678
Views
10
CrossRef citations to date
0
Altmetric
Review

Quality Evaluation Systems and Methods of the Whole Making Process of Asian Noodles: A Review

, , , , , , , & ORCID Icon show all

References

  • Fu, B. X. Asian Noodles: History, Classification, Raw Materials, and Processing. Food Res. Int. 2008, 41, 888–902. DOI: 10.1016/j.foodres.2007.11.007.
  • Miskelly, D. M. Noodles - A New Look at an Old Food. Food Australia. 1993, 45, 496–500.
  • Adejuwon, O. H.; Jideani, A. I. O.; Falade, K. O. Quailty and Public Health Concerns of Instant Noodles as Influenced by Raw Materials and Processing Technology. Food Rev. Int. 2020, 36, 276–317. DOI: 10.1080/87559129.2019.1642348.
  • Hong, J.; An, D.; Li, L.; Liu, C.; Li, M.; Buckow, R.; Zheng, X.; Bian, K. Structural, Rheological and Gelatinization Properties of Wheat Starch Granules Separated from Different Noodle-Making Process. J. Cereal Sci. 2020, 91, 102897. DOI: 10.1016/j.jcs.2019.102897.
  • Li, M.; Zhu, K.-X.; Wang, B.-W.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Evaluation the Quality Characteristics of Wheat Flour and Shelf-life of Fresh Noodles as Affected by Ozone Treatment. Food Chem. 2012, 135, 2163–2169. DOI: 10.1016/j.foodchem.2012.06.103.
  • Dexter, J. E.; Matsuo, R. R.; Dronzek, B. L. A Scanning Electron Microscopy Study of Japanese Noodles. Cereal Chem. 1979, 56, 202–208.
  • Dexter, J. E.; Matsuo, R. R.; Preston, K. R.; Kilborn, R. H. Comparison of Gluten Strength, Mixing Properties, Baking Quality and Spaghetti Quality of Some Canadian Durum and Common Wheats. Can. Inst. Food Sci. Technol. J. 1981, 14, 108–111. DOI: 10.1016/S0315-5463(81)72720-2.
  • Crosbie, G.; Ross, A.; Moro, T.; Chiu, P. Starch and Protein Quality Requirements of Japanese Alkaline Noodles (Ramen). Cereal Chem. 1999, 76, 328–334. DOI: 10.1094/CCHEM.1999.76.3.328.
  • Oda, M.; Yasuda, Y.; Okazaki, S.; Yamauchi, Y.; Yokoyama, Y. A Method of Flour Quality Assessment for Japanese Noodles. Cereal Chem. 1980, 57, 253–254.
  • Ghiasi, K.; Hoseney, R.; Varriano‐Marston, E. Effect of Flour Components and Dough Ingredients on Starch Gelatinization. Starch/Starke. 1983, 60, 58–61.
  • Miskelly, D.; Moss, H. Flour Quality Requirement for Chinese Noodle Manufacture. J. Cereal Sci. 1985, 3, 379–387. DOI: 10.1016/S0733-5210(85)80010-2.
  • Zhang, P.; He, Z.; Chen, D.; Zhang, Y.; Larroque, O. R.; Xia, X. Contribution of Common Wheat Protein Fractions to Dough Properties and Quality of Northern-style Chinese Steamed Bread. J. Cereal Sci. 2007, 46, 1–10. DOI: 10.1016/j.jcs.2006.10.007.
  • Li, M.; Dhital, S.; Wei, Y. Multilevel Structure of Wheat Starch and Its Relationship to Noodle Eating Qualities. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1042–1055. DOI: 10.1111/1541-4337.12272.
  • Park, C. S.; Baik, B. K. Relationship between Protein Characteristics and Instant Noodle Making Quality of Wheat Flour. Cereal Chem. 2004, 81, 159–164. DOI: 10.1094/CCHEM.2004.81.2.159.
  • Osborne, T. B. The Proteins of the Wheat Kernel. Science. 26 677 . 1907, 119 doi:10.1126/science.26.677.865.
