340
Views
1
CrossRef citations to date
0
Altmetric
Review

Combination of Green Extraction Techniques and Essential Oils to Develop Active Packaging for Improving the Quality and Shelf Life for Chicken Meat

, ORCID Icon, , , & ORCID Icon

References

  • Matias, E. F.; Alves, E. F.; Silva, M. K.; Carvalho, V. R.; Figueredo, F. G.; Ferreira, J. V.; Costa, J. G.; Silva, J. M. F. L.; Ribeiro-Filho, J.; Costa, J. G. M. Seasonal Variation, Chemical Composition and Biological Activity of the Essential Oil of Cordia Verbenacea DC (Boraginaceae) and the Sabinene. Ind. Crops Prod. 2016, 87, 45–53. DOI: 10.1016/j.indcrop.2016.04.028.
  • Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M. H.; Bahadar, K. Role of Secondary Metabolites in Plant Defense against Pathogens. Microb. Pathogenesis. 2018, 124, 198–202. DOI: 10.1016/j.micpath.2018.08.034.
  • Mc Donnell, R.; Yoo, J.; Patel, K.; Rios, L.; Hollingsworth, R.; Millar, J.; Paine, T. Can Essential Oils Be Used as Novel Drench Treatments for the Eggs and Juveniles of the Pest Snail Cornu Aspersum in Potted Plants? J. Pest Sci. 2016, 89(2), 549–555. DOI: 10.1007/s10340-015-0690-y.
  • Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Encapsulation in Cyclodextrins to Widen the Applications of Essential Oils. Environ. Chem. Lett. 2019, 17(1), 129–143. DOI: 10.1007/s10311-018-0783-y.
  • Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The Antimicrobial Efficacy of Plant Essential Oil Combinations and Interactions with Food Ingredients. Int. J. Food Microbiol. 2008, 124(1), 91–97. DOI: 10.1016/j.ijfoodmicro.2008.02.028.
  • Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94(3), 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
  • Gkana, E.; Chorianopoulos, N.; Grounta, A.; Koutsoumanis, K.; Nychas, G. J. Effect of Inoculum Size, Bacterial Species, Type of Surfaces and Contact Time to the Transfer of Foodborne Pathogens from Inoculated to Non-Inoculated Beef Fillets via Food Processing Surfaces. Food Microbiol. 2017, 62, 51–57. DOI: 10.1016/j.fm.2016.09.015.
  • O’keefe, S. F.; Proudfoot, F. G.; Ackman, R. G. Lipid Oxidation in Meats of Omega-3 Fatty Acid-Enriched Broiler Chickens. Food Res. Int. 1995, 28(4), 417–424. DOI: 10.1016/0963-9969(95)00021-d.
  • Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and Smart Biodegradable Packaging Based on Starch and Natural Extracts. Carbohydr. Polym. 2017, 176, 187–194. DOI: 10.1016/j.carbpol.2017.08.079.
  • Qin, Y.; Li, W.; Liu, D.; Yuan, M.; Li, L. Development of Active Packaging Film Made from Poly (Lactic Acid) Incorporated Essential Oil. Prog. Org. Coat. 2017, 103, 76–82. DOI: 10.1016/j.porgcoat.2016.10.017.
  • Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6, 611. DOI: 10.3389/fmicb.2015.00611.
  • Muriel-Galet, V.; Lopez-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Antimicrobial Effectiveness of Lauroyl Arginate Incorporated into Ethylene Vinyl Alcohol Copolymers to Extend the Shelf-Life of Chicken Stock and Surimi Sticks. Food Bioprocess. Technol. 2015, 8(1), 208–217. DOI: 10.1007/s11947-014-1391-x.
  • Holman, B. W.; Kerry, J. P.; Hopkins, D. L. Meat Packaging Solutions to Current Industry Challenges: A Review. Meat Sci. 2018, 144, 159–168. DOI: 10.1016/j.meatsci.2018.04.026.
  • Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G. P.; Musmarra, D.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent Developments in Supercritical Fluid Extraction of Bioactive Compounds from Microalgae: Role of Key Parameters, Technological Achievements and Challenges. J. CO2 Util. 2020, 36, 196–209. DOI: 10.1016/j.jcou.2019.11.014.
  • Cravotto, G.; Binello, A.; Orio, L. Green Extraction Techniques. Agro Food Ind Hi-Tech. 2011, 22, 57–59.
  • Chemat, F.; Vian, M. A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13(7), 8615–8627. DOI: 10.3390/ijms13078615.
  • Gunnarsson, S.; Arvidsson Segerkvist, K.; Göransson, L.; Hansson, H.; Sonesson, U.; Göransson, L. Systematic Mapping of Research on Farm-Level Sustainability in Egg and Chicken Meat Production. Sustainability. 2020, 12(7), 3033. DOI: 10.3390/su12073033.
  • Abdellah, C.; Fouzia, R. F.; Abdelkader, C.; Rachida, S. B.; Mouloud, Z. Prevalence and Anti-Microbial Susceptibility of Salmonella Isolates from Chicken Carcasses and Giblets in Mekns, Morocco. Afr. J. Microbiol. Res. 2009, 3(5), 215–219. DOI: 10.5897/ajmr.9000569.
  • Dhaher, F. H.; Awni, M. N.; Mahmood, M. M.; Jamil, H. S.; Rasheed, H. S. Isolation and Diagnosis of Salmonella in Animal Origin Food, Import Feed in Baghdad Local Markets and Local Poultry Farms. Iraq J Market Res Consumer Protect. 2011, 3, 1–19.
  • Alali, W. Q.; Gaydashov, R.; Petrova, E.; Panin, A.; Tugarinov, O.; Kulikovskii, A.; Doyle, M. P.; Walls, I.; Doyle, M. P. Prevalence of Salmonella on Retail Chicken Meat in Russian Federation. J. Food Prot. 2012, 75(8), 1469–1473. DOI: 10.4315/0362-028x.jfp-12-080.
  • EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the Risk Posed by Shiga Toxin‐producing Escherichia Coli (STEC) and Other Pathogenic Bacteria in Seeds and Sprouted Seeds. EFSA J. 2012, 9(11), 2424. DOI: 10.2903/j.efsa.2011.2424.
  • Bhagath, Y. B.; Manjula, K. Influence of Composite Edible Coating Systems on Preservation of Fresh Meat Cuts and Products: A Brief Review on Their Trends and Applications. Int. Food Res. J. 2019, 26(2), 377–392.
  • Buchanan, R. L.; Gorris, L. G.; Hayman, M. M.; Jackson, T. C.; Whiting, R. C. A. Review of Listeria Monocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control. 2017, 75, 1–13. DOI: 10.1016/j.foodcont.2016.12.016.
  • Kunadu, A. P. H.; Otwey, R. Y.; Mosi, L. Microbiological Quality and Salmonella Prevalence, Serovar Distribution and Antimicrobial Resistance Associated with Informal Raw Chicken Processing in Accra, Ghana. Food Control. 2020, 118, 107440. DOI: 10.1016/j.foodcont.2020.107440.
