476
Views
0
CrossRef citations to date
0
Altmetric
Review

Healthy benefits and edible delivery systems of resveratrol: a review

&

References

  • Richard, J.-L. Coronary Risk Factors. The French Paradox. Arch. Mal. Coeur. Vaiss. 1987, 80, 17–21.
  • Renaud, S.; de Lorgeril, M.; Wine, A. Platelets, and the French Paradox for Coronary Heart Disease. Lancet. 1992, 339(8808), 1523–1526. DOI: 10.1016/0140-6736(92)91277-F.
  • Vestergaard, M.; Ingmer, H. Antibacterial and Antifungal Properties of Resveratrol. Int. J. Antimicrob. Agents. 2019, 53(6), 716–723. DOI: 10.1016/j.ijantimicag.2019.02.015.
  • Neves, A. R.; Lúcio, M.; Lima, J.; Reis, S. Resveratrol in Medicinal Chemistry: A Critical Review of Its Pharmacokinetics, Drug-delivery, and Membrane Interactions. Curr. Med. Chem. 2012, 19(11), 1663–1681. DOI: 10.2174/092986712799945085.
  • Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100(4), 1392–1404. DOI: 10.1002/jsfa.10152.
  • Stervbo, U.; Vang, O.; Bonnesen, C. A Review of the Content of the Putative Chemopreventive Phytoalexin Resveratrol in Red Wine. Food Chem. 2007, 101(2), 449–457. DOI: 10.1016/j.foodchem.2006.01.047.
  • Alrafas, H. R.; Busbee, P.; Nagarkatti, M.; Nagarkatti, P. Resveratrol Downregulates miR‐31 to Promote T Regulatory Cells during Prevention of TNBS‐induced Colitis. Mol. Nutr. Food Res. 2020, 64(1), e1900633. DOI: 10.1002/mnfr.201900633.
  • Josifovska, N.; Albert, N.; Lytvynchuk, M.; Kaarniranta, V.; Petrovski, G. Resveratrol as Inducer of Autophagy, Pro-survival, and Anti-inflammatory Stimuli in Cultured Human RPE Cells. Int. J. Mol. Sci. 2020, 21(3), 813. DOI: 10.3390/ijms21030813.
  • Tong, W.; Chen, X.; Song, X.; Chen, Y.; Jia, R.; Zou, Y.; Li, L.; He, C.; Liang, X.; Ye, G., et al. Resveratrol Inhibits LPS‑induced Inflammation through Suppressing the Signaling Cascades of TLR4‑NF‑κB/MAPKs/IRF3. Exp. Ther. Med. 2019, 19(3), 1824–1834. DOI: 10.3892/etm.2019.8396.
  • Avtanski, D.; Poretsky, L. Phyto-polyphenols as Potential Inhibitors of Breast Cancer Metastasis. Mol. Med. 2018, 24(1), 29. DOI: 10.1186/s10020-018-0032-7.
  • Cosin, M.; Senserrich, A.; Alquézar, P.; Pallàs, M.; Martín-Requero, Á.; Suñol, K.; Sanfeliu, C. Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-aging Genes in Immortalized Lymphocytes from Alzheimer’s Disease Patients. Nutrients. 2019, 11(8), 1764. DOI: 10.3390/nu11081764.
  • Wang, N.; Luo, Z.; Jin, M.; Sheng, W.; Wang, H.-T.; Long, X.; Wu, Y.; Hu, P.; Xu, H.; Zhang, X. Exploration of Age-related Mitochondrial Dysfunction and the Anti-aging Effects of Resveratrol in Zebrafish Retina. Aging. 2019, 11(10), 3117–3137. DOI: 10.18632/aging.101966.
  • Sandoval-Avila, S.; Diaz, N. F.; Gomez-Pinedo, U.; Canales, A.; Gutiérrez-Mercado, Y. K.; Padilla, E.; Marquez-Aguirre, A.; Diaz Martinez, N. E. Neuroprotective Effects of Phytochemicals on Dopaminergic Neuron Cultures. Neurología (Engl. Ed.). 2019, 34(2), 114–124. DOI: 10.1016/j.nrleng.2016.04.014.