  • Stănciuc, N.; Banu, I.; Bolea, C.; Patraşcu, L.; Aprodu, I. Structural and Antigenic Properties of Thermally Treated Gluten Proteins. Food Chem. 2018, 267, 43–51. DOI: 10.1016/j.foodchem.2017.03.018.
  • Koga, S.; Böcker, U.; Moldestad, A.; Tosi, P.; Shewry, P.; Mosleth, E.; Uhlen, A. Influence of Temperature during Grain Filling on Gluten Viscoelastic Properties and Gluten Protein Composition. J. Sci. Food Agric. 2016, 96, 122–130. DOI: 10.1002/jsfa.7068.
  • Thompson, R. D.; Bartels, D.; Harberd, N. P.; Flavell, R. B. Characterization of the Multigene Family Coding for HMW Glutenin Subunits in Wheat Using cDNA Clones. Theor. Appl. Genet. 1983, 67, 87–96. DOI: 10.1007/BF00303930.
  • Pogna, N. E.; Autran, J. C.; Mellini, F.; Lafiandra, D.; Feillet, P. Chromosome 1B-Encoded Gliadins and Glutenin Subunits in Durum Wheat: Genetics and Relationship to Gluten Strength. J. Cereal Sci. 1990, 11, 15–34. DOI: 10.1016/S0733-5210(09)80178-1.
  • Payne, P.; Harris, P.; Law, C.; Holt, L. M.; Blackman, J. The High-Molecular-Weight Subunits of Glutenin: Structure, Genetics and Relationship to Bread-Making Quality. Annales de Technologie Agricole. 1980, 29, 309–320.
  • Lu, Q.;. Effects of Main Components in Wheat Flour on Noodle Characteristics; South China University of Technology.[Google Scholar]: Guangzhou, China, 2010.
  • Sandhu, K. S.; Singh, N.; Malhi, N. S. Physicochemical and Thermal Properties of Starches Separated from Corn Produced from Crosses of Two Germ Pools. Food Chem. 2005, 89, 541–548. DOI: 10.1016/j.foodchem.2004.03.007.
  • Williams, P.; Kuzina, F.; Hlynka, I. A Rapid Colorimetric Procedure for Estimating the Amylose Content of Starches and Flours. Cereal Chem. 47 1970, 411–420.
  • Juliano, B.; Perez, C.; Blakeney, A.; Castillo, T.; Kongseree, N.; Laignelet, B.; Lapis, E.; Murty, V.; Paule, C.; Webb, B. J. International Cooperative Testing on the Amylose Content of Milled Rice. Starch/Starke. 1981, 33, 157–162. DOI: 10.1002/star.19810330504.
  • Biselli, C.; Cavalluzzo, D.; Perrini, R.; Gianinetti, A.; Bagnaresi, P.; Urso, S.; Orasen, G.; Desiderio, F.; Lupotto, E.; Cattivelli, L., et al. Improvement of Marker-based Predictability of Apparent Amylose Content in Japonica Rice through GBSSI Allele Mining. Rice. 2014, 7, 1. DOI: 10.1186/1939-8433-7-1.
  • Ao, Z.; Jane, J.-L. Characterization and Modeling of the A- and B-granule Starches of Wheat, Triticale, and Barley. Carbohydr. Polym. 2007, 67, 46–55. DOI: 10.1016/j.carbpol.2006.04.013.
  • Li, H.; Prakash, S.; Nicholson, T. M.; Fitzgerald, M. A.; Gilbert, R. G. The Importance of Amylose and Amylopectin Fine Structure for Textural Properties of Cooked Rice Grains. Food Chem. 2016, 196, 702–711. DOI: 10.1016/j.foodchem.2015.09.112.
  • Cave, R.; Seabrook, S.; Gidley, M.; Gilbert, R. G. Characterization of Starch by Size-Exclusion Chromatography: The Limitations Imposed by Shear Scission. Biomacromolecules. 2009, 10, 2245–2253. DOI: 10.1021/bm900426n.
  • Liu, W.-C.; Halley, P.; Gilbert, R. Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules. 2010, 43, 2855–2864. DOI: 10.1021/ma100067x.