  • Lei, C. W.; Zhang, Y.; Kang, Z. Z.; Kong, L. H.; Tang, Y. Z.; Zhang, A. Y.; Wang, H. N.; Wang, H.-N. Vertical Transmission of Salmonella Enteritidis with Heterogeneous Antimicrobial Resistance from Breeding Chickens to Commercial Chickens in China. Vet. Microbiol. 2020, 240, 108538. DOI: 10.1016/j.vetmic.2019.108538.
  • Clemente-Carazo, M.; Cebrián, G.; Garre, A.; Palop, A. Variability in the Heat Resistance of Listeria Monocytogenes under Dynamic Conditions Can Be More Relevant than that Evidenced by Isothermal Treatments. Food Res. Int. 2020, 137, 109538. DOI: 10.1016/j.foodres.2020.109538.
  • Kleta, S.; Hammerl, J. A.; Dieckmann, R.; Malorny, B.; Borowiak, M.; Halbedel, S.; Vygen-Bonnet, S.; Trost, E.; Flieger, A.; Wilking, H. Molecular Tracing to Find Source of Protracted Invasive Listeriosis Outbreak, Southern Germany, 2012–2016. Emerging Infect. Dis. 2017, 23(10), 1680. DOI: 10.3201/eid2310.161623.
  • Datta, A. R.; Burall, L. S. Serotype to Genotype: The Changing Landscape of Listeriosis Outbreak Investigations. Food Microbiol. 2018, 75, 18–27. DOI: 10.1016/j.fm.2017.06.013.
  • Scharff, R. L. Food Attribution and Economic Cost Estimates for Meat-And Poultry-Related Illnesses. J. Food Prot. 2020, 83(6), 959–967. DOI: 10.4315/jfp-19-548.
  • Haughton, P. N.; Lyng, J. G.; Morgan, D. J.; Cronin, D. A.; Noci, F.; Fanning, S.; Whyte, P. An Evaluation of the Potential of High-Intensity Ultrasound for Improving the Microbial Safety of Poultry. Food Bioprocess. Technol. 2012, 5(3), 992–998. DOI: 10.1007/s11947-010-0372-y.
  • Health Protection Surveillance Centre (HSE). Campylobacteriosis In Ireland, 2018; Dublin: HSE HPSC, 2019.
  • Borges, K. A.; Cisco, I. C.; Furian, T. Q.; Tedesco, D. C.; Rodrigues, L. B.; Do Nascimento, V. P.; Dos Santos, L. R. Detection and Quantification of Campylobacter Spp. In Brazilian Poultry Processing Plants. J Infect Dev. Countries. 2020, 14(1), 109–113. DOI: 10.3855/jidc.11973.
  • Yushina, Y.; Bataeva, D.; Makhova, A.; Zayko, E. Prevalence of Campylobacter Spp. In A Poultry and Pork Processing Plants. Potravinarstvo Slovak J Food Sci. 2020, 14, 815–820. DOI: 10.5219/1422.
  • Perez-Arnedo, I.; Gonzalez-Fandos, E. Prevalence of Campylobacter Spp. In Poultry in Three Spanish Farms, A Slaughterhouse and A Further Processing Plant. Foods. 2019, 8(3), 111. DOI: 10.3390/foods8030111.
  • Gharajalar, S. N.; Hassanzadeh, P.; Nejad, N. H. Molecular Detection of Campylobacter Species and Cytolethal Distending Toxin Isolated from Chicken Livers in Tabriz. Comp Immunol Microbiol Infectious Dis. 2020, 71, 101474. DOI: 10.1016/j.cimid.2020.101474.
  • Rossler, E.; Olivero, C.; Lorena, P. S.; Laureano, S. F.; Zimmermann, J.; Marcelo, R. R.; Virginia, Z. M.; Signorini, M. L.; Zbrun, M. V. Prevalence, Genotypic Diversity and Detection of Virulence Genes in Thermotolerant Campylobacter at Different Stages of the Poultry Meat Supply Chain. Int. J. Food Microbiol. 2020, 326, 108641. DOI: 10.1016/j.ijfoodmicro.2020.108641.
  • Epps, S. V.; Harvey, R. B.; Hume, M. E.; Phillips, T. D.; Anderson, R. C.; Nisbet, D. J. Foodborne Campylobacter: Infections, Metabolism, Pathogenesis and Reservoirs. Int. J. Environ. Res. Public Health. 2013, 10(12), 6292–6304. DOI: 10.3390/ijerph10126292.
  • Ngobese, B.; Zishiri, O. T.; Zowalaty, M. E. Molecular Detection of Virulence Genes in Campylobacter Species Isolated from Livestock Production Systems in South Africa. J. Integr. Agric. 2020, 19(6), 1656–1670. DOI: 10.1016/s2095-3119(19)62844-3.
  • Walter, E. J. S.; Crim, S. M.; Bruce, B. B.; Griffin, P. M. Postinfectious Irritable Bowel Syndrome After Campylobacter Infection. Am. J. Gastroenterol. 2019, 114(10), 1649–1656. DOI: 10.14309/ajg.000000000000408.
  • Bostami, A. B. M. R.; Mun, H.; Yang, C. Breast and Thigh Meat Chemical Composition and Fatty Acid Profile in Broilers Fed Diet with Dietary Fat Sources. J. Food Process. Technol. 2017, 8(5), 672. DOI: 10.4172/2157-7110.1000672.
  • Criado, P.; Fraschini, C.; Salmieri, S.; Lacroix, M. Cellulose Nanocrystals (CNCS) Loaded Alginate Films against Lipid Oxidation of Chicken Breast. Food Res. Int. 2020, 132, 109110. DOI: 10.1016/j.foodres.2020.109110.
  • Zhou, G. H.; Xu, X. L.; Liu, Y. Preservation Technologies for Fresh Meat–A Review. Meat Sci. 2010, 86(1), 119–128. DOI: 10.1016/j.meatsci.2010.04.033.
  • El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. A.; Casabianca, H.; Elaissari, A.; Hartmann, D.; Jilale, A.; Renaud, F. N. R. Essential Oils: From Extraction to Encapsulation. Int. J. Pharmaceutics. 2015, 483(1), 220–243. DOI: 10.1016/j.ijpharm.2014.12.069.
  • Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A. S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products. Origins, Current Status, and Future Challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. DOI: 10.1016/j.trac.2019.05.037.
  • UNIDO, I. Forum for Technology Transfer, Training Course on Technology Management. 2008.
  • Li, Y.; Fabiano-Tixier, A. S.; Chemat, F. Essential Oils as Reagents in Green Chemistry, Springer International Publishing: Cham, Switzerland, 2014; Vol. 1. pp 1–78.
  • Malik, S. Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Switzerland: Springer, 2019.
  • Mustafa, A.; Turner, C. Pressurized Liquid Extraction as A Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta. 2011, 703(1), 8–18. DOI: 10.1016/j.aca.2011.07.018.
  • Tura, D.; Robards, K. Sample Handling Strategies for the Determination of Biophenols in Food and Plants. J. Chromatogr. A. 2002, 975(1), 71–93. DOI: 10.1016/s0021-9673(02)00879-8.
  • Sánchez-Camargo, A. D. P.; Parada-Alfonso, F.; Ibáñez, E.; Cifuentes, A. On‐Line Coupling of Supercritical Fluid Extraction and Chromatographic Techniques. J. Sep. Sci. 2017, 40(1), 213–227. DOI: 10.1002/jssc.201601040.