  • Zhang, H.; Wu, Q.; Wan, Z.; Cao, Y.; Zeng, Z. Preconditioning but Not Postconditioning Treatment with Resveratrol Substantially Ameliorates Post‑resuscitation Myocardial Dysfunction through the PI3K/Akt Signaling Pathway. Mol. Med. Rep. 2019, 20(2), 1250–1258. DOI: 10.3892/mmr.2019.10318.
  • Al-Hussaini, H.; Kilarkaje, N. Trans-resveratrol Mitigates Type 1 Diabetes-induced Oxidative DNA Damage and Accumulation of Advanced Glycation End Products in Glomeruli and Tubules of Rat Kidneys. Toxicol. Appl. Pharmacol. 2018, 339, 97–109. DOI: 10.1016/j.taap.2017.11.025.
  • Sadi, G.; Şahin, G.; Bostancı, A. Modulation of Renal Insulin Signaling Pathway and Antioxidant Enzymes with Streptozotocin-induced Diabetes: Effects of Resveratrol. Medicina (Kaunas, Lithuania). 2019, 55(1), 1–13. DOI: 10.3390/medicina55010003.
  • Wang, P.; Li, D.; Ke, W.; Liang, D.; Hu, X.; Chen, F. Resveratrol-induced Gut Microbiota Reduces Obesity in High-fat Diet-fed Mice. Int. J. Obes. 2020, 44(1), 213–225. DOI: 10.1038/s41366-019-0332-1.
  • Santos, A. C.; Pereira, I.; Pereira-Silva, M.; Ferreira, L.; Caldas, M.; Magalhães, M.; Figueiras, A.; Ribeiro, A.; Veiga, F. Nanocarriers for Resveratrol Delivery: Impact on Stability and Solubility Concerns. Trends Food Sci. Tech. 2019, 91, 483–497. DOI: 10.1016/j.tifs.2019.07.048.
  • Davidov-Pardo, G.; McClements, D. J. Resveratrol Encapsulation: Designing Delivery Systems to Overcome Solubility, Stability and Bioavailability Issues. Trends Food Sci. Tech. 2014, 38(2), 88–103. DOI: 10.1016/j.tifs.2014.05.003.
  • Meng, Q.; Guo, T.; Li, G.; Sun, S.; He, S.; Cheng, B.; Shi, B.; Shan, A. Dietary Resveratrol Improves Antioxidant Status of Sows and Piglets and Regulates Antioxidant Gene Expression in Placenta by Keap1-Nrf2 Pathway and Sirt1. J. Anim. Sci. Biotech. 2018, 9, 34. DOI: 10.1186/s40104-018-0248-y.
  • Mokni, M.; Elkahoui, S.; Limam, F.; Amri, M.; Aouani, E. Effect of Resveratrol on Antioxidant Enzyme Activities in the Brain of Healthy Rat. Neurochem. Res. 2007, 32(6), 981–987. DOI: 10.1007/s11064-006-9255-z.
  • Akhondzadeh, F.; Astani, A.; Najjari, R.; Samadi, M.; Rezvani, M.; Zare, F.; Ranjbar, A.; Safari, F. Resveratrol Suppresses Interleukin‐6 Expression through Activation of Sirtuin 1 in Hypertrophied H9c2 Cardiomyoblasts. J. Cell. Physiol. 2020, 235(10), 6969–6977. DOI: 10.1002/jcp.29592.
  • Takizawa, Y.; Nakata, R.; Fukuhara, K.; Yamashita, H.; Kubodera, H.; Inoue, H. The 4′-Hydroxyl Group of Resveratrol Is Functionally Important for Direct Activation of PPARα. PLoS One. 2015, 10(3), e0120865. DOI: 10.1371/journal.pone.0120865.
  • Hošek, J.; Leláková, V.; Bobál, P.; Pížová, H.; Gazdová, M.; Malaník, M.; Jakubczyk, K.; Veselý, O.; Landa, P.; Temml, V., et al. Prenylated Stilbenoids Affect Inflammation by Inhibiting the NF-κB/AP-1 Signaling Pathway and Cyclooxygenases and Lipoxygenase. J. Nat. Prod. 2019, 82(7), 1839–1848. DOI: 10.1021/acs.jnatprod.9b00081.