  • Bertoft, E.; Annor, G. A.; Shen, X.; Rumpagaporn, P.; Seetharaman, K.; Hamaker, B. R. Small Differences in Amylopectin Fine Structure May Explain Large Functional Differences of Starch. Carbohydr. Polym. 2016, 140, 113–121. DOI: 10.1016/j.carbpol.2015.12.025.
  • Alex Chi, W.; Enpeng, L.; Gilbert, R. G. Exploring Extraction/Dissolution Procedures for Analysis of Starch Chain-Length Distributions. Carbohydr. Polym. 2014, 114, 36–42. DOI: 10.1016/j.carbpol.2014.08.001.
  • Zou, W.; Sissons, M.; Gidley, M. J.; Gilbert, R. G.; Warren, F. J. Combined Techniques for Characterising Pasta Structure Reveals How the Gluten Network Slows Enzymic Digestion Rate. Food Chem. 2015, 188, 559–568. DOI: 10.1016/j.foodchem.2015.05.032.
  • López-Rubio, A.; Flanagan, B.; Gilbert, E.; Gidley, M. A Novel Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study. Biopolymers. 2008, 89, 761–768. DOI: 10.1002/bip.21005.
  • Mizuno, A.; Mitsuiki, M.; Motoki, M. Effect of Crystallinity on the Glass Transition Temperature of Starch. J. Agric. Food Chem. 1998, 46, 98–103. DOI: 10.1021/jf970612b.
  • Peng, M.; Gao, M.; Abdel-Aal, E. S.; Hucl, P.; Chibbar, R. Separation and Characterization of A- and B-Type Starch Granules in Wheat Endosperm. Cereal Chem. 1999, 76, 375–379. DOI: 10.1094/CCHEM.1999.76.3.375.
  • Gaines, C.; Raeker, M.; Tilley, M.; Finney, P.; Wilson, J.; Bechtel, D.; Martin, R.; Seib, P.; Lookhart, G.; Donelson, T. Associations of Starch Gel Hardness, Granule Size, Waxy Allelic Expression, Thermal Pasting, Milling Quality, and Kernel Texture of 12 Soft Wheat Cultivars. Cereal Chem. 2000, 77, 163–168. DOI: 10.1094/CCHEM.2000.77.2.163.
  • Guo, Q.; He, Z.; Xia, X.; Qu, Y.; Zhang, Y. Effects of Wheat Starch Granule Size Distribution on Qualities of Chinese Steamed Bread and Raw White Noodles. Cereal Chem. 2014, 91, 623–630. DOI: 10.1094/CCHEM-01-14-0015-R.
  • Colonna, P.; Doublier, J. L.; Melcion, J. P.; Fde, M.; Mercier, C. Extrusion Cooking and Drum Drying of Wheat Starch. Cereal Chem. 1985, 61, 538–554.
  • Kim, H.-S.; Huber, K. C. Channels within Soft Wheat Starch A- and B-type Granules. J. Cereal Sci. 2008, 48, 159–172.
  • Huber, K. C.; Bemiller, J. N. Channels of Maize and Sorghum Starch Granules. Carbohydr. Polym. 2000, 41, 269–276. DOI: 10.1016/S0144-8617(99)00145-9.
  • Matthey, F. P.; Hanna, M. A. Physical and Functional Properties of Twin-screw Extruded Whey Protein Concentrate–Corn Starch Blends. LWT Food Sci. Technol. 1997, 30, 359–366. DOI: 10.1006/fstl.1996.0189.
  • Oikonomou, N.; Krokida, M. J. Water Absorption Index and Water Solubility Index Prediction for Extruded Food Products. Int. J. Food Prop. 2012, 15, 157–168. DOI: 10.1080/10942911003754718.
  • Aderson, R. A.; Conway, H. F.; Pfeifer, V. F.; Griffin, J. E. L. Gelatinization of Corn Grits by Roll- and Extrusion-cooking. Cereal Sci. Today. 1969, 14, 4–12.
  • Liu, S.; Sun, Y.; Obadi, M.; Jiang, Y.; Chen, Z.; Jiang, S.; Xu, B. Effects of Vacuum Mixing and Mixing Time on the Processing Quality of Noodle Dough with High Oat Flour Content. J. Cereal Sci. 2020, 91, 102885. DOI: 10.1016/j.jcs.2019.102885.