  • Nik Norulaini, N. A.; Anuar, O.; Omar, A. K. M.; Alkarkhi, A. F. M.; Setianto, W. B.; Fatehah, M. O.; Sahena, F.; Zaidul, I. S. M. Optimization of SC-CO2 Extraction of Zerumbone from Zingiber Zerumbet (L) Smith. Food Chem. 2009, 114, 702–705. DOI: 10.1016/j.foodchem.2008.09.075.
  • Mahdi, P. S.; Rahimi-Nasrabadi, M.; Somayyeh, H. S. Supercritical Fluid Technology in Analytical Chemistry-Review. Curr. Anal. Chem. 2014, 10(1), 3–28.
  • Marzlan, A. A.; Muhialdin, B. J.; Abedin, N. H. Z.; Mohammed, N. K.; Abadl, M. M. T.; Roby, B. H. M.; Hussin, A. S. M. Optimized Supercritical CO2 Extraction Conditions on Yield and Quality of Torch Ginger (Etlingera Elatior (Jack) RM Smith) Inflorescence Essential Oil. Ind. Crops Prod. 2020, 154, 112581. DOI: 10.1016/j.indcrop.2020.112581.
  • Liao, C.; Lv, J.; Fu, J.; Zhao, Z.; Liu, F.; Xue, Q.; Jiang, G. Occurrence and Profiles of Polycyclic Aromatic Hydrocarbons (Pahs), Polychlorinated Biphenyls (Pcbs) and Organochlorine Pesticides (Ocps) in Soils from A Typical E-Waste Recycling Area in Southeast China. Int. J. Environ. Health Res. 2012, 22(4), 317–330. DOI: 10.1080/09603123.2011.634392.
  • Minjares-Fuentes, R.; Femenia, A.; Garau, M. C.; Meza-Velázquez, J. A.; Simal, S.; Rosselló, C. Ultrasound-Assisted Extraction of Pectins from Grape Pomace Using Citric Acid: A Response Surface Methodology Approach. Carbohydr. Polym. 2014, 106, 179–189. DOI: 10.1016/j.carbpol.2014.02.013.
  • Esclapez, M. D.; García-Pérez, J. V.; Mulet, A.; Cárcel, J. A. Ultrasound-Assisted Extraction of Natural Products. Food Eng. Rev. 2011, 3(2), 108. DOI: 10.1007/s12393-011-9036-6.
  • Mason, T. J.; Chemat, F.; Vinatoru, M. The Extraction of Natural Products Using Ultrasound or Microwaves. Curr. Org. Chem. 2011, 15(2), 237–247. DOI: 10.2174/138527211793979871.
  • Da Porto, C.; Decorti, D.; Kikic, I. Flavour Compounds of Lavandula Angustifolia L. To Use in Food Manufacturing: Comparison of Three Different Extraction Methods. Food Chem. 2009, 112(4), 1072–1078. DOI: 10.1016/j.foodchem.2008.07.015.
  • Pacheco-Fernández, I.; González‐Hernández, P.; Rocío‐Bautista, P.; Trujillo‐Rodríguez, M. J.; Pino, V. Main Uses of Microwaves and Ultrasounds in Analytical Extraction Schemes: An Overview. Anal Sep Sci. 2015, 1469–1502. DOI: 10.1002/9783527678129.assep054.
  • Beoletto, V. G.; De Las Mercedes Oliva, M.; Marioli, J. M.; Carezzano, M. E.; Demo, M. S. Antimicrobial Natural Products Against Bacterial Biofilms. Antibiot Resist. 2016, 291, 287–303. DOI: 10.1016/b978-0-12-803642-6.00014-9.
  • Pacheco-Fernández, I.; Allgaier-Díaz, D. W.; Mastellone, G.; Cagliero, C.; Díaz, D. D.; Pino, V. Biopolymers in Sorbent-Based Microextraction Methods. TrAC Trends Anal. Chem. 2020, 125, 115839. DOI: 10.1016/j.trac.2020.115839.
  • Barry-Ryan, C.; Bourke, P. 13 Essential Oils for the Treatment of Fruit and Vegetables. Decontamination Fresh Minimally Processed Produce. 2012, 225. DOI: 10.1002/9781118229187.ch13.
  • Meng, X.; Parikh, A.; Seemala, B.; Kumar, R.; Pu, Y.; Wyman, C. E.; Ragauskas, A. J.; Ragauskas, A. J. Characterization of Fractional Cuts of Co-Solvent Enhanced Lignocellulosic Fractionation Lignin Isolated by Sequential Precipitation. Bioresour. Technol. 2019, 272, 202–208. DOI: 10.1016/j.biortech.2018.09.130.
  • Seow, Y. X.; Yeo, C. R.; Chung, H. L.; Yuk, H. G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014, 54(5), 625–644. DOI: 10.1080/10408398.2011.599504.
  • Hanif, M. A.; Nisar, S.; Khan, G. S.; Mushtaq, Z.; Zubair, M. Essential Oils. In Essential Oil Research Malik, S; Springer: Cham, 2019; pp 3–17.
  • Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus Limon (Lemon) Phenomenon-A Review Of The Chemistry, Pharmacological Properties, Applications In The Modern Pharmaceutical, Food, And Cosmetics Industries, And Biotechnological Studies. Plants. 2020, 9(1), 119. DOI: 10.3390/plants9010119.
  • Di Rauso Simeone, G.; Di Matteo, A.; Rao, M. A.; Di Vaio, C. Variations of Peel Essential Oils during Fruit Ripening in Four Lemon (Citrus Limon (L.) Burm. F.) Cultivars. J. Sci. Food Agric. 2020, 100(1), 193–200. DOI: 10.1002/jsfa.10016.
  • Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. The Inhibitory Effect of Plant Essential Oils on Foodborne Pathogenic Bacteria in Food. Crit. Rev. Food Sci. Nutr. 2019, 59(20), 3281–3292. DOI: 10.1080/10408398.2018.1488159.
  • Raut, J. S.; Karuppayil, S. M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crops Prod. 2014, 62, 250–264. DOI: 10.1016/j.indcrop.2014.05.055.
  • Granato, D.; Nunes, D. S.; Barba, F. J. An Integrated Strategy between Food Chemistry, Biology, Nutrition, Pharmacology, and Statistics in the Development of Functional Foods: A Proposal. Trends Food Sci. Technol. 2017, 62, 13–22. DOI: 10.1016/j.tifs.2016.12.010.
  • Jin, Z.; Li, L.; Zheng, Y.; An, P. Inhibition of Bacillus Cereus by Garlic (Allium Sativum) Essential Oil during Manufacture of White Sufu, A Traditional Chinese Fermented Soybean Curd. LWT Food Sci. Technol. 2020, 130, 109634. DOI: 10.1016/j.lwt.2020.109634.
  • Mahboubi, M. Clary Sage Essential Oil and Its Biological Activities. Adv Traditional Med. 2020, 1–12. DOI: 10.1007/s13596-019-00420-x.
  • Blaskó, Á.; Gazdag, Z.; Gróf, P.; Máté, G.; Sárosi, S.; Krisch, J.; Pesti, M.; Makszin, L.; Pesti, M. Effects of Clary Sage Oil and Its Main Components, Linalool and Linalyl Acetate, on the Plasma Membrane of Candida Albicans: An in Vivo EPR Study. Apoptosis. 2017, 22(2), 175–187. DOI: 10.1007/s10495-016-1321-7.
