha, R. C.; Barros, L.; Santos-Buelga, C.; Margaça, F. M. A.; Ferreira, I. C. F. R.; Cabo Verde, S. The Use of Gamma Radiation for Extractability Improvement of Bioactive Compounds in Olive Oil Wastes. Sci. Total Environ. 2020, 727, 138706. DOI: 10.1016/j.scitotenv.2020.138706.
  • Romani, A.; Pinelli, P.; Ieri, F.; Bernini, R. Sustainability, Innovation, and Green Chemistry in the Production and Valorization of Phenolic Extracts from Olea Europaea L. Sustainability. 2016, 8(10), 1002. DOI: 10.3390/su8101002.
  • Antónia Nunes, M.; Costa, A. S. G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R. C.; Freitas, V.; Oliveira, M. B. P. P. Olive Pomace as A Valuable Source of Bioactive Compounds: A Study regarding Its Lipid- and Water-Soluble Components. Sci. Total Environ. 2018, 644, 229–236. DOI: 10.1016/j.scitotenv.2018.06.350.
  • Alesci, A.; Cicero, N.; Salvo, A.; Palombieri, D.; Zaccone, D.; Dugo, G.; Bruno, M.; Vadalà, R.; Lauriano, E. R.; Pergolizzi, S. Extracts Deriving from Olive Mill Waste Water and Their Effects on the Liver of the Goldfish Carassius Auratus Fed with Hypercholesterolemic Diet. Nat. Prod. Res. 2014, 28(17), 1343–1349. DOI: 10.1080/14786419.2014.903479.
  • Ferreiro-Vera, C.; Priego-Capote, F.; Mata-Granados, J. M.; Luque De Castro, M. D. Short-Term Comparative Study of the Influence of Fried Edible Oils Intake on the Metabolism of Essential Fatty Acids in Obese Individuals. Food Chem. 2013, 136(2), 576–584. DOI: 10.1016/j.foodchem.2012.08.081.
  • Hidalgo, I.; Ortiz, A.; Sanchez-Pardo, M.; Garduño-Siciliano, L.; Hernández-Ortega, M.; Villarreal, F.; Meaney, E.; Najera, N.; Ceballos, G. M. Obesity and Cardiovascular Risk Improvement Using Cacao By-Products in a Diet-Induced Obesity Murine Model. J. Med. Food. 2019, 22(6), 567–577. DOI: 10.1089/jmf.2018.0210.
  • Magistrelli, D.; Zanchi, R.; Malagutti, L.; Galassi, G.; Canzi, E.; Rosi, F. Effects of Cocoa Husk Feeding on the Composition of Swine Intestinal Microbiota. J. Agric. Food Chem. 2016, 64(10), 2046–2052. DOI: 10.1021/acs.jafc.5b05732.
  • Rebollo‐Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín‐Cabrejas, M. A.; Mejia, E. G. Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin Sensitivity by Attenuating Inflammation between Macrophages and Adipocytes in Vitro. Mol. Nutr. Food Res. 2019, 63(10), 1801413. DOI: 10.1002/mnfr.201801413.
  • Esquivel, P.; Jiménez, V. M. Functional Properties of Coffee and Coffee By-Products. Food Res. Int. 2012, 46(2), 488–495. DOI: 10.1016/j.foodres.2011.05.028.
  • Iriondo-dehond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G. P.; San Andres, M. I.; Sanchez-Fortun, S.; Del Castillo, M. D. Validation of Coffee By-Products as Novel Food Ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. DOI: 10.1016/j.ifset.2018.06.010.
  • Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M. A.; Gonzalez de Mejia, E. Phenolic Compounds from Coffee By-Products Modulate Adipogenesis-Related Inflammation, Mitochondrial Dysfunction, and Insulin Resistance in Adipocytes, via Insulin/PI3K/AKT Signaling Pathways. Food Chem. Toxicol. 2019, 132, 110672. DOI: 10.1016/j.fct.2019.110672.
  • McClements, D. J. Recent Developments in Encapsulation and Release of Functional Food Ingredients: Delivery by Design. Current Opinion in Food Science; Amsterdam, Netherlands: Elsevier Ltd: October 1, 2018. 80–84.
  • Gertsch, J. How Scientific Is the Science in Ethnopharmacology? Historical Perspectivesand Epistemological Problems. J. Ethnopharmacol. 2009, 122(2), 177–183. DOI: 10.1016/j.jep.2009.01.010.
  • Cos, P.; Vlietinck, A. J.; Vanden Berghe, D.; Maes, L. Anti-infective Potential of Natural Products: How to develop a Stronger in Vitro ‘Proof-of-concept’. J. Ethnopharm. 2006, 106(3), 290–302. DOI: 10.1016/j.jep.2006.04.003.