  • Li, Q.; Liu, S.; Obadi, M.; Jiang, Y.; Zhao, F.; Jiang, S.; Xu, B. The Impact of Starch Degradation Induced by Pre-gelatinization Treatment on the Quality of Noodles. Food Chem. 2020, 302, 125267. DOI: 10.1016/j.foodchem.2019.125267.
  • Li, J.-Y.; Yeh, A.-I. Relationship between Thermal, Rheological Characteristics and Swelling Power for Various Starches. J. Food Eng. 2001, 50, 141–148. DOI: 10.1016/S0260-8774(00)00236-3.
  • Crosbie, G. B. The Relationship between Starch Swelling Properties, Paste Viscosity, and Noodle Quality in Wheat Flours. J. Cereal Sci. 1991, 13, 145–150. DOI: 10.1016/S0733-5210(09)80031-3.
  • Crosbie, G. B.; Lambe, W. J.; Tsutsui, H.; Gilmour, R. F. Further Evaluation of the Flour Swelling Volume Test for Identifying Wheats Potentially Suitable for Japanese Noodles. J. Cereal Sci. 1992, 15, 271–280. DOI: 10.1016/S0733-5210(09)80125-2.
  • Konik, C. M.; Miskelly, D. M.; Gras, P. W. Starch Swelling Power, Grain Hardness and Protein: Relationship to Sensory Properties of Japanese Noodles. Starch‐Stärke. 1993, 45, 139–144. DOI: 10.1002/star.19930450406.
  • Fu, B. X.; Kovacs, M. I. P.; Wang, C. A Simple Wheat Flour Swelling Test. Cereal Chem. 1998, 75, 566–567. DOI: 10.1094/CCHEM.1998.75.4.566.
  • Da Rosa Zavareze, E.; Dias, A. R. G. Impact of Heat-Moisture Treatment and Annealing in Starches: A Review. Carbohydr. Polym. 2011, 83, 317–328. DOI: 10.1016/j.carbpol.2010.08.064.
  • Bhattacharya, M.; Jafari‐Shabestari, J.; Qualset, C. O.; Corke, H. Diversity of Starch Pasting Properties in Iranian Hexaploid Wheat Landraces. Cereal Chem. 1997, 74, 417–423. DOI: 10.1094/CCHEM.1997.74.4.417.
  • Zhang, W. L.; Li, Q. Q.; Jang, S.; Chen, Z. W.; Yang, Q. Y.; Xiao, Z. G Xu, B. Improvement and Mechanism of Processing Quality of Buckwheat Flour Based on Extrusion Cooking. Food Mach. 2019, 18–23.
  • Waterschoot, J.; Gomand, S. V.; Fierens, E.; Delcour, J. A. Production Structure, Physicochemical and Functional Properties of Maize, Cassava, Wheat, Potato and Rice Starches. Starch/Stärke. 2015, 67, 14–29. DOI: 10.1002/star.201300238.
  • Jenkins, P. J.; Donald, A. M. Gelatinisation of Starch: A Combined SAXS/WAXS/DSC and SANS Study. Carbohydr. Res. 1998, 308, 133–147. DOI: 10.1016/S0008-6215(98)00079-2.
  • Liu, K.; Han, J. Enzymatic Method for Measuring Starch Gelatinization in Dry Products in Situ. J. Agric. Food Chem. 2012, 60, 4212–4221. DOI: 10.1021/jf300160v.
  • Di Paola, R. D.; Asis, R.; Aldao, M. A. Evaluation of the Degree of Starch Gelatinization by a New Enzymatic Method. Starch/Stärke. 2003, 55, 403–409. DOI: 10.1002/star.200300167.
  • Shetty, E. O.; Lineback, D. R.; Seib, P. A. Determining the Degree of Starch Gelatinization. Cereal Chem. 51 1974, 364–375.
  • Martínez-Bustos, F.; López-Soto, M.; San Martin-Martinez, E.; Zazueta-Morales, J.; Velez-Medina, J. Effects of High Energy Milling on Some Functional Properties of Jicama Starch (Pachyrrhizus Erosus L. Urban) and Cassava Starch (Manihot Esculenta Crantz). J. Food Eng. 2007, 78, 1212–1220. DOI: 10.1016/j.jfoodeng.2005.10.043.