  • Chan, E. W. C.; Kong, L. Q.; Yee, K. Y.; Chua, W. Y.; Loo, T. Y. Antioxidant and Antibacterial Properties of Some Fresh and Dried Labiatae Herbs. Free Radic. Antioxid. 2012, 2(3), 20–27. DOI: 10.5530/ax.2012.3.3.
  • Diarra, S. S.; Amosa, F.; Lameta, S. Potential of Morinda (Morinda Citrifolia L.) Products as Alternative to Chemical Additives in Poultry Diets. Egypt J Vet Sci. 2019, 50(1), 37–45. DOI: 10.21608/ejvs.2019.7469.1062.
  • Ahmed, A. F.; Attia, F. A.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant Activity and Total Phenolic Content of Essential Oils and Extracts of Sweet Basil (Ocimum Basilicum L.) Plants. Food Sci. Hum. Wellness. 2019, 8(3), 299–305. DOI: 10.1016/j.fshw.2019.07.004.
  • Beristain-Bauza, S. D. C.; Hernández-Carranza, P.; Cid-Pérez, T. S.; Ávila-Sosa, R.; Ruiz-López, I. I.; Ochoa-Velasco, C. E. Antimicrobial Activity of Ginger (Zingiber Officinale) and Its Application in Food Products. Food Rev. Int. 2019, 35(5), 407–426. DOI: 10.1080/87559129.2019.1573829.
  • Lv, W.; Li, S.; Han, Q.; Zhao, Y.; Wu, H. Study of the Drying Process of Ginger (Zingiber Officinale Roscoe) Slices in Microwave Fluidized Bed Dryer. Drying Technol. 2016, 34(14), 1690–1699. DOI: 10.1080/07373937.2015.1137932.
  • Saba, I.; Anwar, F. Effect of Harvesting Regions on Physico-Chemical and Biological Attributes of Supercritical Fluid-Extracted Spearmint (Mentha Spicata L.) Leaves Essential Oil. J. Essent. Oil Bear. Plants. 2018, 21(2), 400–419. DOI: 10.1080/0972060x.2018.1458658.
  • Han, X.; Parker, T. L. Lemongrass (Cymbopogon Flexuosus) Essential Oil Demonstrated Anti-Inflammatory Effect Inpre-Inflamed Human Dermal Fibroblasts. Biochimie Open. 2017, 4, 107–111. DOI: 10.1016/j.biopen.2017.03.004.
  • Ribes, S.; Fuentes, A.; Talens, P.; Barat, J. M.; Ferrari, G.; Donsì, F. Influence of Emulsifier Type on the Antifungal Activity of Cinnamon Leaf, Lemon and Bergamot Oil Nanoemulsions against Aspergillus Niger. Food Control. 2017, 73, 784–795. DOI: 10.1016/j.foodcont.2016.09.044.
  • Aguilar-González, A. E.; Palou, E.; López-Malo, A. Response of Aspergillus Niger Inoculated on Tomatoes Exposed to Vapor Phase Mustard Essential Oil for Short or Long Periods and Sensory Evaluation of Treated Tomatoes. J. Food Qual. 2017, 4067856. DOI: 10.1155/2017/4067856.
  • Mohammed, N. K.; Tan, C. P.; Abd Manap, Y.; Alhelli, A. M.; Hussin, A. S. M. Process Conditions of Spray Drying Microencapsulation of Nigella Sativa Oil. Powder Technol. 2017, 315, 1–14. DOI: 10.1016/j.powtec.2017.03.045.
  • Bashiri, S.; Ghanbarzadeh, B.; Ayaseh, A.; Dehghannya, J.; Ehsani, A. Preparation and Characterization of Chitosan-Coated Nanostructured Lipid Carriers (CH-NLC) Containing Cinnamon Essential Oil for Enriching Milk and Anti-Oxidant Activity. LWT Food Sci. Technol. 2020, 119, 108836. DOI: 10.1016/j.lwt.2019.108836.
  • Ugalde, M. L.; De Cezaro, A. M.; Vedovatto, F.; Paroul, N.; Steffens, J.; Valduga, E.; Cansian, R. L.; Franceschi, E.; Cansian, R. L. Active Starch Biopolymeric Packaging Film for Sausages Embedded with Essential Oil of Syzygium Aromaticum. J. Food Sci. Technol. 2017, 54(7), 2171–2175. DOI: 10.1007/s13197-017-2624-6.
  • Amaral, D. M. F.; Bhargava, K. Essential Oil Nanoemulsions And Food Applications. Adv. Food Technol. Nutr. Sci. 2015, 1(4), 84–87. DOI: 10.17140/aftnsoj-1-115.
  • Bhargava, K.; Conti, D. S.; Da Rocha, S. R.; Zhang, Y. Application of an Oregano Oil Nanoemulsion to the Control of Foodborne Bacteria on Fresh Lettuce. Food Microbiol. 2015, 47, 69–73. DOI: 10.1016/j.fm.2014.11.007.
  • Kalaivani, R.; Devi, V. J.; Umarani, R.; Periyanayagam, K.; Kumaraguru, A. K. Antimicrobial Activity of Some Important Medicinal Plant Oils against Human Pathogens. J Biol Active Prod Nat. 2012, 2(1), 30–37. DOI: 10.1080/22311866.2012.10719105.
  • Yamini, Y.; Khajeh, M.; Ghasemi, E.; Mirza, M.; Javidnia, K. Comparison of Essential Oil Compositions of Salvia Mirzayanii Obtained by Supercritical Carbon Dioxide Extraction and Hydrodistillation Methods. Food Chem. 2008, 108(1), 341–346. DOI: 10.1016/j.foodchem.2007.10.036.
  • Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M. A.; Prabhakar, A.; Rather, M. A.; Rather, M. A. A Comprehensive Review of the Antibacterial, Antifungal and Antiviral Potential of Essential Oils and Their Chemical Constituents against Drug-Resistant Microbial Pathogens. Microb. Pathogenesis. 2019, 134, 103580. DOI: 10.1016/j.micpath.2019.103580.
  • Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines. 2016, 3(4), 25. DOI: 10.3390/medicines3040025.
  • Desam, N. R.; Al-Rajab, A. J.; Sharma, M.; Mylabathula, M. M.; Gowkanapalli, R. R.; Albratty, M. Chemical Constituents, in Vitro Antibacterial and Antifungal Activity of Mentha× Piperita L. (Peppermint) Essential Oils. J. King Saud Univ. Sci. 2019, 31(4), 528–533. DOI: 10.1016/j.jksus.2017.07.013.
  • Delaquis, P. J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial Activity of Individual and Mixed Fractions of Dill, Cilantro, Coriander and Eucalyptus Essential Oils. Int. J. Food Microbiol. 2002, 74(2), 101–109. DOI: 10.1016/s0168-1605(01)00734-6.