  • Ibrahim, M. E. E. Effects of Pomegranate and Onion Peels Extracts on Reducing Weight and Controlling Diabetes in Obese Diabetic Rats. Egypt J Nutr Health. Nutrition and Food Sciences Department, Faculty of Home Economics, Helwan University. 2015, 10(1), 49–65.
  • Nair, A.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7(2), 27. DOI: 10.4103/0976-0105.177703.
  • Chiva-Blanch, G.; Badimon, L. Effects of Polyphenol Intake on Metabolic Syndrome: Current Evidences from Human Trials. Oxidative Medicine and Cellular Longevity. 2017, 2017, 1–18. DOI: 10.1155/2017/5812401.
  • Duarte, L.; Gasaly, N.; Poblete-Aro, C.; Uribe, D.; Echeverria, F.; Gotteland, M.; Garcia-Diaz, D. F. Polyphenols and Their Anti-Obesity Role Mediated by the Gut Microbiota: A Comprehensive Review. Rev. Endocr. Metab. Disord. 2021, 22(2), 367–388. DOI: 10.1007/s11154-020-09622-0.
  • Lu, W.; Kelly, A. L.; Miao, S. Emulsion-Based Encapsulation and Delivery Systems for Polyphenols. Trends in Food Science and Technology. Elsevier Ltd January. 2016, 1, 1–9.
  • Kuang, S. S.; Oliveira, J. C.; Crean, A. M. Microencapsulation as a Tool for Incorporating Bioactive Ingredients into Food. Crit. Rev. Food Sci. Nutr. 2010, 50(10), 951–968. DOI: 10.1080/10408390903044222.
  • Lee, J. S.; Cha, Y. J.; Lee, K. H.; Yim, J. E. Onion Peel Extract Reduces the Percentage of Body Fat in Overweight and Obese Subjects: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Study. Nutr. Res. Pract. 2016, 10(2), 175–181. DOI: 10.4162/nrp.2016.10.2.175.
  • Han, H. Y.; Lee, S. K.; Choi, B. K.; Lee, D. R.; Lee, H. J.; Kim, T. W. Preventive Effect of Citrus Aurantium Peel Extract on High-Fat Diet-Induced Non-Alcoholic Fatty Liver in Mice. Biol. Pharm. Bull. 2019, 42(2), 255–260. DOI: 10.1248/bpb.b18-00702.
  • Sathiyabama, R. G.; Rajiv Gandhi, G.; Denadai, M.; Sridharan, G.; Jothi, G.; Sasikumar, P.; de Siqueira Quintans, J. S.; Narain, N.; Cuevas, L. E.; Coutinho, H. D. M., et al. Evidence of Insulin-Dependent Signalling Mechanisms Produced by Citrus Sinensis (L.) Osbeck Fruit Peel in an Insulin Resistant Diabetic Animal Model. Food Chem. Toxicol. 2018, 116, 86–99. DOI: 10.1016/j.fct.2018.03.050.
  • Tung, Y. C.; Chang, W. T.; Li, S.; Wu, J. C.; Badmeav, V.; Ho, C. T.; Pan, M. H. Citrus Peel Extracts Attenuated Obesity and Modulated Gut Microbiota in Mice with High-Fat Diet-Induced Obesity. Food Funct. 2018, 9(6), 3363–3373. DOI: 10.1039/C7FO02066J.
  • Ahmed, O. M.; Hassan, M. A.; Abdel-Twab, S. M.; Abdel Azeem, M. N. Navel Orange Peel Hydroethanolic Extract, Naringin and Naringenin Have Anti-Diabetic Potentials in Type 2 Diabetic Rats. Biomed. Pharmacother. 2017, 94, 197–205. DOI: 10.1016/j.biopha.2017.07.094.
  • Seo, K.-H.; Bartley, G. E.; Tam, C.; Kim, H.-S.; Kim, D.-H.; Chon, J.-W.; Kim, H.; Yokoyama, W. Chardonnay Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression for Oxidative Stress, Inflammation, and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice. Plos One. 2016, 11(12), e0167680. DOI: 10.1371/journal.pone.0167680.
  • León-Flores, P.; Nájera, N.; Pérez, E.; Pardo, B.; Jimenez, F.; Diaz-Chiguer, D.; Villarreal, F.; Hidalgo, I.; Ceballos, G.; Meaney, E. Effects of Cacao By-Products and a Modest Weight Loss Intervention on the Concentration of Serum Triglycerides in Overweight Subjects: Proof of Concept. J. Med. Food. 2020, 23(7), 745–749. DOI: 10.1089/jmf.2019.0201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.