  • Ogawa, T.; Hasegawa, A.; Adachi, S. Effects of Relaxation of Gluten Network on Rehydration Kinetics of Pasta. Biosci. Biotechnol. Biochem. 2014, 78, 1930–1934. DOI: 10.1080/09168451.2014.925784.
  • Li, Y.; Obadi, M.; Shi, J.; Sun, J.; Chen, Z.; Xu, B. Determination of Moisture, Total Lipid, and Bound Lipid Contents in Oats Using Low-field Nuclear Magnetic Resonance. J. Food Compost. Anal. 2020, 87, 103401. DOI: 10.1016/j.jfca.2019.103401.
  • Jing, P.; Zheng, X.; Bian, K.; Liu, C.; Xu, T. Study on the Influence of Particle Size of Crumbly Dough on Noodle Quality. J. Chin. Cereals Oils Assoc. 2015, 30, 12–18.
  • Graveland, A.; Bongers, P.; Bosveld, P. Extraction and Fractionation of Wheat Flour Proteins. J. Sci. Food Agric. 1979, 30, 71–84. DOI: 10.1002/jsfa.2740300112.
  • Anderson, A. K.; Ng, P. K. W. Changes in Disulfide and Sulfhydryl Contents and Electrophoretic Patterns of Extruded Wheat Flour Proteins. Cereal Chem. 2000, 77, 354–359. DOI: 10.1094/CCHEM.2000.77.3.354.
  • Peressini, D.; Science, A. S. Effect of Soluble Dietary Fibre Addition on Rheological and Breadmaking Properties of Wheat Doughs. J. Cereal Sci. 2009, 49, 190–201. DOI: 10.1016/j.jcs.2008.09.007.
  • Eckardt, J.; Öhgren, C.; Alp, A.; Ekman, S.; Åström, A.; Chen, G.; Swenson, J.; Johansson, D.; Langton, M. Long-Term Frozen Storage of Wheat Bread and Dough–Effect of Time, Temperature and Fibre on Sensory Quality, Microstructure and State of Water. J. Cereal Sci. 2013, 57, 125–133. DOI: 10.1016/j.jcs.2012.10.007.
  • Zhang, N.; Liu, X.; Yu, L.; Shanks, R.; Petinaks, E.; Liu, H. Phase Composition and Interface of Starch-Gelatin Blends Studied by Synchrotron FTIR Micro-Spectroscopy. Carbohydr. Polym. 2013, 95, 649–653. DOI: 10.1016/j.carbpol.2013.03.045.
  • Wang, K.; Luo, S.; Cai, J.; Sun, Q.; Zhao, Y.; Zhong, X.; Jiang, S.; Zheng, Z. Effects of Partial Hydrolysis and Subsequent Cross-linking on Wheat Gluten Physicochemical Properties and Structure. Food Chem. 2016, 197, 168–174. DOI: 10.1016/j.foodchem.2015.10.123.
  • Wu, S. B. Quantitative Characterization of Water Uniformity of Noodle Sheet and Its Impact on Noodles Quality (D). 2019.
  • Lin, X.; Chen, W.; He, C. Study on Industrial Dough Formation by Using NMR and MRI Technique. J. Chin. Cereal. Oils Assoc. 2006, 21, 163–167.
  • Don, C.; Lichtendonk, W. J.; Plijter, J. J.; Hamer, R. J. J. Understanding the Link between GMP and Dough: From Glutenin Particles in Flour Towards Developed Dough. J. Cereal Sci. 2003, 38, 157–165. DOI: 10.1016/S0733-5210(03)00017-1.
  • Hu, X. Z.; Wei, Y. M.; Wang, C.; Kovacs, M. I. P. Quantitative Assessment of Protein Fractions of Chinese Wheat Flours and Their Contribution to White Salted Noodle Quality. Food Res. Int. 2007, 40, 1–6. DOI: 10.1016/j.foodres.2006.05.003.