  • Fancello, F.; Petretto, G. L.; Marceddu, S.; Venditti, T.; Pintore, G.; Zara, G.; Zara, S.; Budroni, M.; Zara, S. Antimicrobial Activity of Gaseous Citrus Limon Var Pompia Leaf Essential Oil against Listeria Monocytogenes on Ricotta Salata Cheese. Food Microbiol. 2020, 87, 103386. DOI: 10.1016/j.fm.2019.103386.
  • Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential Oil Based Nanoemulsions to Improve the Microbial Quality of Minimally Processed Fruits and Vegetables: A Review. Food Res. Int. 2018, 111, 509–523. DOI: 10.1016/j.foodres.2018.05.066.
  • Bajpai, V. K.; Baek, K. H.; Kang, S. C. Control of Salmonella in Foods by Using Essential Oils: A Review. Food Res. Int. 2012, 45(2), 722–734. DOI: 10.1016/j.foodres.2011.04.052.
  • Viuda-Martos, M.; El Gendy, A. E. N. G.; Sendra, E.; Fernandez-Lopez, J.; Abd El Razik, K. A.; Omer, E. A.; Perez-Alvarez, J. A. Chemical Composition and Antioxidant and Anti-Listeria Activities of Essential Oils Obtained from Some Egyptian Plants. J. Agric. Food Chem. 2010, 58(16), 9063–9070. DOI: 10.1021/jf101620c.
  • Mourey, A.; Canillac, N. Anti-Listeria Monocytogenes Activity Of Essential Oils Components Of Conifers. Food Control. 2002, 13(4–5), 289–292. DOI: 10.1016/s0956-7135(02)00026-9.
  • Fratianni, F.; De Martino, L.; Melone, A.; De Feo, V.; Coppola, R.; Nazzaro, F. Preservation of Chicken Breast Meat Treated with Thyme and Balm Essential Oils. J. Food Sci. 2010, 75(8), M528–M535. DOI: 10.1111/j.1750-3841.2010.01791.x.
  • Ntzimani, A. G.; Giatrakou, V. I.; Savvaidis, I. N. Combined Natural Antimicrobial Treatments (EDTA, Lysozyme, Rosemary and Oregano Oil) on Semi Cooked Coated Chicken Meat Stored in Vacuum Packages at 4oC: Microbiological and Sensory Evaluation. Innovative Food Sci. Emerg. Technol. 2010, 11(1), 187–196. DOI: 10.1016/j.ifset.2009.09.004.
  • Petrou, S.; Tsiraki, M.; Giatrakou, V.; Savvaidis, I. N. Chitosan Dipping or Oregano Oil Treatments, Singly or Combined on Modified Atmosphere Packaged Chicken Breast Meat. Int. J. Food Microbiol. 2012, 156(3), 264–271. DOI: 10.1016/j.ijfoodmicro.2012.04.002.
  • Souza, V. G. L.; Pires, J. R.; Vieira, É. T.; Coelhoso, I. M.; Duarte, M. P.; Fernando, A. L. Activity of Chitosan-Montmorillonite Bionanocomposites Incorporated with Rosemary Essential Oil: From in Vitro Assays to Application in Fresh Poultry Meat. Food Hydrocolloids. 2019, 89, 241–252. DOI: 10.1016/j.foodhyd.2018.10.049.
  • Souza, V. G.; Pires, J. R.; Vieira, É. T.; Coelhoso, I. M.; Duarte, M. P.; Fernando, A. L. Shelf Life Assessment Of Fresh Poultry Meat Packaged In Novel Bionanocomposite Of Chitosan/Montmorillonite Incorporated With Ginger Essential Oil. Coatings. 2018, 8(5), 177. DOI: 10.3390/coatings8050177.
  • Larayetan, R. A.; Okoh, O. O.; Sadimenko, A.; Okoh, A. I. Terpene Constituents of the Aerial Parts, Phenolic Content, Antibacterial Potential, Free Radical Scavenging and Antioxidant Activity of Callistemon Citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa. BMC Complementary Altern. Med. 2017, 17(1), 292. DOI: 10.1186/s12906-017-1804-2.
  • Das, S.; Ray, A.; Nasim, N.; Nayak, S.; Mohanty, S. Effect of Different Extraction Techniques on Total Phenolic and Flavonoid Contents, and Antioxidant Activity of Betelvine and Quantification of Its Phenolic Constituents by Validated HPTLC Method. 3 Biotech. 2019, 9(1), 37. DOI: 10.1007/s13205-018-1565-8.
  • Tohidi, B.; Rahimmalek, M.; Arzani, A. Arzani, Essential Oil Composition, Total Phenolic, Flavonoid Contents, and Antioxidant Activity of Thymus Species Collected from Different Regions of Iran. Food Chem. 2017, 220, 153–161. DOI: 10.1016/j.foodchem.2016.09.203.
  • Maisanaba, S.; Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Puerto, M.; Prieto, A. I.; Cameán, A. M.; Cameán, A. M. New Advances in Active Packaging Incorporated with Essential Oils or Their Main Components for Food Preservation. Food Rev. Int. 2017, 33(5), 447–515. DOI: 10.1016/j.foodchem.2016.09.203.
  • Hsouna, A. B.; Halima, N. B.; Smaoui, S.; Hamdi, N. Citrus Lemon Essential Oil: Chemical Composition, Antioxidant and Antimicrobial Activities with Its Preservative Effect against Listeria Monocytogenes Inoculated in Minced Beef Meat. Lipids Health Dis. 2017, 16(1), 146. DOI: 10.1186/s12944-017-0487-5.
  • Selles, S. M. A.; Kouidri, M.; Belhamiti, B. T.; Amrane, A. A. Chemical Composition, In-Vitro Antibacterial and Antioxidant Activities of Syzygium Aromaticum Essential Oil. J. Food Meas. Charact. 2020, 14(4), 2352–2358. DOI: 10.1007/s11694-020-00482-5.
  • Xing, C.; Qin, C.; Li, X.; Zhang, F.; Linhardt, R. J.; Sun, P.; Zhang, A. Chemical Composition and Biological Activities of Essential Oil Isolated by HS-SPME and UAHD from Fruits of Bergamot. LWT Food Sci. Technol. 2019, 104, 38–44. DOI: 10.1016/j.lwt.2019.01.020.
  • Gömöri, C.; Vidács, A.; Kerekes, E. B.; Nacsa-Farkas, E.; Böszörményi, A.; Vágvölgyi, C.; Krisch, J. Altered Antimicrobial and Anti-Biofilm Forming Effect of Thyme Essential Oil Due to Changes in Composition. Nat. Prod. Communicat. 2018, 13(4), 1934578X1801300426. DOI: 10.1177/1934578X1801300426.
  • Wijesundara, N. M.; Rupasinghe, H. V. Essential Oils from Origanum Vulgare and Salvia Officinalis Exhibit Antibacterial and Anti-Biofilm Activities against Streptococcus Pyogenes. Microb. Pathogenesis. 2018, 117, 118–127. DOI: 10.1016/j.micpath.2018.02.026.
  • Shami, A. M. M. The Effect of Anthraquinones Fractions from Morinda Citrifolia Leaves against Pathogenic Bacteria with Antioxidant Activities. J Rep Pharm Sci. 2018, 7(2), 231–239.
  • López, E. I. C.; Balcázar, M. F. H.; Mendoza, J. M. R.; Ortiz, A. D. R.; Melo, M. T. O.; Parrales, R. S.; Delgado, T. H. Antimicrobial Activity of Essential Oil of Zingiber Officinale Roscoe (Zingiberaceae). Am. J. Plant Sci. 2017, 8(7), 1511–1524. DOI: 10.4236/ajps.2017.87104.
  • Oulkheir, S.; Aghrouch, M.; El Mourabit, F.; Dalha, F.; Graich, H.; Amouch, F.; Chadli, S. Antibacterial Activity of Essential Oils Extracts from Cinnamon, Thyme, Clove and Geranium against a Gram Negative and Gram-Positive Pathogenic Bacteria. J Dis Med Plants. 2017, 3(2–1), 1–5. DOI: 10.11648/j.jdmp.s.2017030201.11.
  • Adukwu, E. C.; Bowles, M.; Edwards-Jones, V.; Bone, H. Antimicrobial Activity, Cytotoxicity and Chemical Analysis of Lemongrass Essential Oil (Cymbopogon Flexuosus) and Pure Citral. Appl. Microbiol. Biotechnol. 2016, 100(22), 9619–9627. DOI: 10.1007/s00253-016-7807y.
  • Yemiş, G. P.; Pagotto, F.; Bach, S.; Delaquis, P. Effect of Vanillin, Ethyl Vanillin, and Vanillic Acid on the Growth and Heat Resistance of Cronobacter Species. J. Food Prot. 2011, 74(12), 2062–2069. DOI: 10.4315/0362-028x.jfp-11-230.
  • Lee, Y. R. Antioxidant and a-Amylase Inhibitory Activity of 70% Ethanolic Extract from Morinda Citrifolia L. (Noni). Korean J. Food Nutr. 2020, 33(2), 210–214. DOI: 10.9799/ksfan.2020.33.2.210.
  • Sharma, Y.; Fagan, J.; Schaefer, J. In Vitro Screening for Acetylcholinesterase Inhibition and Antioxidant Potential in Different Extracts of Sage (Salvia Officinalis L.) And Rosemary (Rosmarinus Officinalis L.). J Biol Active Prod Nat. 2020, 10(1), 59–69. DOI: 10.1080/22311866.2020.1729239.
  • Bhatnagar, A. Chemical Composition and Antioxidant Activity of Essential Oil of Cymbopogon Flexuosus. J. Appl. Nat. Sci. 2020, 12(1), 25–29. DOI: 10.31018/jans.v12i1.2207.
  • Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus Vulgaris and Thymbra Spicata Essential Oils and Plant Extracts for Chemical Composition, Antioxidant, and Antimicrobial Properties. Food Sci. Nutr. 2019, 7(5), 1704–1714. DOI: 10.1002/fsn3.1007.
  • Noshad, M.; Alizadeh, B. B. Investigation of Phytochemical Compounds, Antioxidant Potential and the Antimicrobial Effect of Bergamot Essential Oil on Some Pathogenic Strains Causing Infection Invitro. J. Ilam Uni. Med. Sci. 2019, 26(6), 122–132.
  • Sivaraj, C.; Nikhishaa Sree, R.; Gayathri, P. K.; Arumugam, P. Antioxidant Activities and GC-MS Analysis of Essential Oil Extracted from Salvia Officinalis L. J. Pharmacogn. Phytochem. 2018, 7(2), 1440–1444.
  • Batiha, G. E. S.; Beshbishy, A. M.; Tayebwa, D. S.; Shaheen, H. M.; Yokoyama, N.; Igarashi, I. Inhibitory Effects of Uncaria Tomentosa Bark, Myrtus Communis Roots, Origanum Vulgare Leaves and Cuminum Cyminum Seeds Extracts against the Growth of Babesia and Theileria in Vitro. Jpn J Vet Parasitolol. 2018, 17(1), 1–13.
  • Ghaderi, H.; Rafieian, M.; Nezhad, H. Effect of Hydroalcoholic Cinnamomum Zeylanicum Extract on Reserpine-induced Depression Symptoms in Mice. Pharmacophore. 2018, 9(2), 35–44.
  • Otunola, G. A.; Afolayan, A. J.; Ajayi, E. O.; Odeyemi, S. W. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium Sativum, Zingiber Officinale, and Capsicum Frutescens. Pharmacogn. Mag. 2017, 13(Suppl2), S201. DOI: 10.4103/pm.pm_430_16.
  • Yildirim, S.; Röcker, B.; Pettersen, M. K.; Nilsen‐Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Coma, V.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17(1), 165–199. DOI: 10.1111/1541-4337.12322.
  • Hosseinnejad, M. Active Packaging for Food Applications-A Review. Int. J. Adv. Biol. Biomed. Res. 2014, 4(2), 1174–1180.
  • Vilas, C.; Mauricio-Iglesias, M.; García, M. R. Model-Based Design of Smart Active Packaging Systems with Antimicrobial Activity. Food Pack. Shelf Life. 2020, 24, 100446. DOI: 10.1016/j.fpsl.2019.100446.
  • Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M. D. C.; Freire, C. S.; Concise, A.; Freire, C. S. R. Guide to Active Agents for Active Food Packaging. Trends Food Sci. Technol. 2018, 80, 212–222. DOI: 10.1016/j.tifs.2018.08.006.
  • Ahmed, I.; Lin, H.; Zou, L.; Brody, A. L.; Li, Z.; Qazi, I. M.; Pavase, T. R.; Lv, L., et al. A Comprehensive and Quality of Food Products. The Major Hurdle for Active Packaging Is Review on the Application of Active Packaging Technologies to Muscle Foods. Food Control. 2017, 82, 163–178. DOI: 10.1016/j.food.cont.2017.06.009.
  • Otoni, C. G.; Espitia, P. J.; Avena-Bustillos, R. J.; Mchugh, T. H. Trends in Antimicrobial Food Packaging Systems: Emitting Sachets and Absorbent Pads. Food Res. Int. 2016, 83, 60–73. DOI: 10.1016/j.foodres.2016.02.018.
  • Lee, C. H.; An, D. S.; Lee, S. C.; Park, J. J.; Lee, D. S. A Coating for Use as an Antimicrobial and Antioxidative Packaging Material Incorporating Nisin and Α-tocopherol. J. Food Eng. 2004, 62(4), 323–329. DOI: 10.1016/s0260-8774(03)00246-2.
  • Chen, X.; Chen, M.; Xu, C.; Yam, K. L. Critical Review of Controlled Release Packaging to Improve Food Safety and Quality. Crit. Rev. Food Sci. Nutr. 2019, 59(15), 2386–2399. DOI: 10.1080/10408398.2018.1453778.
  • Manso, S.; Becerril, R.; Nerín, C.; Gómez-Lus, R. Influence of pH and Temperature Variations on Vapor Phase Action of an Antifungal Food Packaging against Five Mold Strains. Food Control. 2015, 47,20-26. DOI: 10.1016/j.foodcont.2014.06.014.
  • Khaneghah, A. M.; Hashemi, S. M. B.; Limbo, S. Antimicrobial Agents and Packaging Systems in Antimicrobial Active Food Packaging: An Overview of Approaches and Interactions. Food Bioprod Processin. 2018, 111, 1–19. DOI: 10.1016/j.fbp.2018.05.001.