  • Beveridge, T.; Toma, S. J.; Nakai, S. J. Determination of SH-and SS-Groups in Some Food Proteins Using Ellman’s Reagent. J. Food Sci. 2006, 39, 49–51. DOI: 10.1111/j.1365-2621.1974.tb00984.x.
  • Jekle, M.; Becker, T. Dough Microstructure: Novel Analysis by Quantification Using Confocal Laser Scanning Microscopy. Food Res. Int. 2011, 44, 984–991. DOI: 10.1016/j.foodres.2011.02.036.
  • Wang, X. Y.; Guo, X. N.; Zhu, K. X. Polymerization of Wheat Gluten and the Changes of Glutenin Macropolymer (GMP) during the Production of Chinese Steamed Bread. Food Chem. 2016, 201, 275–283. DOI: 10.1016/j.foodchem.2016.01.072.
  • Bache, I. C.; Donald, A. M. The Structure of the Gluten Network in Dough: A Study Using Environmental Scanning Electron Microscopy. J. Cereal Sci. 1998, 28, 127–133. DOI: 10.1006/jcrs.1997.0176.
  • Liu S, Liu Q, Li X, Obadi M, Jiang S, Li S and Xu B. (2021). Effects of dough resting time on the development of gluten network in different sheeting directions and the textural properties of noodle dough. LWT, 141 110920 10.1016/j.lwt.2021.110920
  • Wellner, N.; Mills, E. N. C.; Brownsey, G.; Wilson, R. H.; Brown, N.; Freeman, J.; Halford, N. G.; Shewry, P. R.; Belton, P. S. Changes in Protein Secondary Structure during Gluten Deformation Studied by Dynamic Fourier Transform Infrared Spectroscopy. Biomacromolecules. 2005, 6, 255–261. DOI: 10.1021/bm049584d.
  • Bock, J.; Connelly, R.; Damodaran, S. Impact of Bran Addition on Water Properties and Gluten Secondary Structure in Wheat Flour Doughs Studied by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Cereal Chem. 2013, 90, 377–386. DOI: 10.1094/CCHEM-01-13-0008-FI.
  • Bock, J. E.; Damodaran, S. Bran-induced Changes in Water Structure and Gluten Conformation in Model Gluten Dough Studied by Fourier Transform Infrared Spectroscopy. Food Hydrocolloids. 2013, 31, 146–155. DOI: 10.1016/j.foodhyd.2012.10.014.
  • Guillermic, R. M.; Koksel, F.; Sun, X.; Hatcher, D. W.; Nickerson, M. T.; Belev, G. S.; Webb, M. A.; Page, J. H.; Scanlon, M. G. Bubbles in Noodle Dough: Characterization by X-ray Microtomography. Food Res. Int. 2018, 105, 548–555. DOI: 10.1016/j.foodres.2017.11.050.
  • Bilgicli, N. Effect of Pseudocereal Flours on Some Chemical Properties and Phytic Acid Content of Noodle. Qual. Assur. Saf. Crops Food. 2014, 6, 175–181. DOI: 10.3920/QAS2013.0257.
  • Jiang, S.; Yao, D. D.; Ke, S.; Zhu, M. R. Effects of Different Processing Conditions on Mechanical Properties of Dry Noodles. J. Texture Stud. 2014, 45, 387–395. DOI: 10.1111/jtxs.12089.
  • Ross, A.; Quail, K.; Crosbie, G. Physicochemical Properties of Australian Flours Influencing the Texture of Yellow Alkaline Noodles. Cereal Chem. 1997, 74, 814–820. DOI: 10.1094/CCHEM.1997.74.6.814.
  • Noda, T.; Tohnooka, T.; Taya, S.; Suda, I. Relationship between Physicochemical Properties of Starches and White Salted Noodle Quality in Japanese Wheat Flours. Cereal Chem. 2001, 78, 395–399. DOI: 10.1094/CCHEM.2001.78.4.395.
  • Aalami, M.; Rao, U. P.; Leelavathi, K. Physicochemical and Biochemical Characteristics of Indian Durum Wheat Varieties: Relationship to Semolina Milling and Spaghetti Making Quality. Food Chem. 2007, 102, 993–1005. DOI: 10.1016/j.foodchem.2006.06.052.