  • Gómez-Estaca, J.; López-De-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in Antioxidant Active Food Packaging. Trends Food Sci. Technol. 2014, 35(1), 42–51. DOI: 10.1016/j.tifs.2013.10.008.
  • Park, H. Y.; Kim, S. J.; Kim, K. M.; You, Y. S.; Kim, S. Y.; Han, J. Development of Antioxidant Packaging Material by Applying Corn-Zein to LLDPE Film in Combination with Phenolic Compounds. J. Food Sci. 2012, 77(10), 273–279. DOI: 10.1111/j.1750-3841.2012.02906.x.
  • Vieira, M. G. A.; Da Silva, M. A.; Dos Santos, L. O.; Beppu, M. M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47(3), 254–263. DOI: 10.1016/j.eurpolymj.2010.12.011.
  • Debiagi, F.; Kobayashi, R. K.; Nakazato, G.; Panagio, L. A.; Mali, S. Biodegradable Active Packaging Based on Cassava Bagasse, Polyvinyl Alcohol and Essential Oils. Ind. Crops Prod. 2014, 52, 664–670. DOI: 10.1016/j.indcrop.2013.11.032.
  • Domínguez, R.; Barba, F. J.; Gómez, B.; Putnik, P.; Kovačević, D. B.; Pateiro, M.; Lorenzo, J. M.; Lorenzo, J. M. Active Packaging Films with Natural Antioxidants to Be Used in Meat Industry: A Review. Food Res. Int. 2018, 113, 93–101. DOI: 10.1016/j.foodres.2018.06.073.
  • Pagno, C. H.; De Farias, Y. B.; Costa, T. M. H.; De Oliveira Rios, A.; Flôres, S. H. Synthesis of Biodegradable Films with Antioxidant Properties Based on Cassava Starch Containing Bixin Nanocapsules. J. Food Sci. Technol. 2016, 53(8), 3197–3205. DOI: 10.1007/s13197-016-2294-9.
  • Bertuzzi, M. A.; Vidaurre, E. C.; Armada, M.; Gottifredi, J. C. Water Vapor Permeability of Edible Starch Based Films. J. Food Eng. 2007, 80(3), 972–978. DOI: 10.1016/j.jfoodeng.2006.07.016.
  • Cano, A.; Jiménez, A.; Cháfer, M.; Gónzalez, C.; Chiralt, A. Effect of Amylose: Amylopectin Ratio and Rice Bran Addition on Starch Films Properties. Carbohydr. Polym. 2014, 111, 543–555. DOI: 10.1016/j.carbpol.2014.04.075.
  • Jiménez, A.; Fabra, M. J.; Talens, P.; Chiralt, A. Edible and Biodegradable Starch Films: A Review. Food Bioprocess. Technol. 2012, 5(6), 2058–2076. DOI: 10.1007/s11947-012-0835-4.
  • Perazzo, K. K. N. C. L.; De Vasconcelos Conceição, A. C.; Dos Santos, J. C. P.; De Jesus Assis, D.; Souza, C. O.; Druzian, J. I. Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts. Prop Antioxidant Actions Active Film. 2014, 9(9), E105199.
  • Molavi, H.; Behfar, S.; Shariati, M. A.; Kaviani, M.; Atarod, S. A Review on Biodegradable Starch Based Film. J. Microbiol. Biotechnol. Food Sci. 2015, 4(5), 456–461. DOI: 10.15414/jmbfs.2015.4.5.456-461.
  • Castro‐Rosas, J.; Cruz‐Galvez, A. M.; Gomez‐Aldapa, C. A.; Falfan‐Cortes, R. N.; Guzman‐Ortiz, F. A.; Rodríguez‐Marín, M. L. Biopolymer Films and the Effects of Added Lipids, Nanoparticles and Antimicrobials on Their Mechanical and Barrier Properties: A Review. Int. J. Food Sci. Technol. 2016, 51(9), 1967–1978. DOI: 10.1111/ijfs.13183.
  • Péroval, C.; Debeaufort, F.; Despré, D.; Voilley, A. Edible Arabinoxylan-Based Films. Effects of Lipid Type on Water Vapor Permeability, Film Structure, and Other Physical Characteristics. J. Agric. Food Chem. 2002, 50(14), 3977–3983. DOI: 10.1021/jf0116449.
  • Muscat, D.; Tobin, M. J.; Guo, Q.; Adhikari, B. Understanding the Distribution of Natural Wax in Starch–Wax Films Using Synchrotron-Based FTIR (S-FTIR). Carbohydr. Polym. 2014, 102, 125–135. DOI: 10.1016/j.carbpol.2013.11.004.
  • Galus, S.; Kadzińska, J. Food Applications of Emulsion-Based Edible Films and Coatings. Trends Food Sci. Technol. 2015, 45(2), 273–283. DOI: 10.1016/j.tifs.2015.07.011.
  • Shi, W.; Dumont, M. J. Processing and Physical Properties of Canola Protein Isolate-Based Films. Ind. Crops Prod. 2014, 52, 269–277. DOI: 10.1016/j.indcrop.2013.10.037.
  • Tapia‐Blácido, D.; Mauri, A. N.; Menegalli, F. C.; Sobral, P. J.; Añón, M. C. Contribution of the Starch, Protein, and Lipid Fractions to the Physical, Thermal, and Structural Properties of Amaranth (Amaranthus Caudatus) Flour Films. J. Food Sci. 2007, 72(5), 293–300. DOI: 10.1111/j.1750-3841.2007.00359.x.
  • Falguera, V.; Quintero, J. P.; Jiménez, A.; Muñoz, J. A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22(6), 292–303. DOI: 10.1016/j.tifs.2011.02.004.
  • Šuput, D. Z.; Lazić, V. L.; Popović, S. Z.; Hromiš, N. M. Edible Films and Coatings: Sources, Properties and Application. Food Feed Res. 2015, 42(1), 11–22. DOI: 10.5937/ffr1501011s.
  • Oriani, V. B.; Molina, G.; Chiumarelli, M.; Pastore, G. M.; Hubinger, M. D. Properties of Cassava Starch‐Based Edible Coating Containing Essential Oils. J. Food Sci. 2014, 79(2), E189–E194. DOI: 10.1111/1750-3841.12332.
  • Mlalila, N.; Hilonga, A.; Swai, H.; Devlieghere, F.; Ragaert, P. Antimicrobial Packaging Based on Starch, Poly (3-hydroxybutyrate) and Poly (Lactic-co-glycolide) Materials and Application Challenges. Trends Food Sci. Technol. 2018, 74, 1–11. DOI: 10.1016/j.tifs.2018.01.015.
  • Bergo, P. V. A.; Carvalho, R. A.; Sobral, P. J. A.; Dos Santos, R. M. C.; Da Silva, F. B. R.; Prison, J. M.; Habitante, A. M. Q. B.; Habitante, A. M. Q. B. Physical Properties of Edible Films Based on Cassava Starch as Affected by the Plasticizer Concentration. Packag Technol Sci. 2008, 21(2), 85–89. DOI: 10.1002/pts.781.
  • Martens, B. M.; Gerrits, W. J.; Bruininx, E. M.; Schols, H. A. Amylopectin Structure and Crystallinity Explains Variation in Digestion Kinetics of Starches across Botanic Sources in an in Vitro Pig Model. J Anim Sci Biotechnol. 2018, 9(1), 91. DOI: 10.1186/s40104-018-0303-8.