  • Bai, Y.; Guo, X.; Zhu, K.; Zhou, H. Shelf-life Extension of Semi-dried Buckwheat Noodles by the Combination of Aqueous Ozone Treatment and Modified Atmosphere Packaging. Food Chem. 2017, 237, 553–560. DOI: 10.1016/j.foodchem.2017.05.156.
  • Zhang, C.; Shi, Y.; Wang, L.; Cui, X.; Shi, F.; Li, S.; Xu, Y. Effects of Modified Atmosphere Package on Fresh-keeping Effect of Wet Raw Noodles. Packing Eng. 2018, 39, 86–91.
  • Anon. Quality assessment for wheat - sensory tests for noodles. Ministry of Agriculture, Forestry and Fisheries, National Foods Research Institute, Japan. 1985.
  • Tang, C.; Hsieh, F.; Heymann, H.; Huff, H. E. Analyzing and Correlating Instrumental and Sensory Data: A Multivariate Study of Physical Properties of Cooked Wheat Noodles. J. Food Qual. 2007, 22, 193–211. DOI: 10.1111/j.1745-4557.1999.tb00551.x.
  • Konik, C. M.; Mikkelsen, L. M.; Moss, R.; Gore, P. J. Relationships between Physical Starch Properties and Yellow Alkaline Noodle Quality. Starch. 1994, 46, 292–299. DOI: 10.1002/star.19940460804.
  • Yun, S. H.; Rema, G.; Quail, K. Instrumental Assessments of Japanese White Salted Noodle Quality. J. Sci. Food Agric. 1997, 74, 81–88.
  • Tang, C.; Hsieh, F.; Heymann, H.; Huff, H. E. Analyzing and Correlating Instrumental and Sensory Data: A Multivariate Study of Physical Properties of Cooked Wheat Noodles. J. Food Qual. 2010, 22, 193–211.
  • Sinesio, F. Flavor and Texture as Critical Sensory Parameters of Consumer Acceptance of Barley Pasta. Cereal Foods World. 2008, 53, 206–213.
  • Oh, N. H.; Seib, P.; Deroe, C. W. Noodle in Measuring the Texture Characters of Cooked Noodle. Cereal Chem. 1983, 60, 433–438.
  • Kaur, A.; Shevkani, K.; Katyal, M.; Singh, N.; Ahlawat, A. K.; Singh, A. M. Physicochemical and Rheological Properties of Starch and Flour from Different Durum Wheat Varieties and Their Relationships with Noodle Quality. J. Food Sci. Technol. 2016, 53, 2127–2138. DOI: 10.1007/s13197-016-2202-3.
  • Li, Q.; Obadi, M.; Qi, Y.; Liu, S.; Jiang, Y.; Zhang, Q.; Sun, J.; Jiang, S.; Xu, B. Softness, Elasticity, and Smoothness Characteristics of Cooked Udon Noodles Based on Texture Analysis. J. Texture Stud. 2019, 51, 444–452. DOI: 10.1111/jtxs.12503.
  • An, D.; Li, Q.; Li, E.; Obadi, M.; Li, C.; Li, H.; Zhang, J.; Du, J.; Zhou, X.; Li, N., et al. Structural Basis of Wheat Starch Determines the Adhesiveness of Cooked Noodles by Affecting the Fine Structure of Leached Starch. Food Chem. 2021, 341, 128222. DOI: 10.1016/j.foodchem.2020.128222.
  • Baik, B. K.; Lee, M. R. Effects of Starch Amylose Content of Wheat on Textural Properties of White Salted Noodles. Cereal Chem. 2003, 80, 304–309. DOI: 10.1094/CCHEM.2003.80.3.304.
  • Guo, G. M.; Jackson, D. S.; Graybosch, R. A.; Parkhurst, A. M. Asian Salted Noodle Quality: Impact of Amylose Content Adjustments Using Waxy Wheat Flour. Cereal Chem. 2003, 80, 437–445. DOI: 10.1094/CCHEM.2003.80.4.437.
  • Hou, G. G.Asian Noodles: Science, Technology and Processing. New Jersey: John Wiley & Sons , 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.