  • Pelissari, F. M.; Ferreira, D. C.; Louzada, L. B.; Dos Santos, F.; Corrêa, A. C.; Moreira, F. K. V.; Mattoso, L. H. Starch-Based Edible Films and Coatings: An Eco-Friendly Alternative for Food Packaging. Starches Food Appl. 2019, 59–420. Academic Press.
  • Alves, V. D.; Mali, S.; Beléia, A.; Grossmann, M. V. E. Effect of Glycerol and Amylose Enrichment on Cassava Starch Film Properties. J. Food Eng. 2007, 78(3), 941–946. DOI: 10.1016/j.jfoodeng.2005.12.007.
  • Hanani, Z. N.; Roos, Y. H.; Kerry, J. P. Use and Application of Gelatin as Potential Biodegradable Packaging Materials for Food Products. Int. J. Biol. Macromol. 2014, 71, 94–102. DOI: 10.1016/j.ijbiomac.2014.04.027.
  • Kaewprachu, P.; Osako, K.; Benjakul, S.; Rawdkuen, S. Effect of Protein Concentrations on the Properties of Fish Myofibrillar Protein Based Film Compared with PVC Film. J. Food Sci. Technol. 2016, 53(4), 2083–2091. DOI: 10.1007/s13197-016-2170-7.
  • Ribeiro-Santos, R.; De Melo, N. R.; Andrade, M.; Azevedo, G.; Machado, A. V.; Carvalho‐Costa, D.; Sanches‐Silva, A. Whey Protein Active Films Incorporated with A Blend of Essential Oils: Characterization and Effectiveness. Packag. Technol. Sci. 2018, 31(1), 27–40. DOI: 10.1002/pts.2352.
  • Bourtoom, T. Edible Films and Coatings: Characteristics and Properties. Int. Food Res. J. 2008, 15(3), 237–248.
  • Rhim, J. W.; Shellhammer, T. H. Lipid-Based Edible Films and Coatings. In Innovations in Food Packaging, Academic Press, 2005; pp 362–383. DOI: 10.1016/b978-012311632-1/50053-x.
  • Debeaufort, F.; Voilley, A. Edible Films and Coatings to Improve Food Quality, Springer: New York, 2009; pp 135–168. DOI: 10.1007/978-0-387-92824-1_5.
  • Hasan, M.; Saha, S. K.; Yamazaki, M. Effect of Membrane Tension on Transbilayer Movement of Lipids. J. Chem. Phys. 2018, 148(24), 245101. DOI: 10.1063/1.5035148.
  • Mehyar, G. F.; Al‐Ismail, K.; Han, J. H.; Chee, G. W. Characterization of Edible Coatings Consisting of Pea Starch, Whey Protein Isolate, and Carnauba Wax and Their Effects on Oil Rancidity and Sensory Properties of Walnuts and Pine Nuts. J. Food Sci. 2012, 77(2), E52–E59. DOI: 10.1111/j.1750-3841.2011.02559.x.
  • Valencia-Chamorro, S. A.; Palou, L.; Del Rio, M. A.; Perez-Gago, M. B. Antimicrobial Edible Films and Coatings for Fresh and Minimally Processed Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51(9), 872–900. DOI: 10.1080/10408398.2010.485705.
  • Gutierrez, J.; Bourke, P.; Lonchamp, J.; Barry-Ryan, C. Impact Of Plant Essential Oils On Microbiological, Organoleptic And Quality Markers Of Minimally Processed Vegetables. Innovative Food Sci. Emerg. Technol. 2009, 10(2), 195–202. DOI: 10.1016/j.ifset.2008.10.005.
  • Hassoun, A.; Çoban, Ö. E. Essential Oils for Antimicrobial and Antioxidant Applications in Fish and Other Seafood Products. Trends Food Sci. Technol. 2017, 68, 26–36. DOI: 10.1016/j.tifs.2017.07.016.
  • Grande-Tovar, C. D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan Coatings Enriched with Essential Oils: Effects on Fungi Involved in Fruit Decay and Mechanisms of Action. Trends Food Sci. Technol. 2018, 78, 61–71. DOI: 10.1016/j.tifs.2018.05.019.
  • Ribeiro-Santos, R.; Andrade, M.; Sanches-Silva, A. Application of Encapsulated Essential Oils as Antimicrobial Agents in Food Packaging. Curr. Opin. Food Sci. 2017, 14, 78–84. DOI: 10.1016/j.cofs.2017.01.012.
  • Le Delliou, B.; Vitrac, O.; Domenek, S. Bringing New Function to Packaging Materials by Agricultural By-Products. In Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery, Springer: Cham, 2020; pp 227–257. DOI: 10.1007/978-3-030-51358-0_13.
  • Ramesh, S.; Radhakrishnan, P. Cellulose Nanoparticles from Agro-Industrial Waste for the Development of Active Packaging. Appl. Surf. Sci. 2019, 484, 1274–1281. DOI: 10.1016/j.apsusc.2019.04.003.
  • Urbina, L.; Eceiza, A.; Gabilondo, N.; Corcuera, M. Á.; Retegi, A. Valorization of Apple Waste for Active Packaging: Multicomponent Polyhydroxyalkanoate Coated Nanopapers with Improved Hydrophobicity and Antioxidant Capacity. Food Pack. Shelf Life. 2019, 21, 100356. DOI: 10.1016/j.fpsl.2019.100356.
  • Zeid, A.; Karabagias, I. K.; Nassif, M.; Kontominas, M. G. Preparation and Evaluation of Antioxidant Packaging Films Made of Polylactic Acid Containing Thyme, Rosemary, and Oregano Essential Oils. J. Food Process. Preserv. 2019, 43(10), E14102. DOI: 10.1111/jfpp.14102.
  • Otero, V.; Becerril, R.; Santos, J. A.; Rodríguez-Calleja, J. M.; Nerín, C.; García-López, M. L. Evaluation of Two Antimicrobial Packaging Films against Escherichia Coli O157: H7 Strains in Vitro and during Storage of a Spanish Ripened Sheep Cheese (Zamorano). Food Control. 2014, 42, 296–302. DOI: 10.1016/j.foodcont.2014.02.022.
  • Silva, F.; Caldera, F.; Trotta, F.; Nerín, C.; Domingues, F. C. Encapsulation of Coriander Essential Oil in Cyclodextrin Nanosponges: A New Strategy to Promote Its Use in Controlled-Release Active Packaging. Innovative Food Sci. Emerg. Technol. 2019, 56, 102177. DOI: 10.1016/j.ifset.2019.102177.
  • Werner, B. G.; Koontz, J. L.; Goddard, J. M. Hurdles to Commercial Translation of Next Generation Active Food Packaging Technologies. Curr. Opin. Food Sci. 2017, 16, 40–48. DOI: 10.1016/j.cofs.2017.07.007.
  • Shekarchizadeh, H.; Nazeri, F. S. Active Nanoenabled Packaging for the Beverage Industry. In Nanotechnology in the Beverage Industry, 2020; pp 587–607. DOI: 10.1016/b978-0-12-819941-1.00020-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.