  • Jie, K.; Wei, C.; Min, Z.; Ping, G.; Ying, W.; Dan, Z.; Sen, Z. Resveratrol Enhances Chemosensitivity of Renal Cell Carcinoma to Paclitaxel. Front. Biosci. (Landmark Ed.). 2019, 24, 1452–1461. DOI: 10.2741/4790.
  • Farhadnejad, H.; Emamat, H.; Zand, H. The Effect of Resveratrol on Cellular Senescence in Normal and Cancer Cells: Focusing on Cancer and Age-related Diseases. Nutr. Cancer. 2019, 71(7), 1175–1180. DOI: 10.1080/01635581.2019.1597907.
  • Oshaghi, E.; Goodarzi, M.; Higgins, V.; Adeli, K. Role of Resveratrol in the Management of Insulin Resistance and Related Conditions: Mechanism of Action. Crit. Rev. Clin. Lab. Sci. 2017, 54(4), 267–293. DOI: 10.1080/10408363.2017.1343274.
  • Chen, S.; Zhou, N.; Zhang, Z.; Li, W.; Zhu, W. Resveratrol Induces Cell Apoptosis in Adipocytes via AMPK Activation. Biochem. Biophys. Res. Commun. 2015, 457(4), 608–613. DOI: 10.1016/j.bbrc.2015.01.034.
  • Chen, Y. H.; Fu, Y. C.; Wu, M. J. Does Resveratrol Play a Role in Decreasing the Inflammation Associated with Contrast Induced Nephropathy in Rat Model? J. Clin. Med. 2019, 8(2), 147. DOI: 10.3390/jcm8020147.
  • Symington, B.; Mapanga, R. F.; Norton, G. R.; Essop, M. F. Resveratrol Co-treatment Attenuates the Effects of Hiv Protease Inhibitors on Rat Body Weight and Enhances Cardiac Mitochondrial Respiration. PLoS One. 2017, 12(1), e0170344. DOI: 10.1371/journal.pone.0170344.
  • S, M.; Shaik, A. H.; E, M. P.; Al Omar, S. Y.; Mohammad, A.; Kodidhela, L. D. Combined Cardio-protective Ability of Syringic Acid and Resveratrol against Isoproterenol Induced Cardio-toxicity in Rats via Attenuating NF-kB and TNF-α Pathways. Sci. Rep. 2020, 10(1), 3426. DOI: 10.1038/s41598-020-59925-0.
  • Augustin, M. A.; Sanguansri, L.; Lockett, T. Nano- and Micro-encapsulated Systems for Enhancing the Delivery of Resveratrol. Ann. N. Y. Acad. Sci. 2013, 1290, 107–112. DOI: 10.1111/nyas.12130.
  • Leiro, J.; Alvarez, E.; Arranz, J.; Laguna, R.; Uriarte, E.; Orallo, F. Effects of cis-resveratrol on Inflammatory Murine Macrophages: Antioxidant Activity and Down-regulation of Inflammatory Genes. Journal of Leukocyte Biology. 2004, 75(6), 1156–1165. DOI: 10.1189/jlb.1103561.
  • Huang, -T.-T.; Lai, H.-C.; Chen, Y.-B.; Chen, L.-G.; Wu, Y.-H.; Ko, Y.-F.; Lu, -C.-C.; Chang, C.-J.; Wu, C.-Y.; Martel, J., et al. Cis-Resveratrol Produces Anti-inflammatory Effects by Inhibiting Canonical and Non-canonical Inflammasomes in Macrophages. Innate. Immun. 2014, 20(7), 735–750. DOI: 10.1177/1753425913507096.
  • Sueishi, Y.; Nii, R.; Kakizaki, N. Resveratrol Analogues like Piceatannol are Potent Antioxidants as Quantitatively Demonstrated through the High Scavenging Ability against Reactive Oxygen Species and Methyl Radical. Bioorg. Med. Chem. Lett. 2017, 27(23), 5203–5206. DOI: 10.1016/j.bmcl.2017.10.045.
  • Acquaviva, R.; Russo, A.; Campisi, A.; Sorrenti, V.; Giacomo, C.; Barcellona, M.; Avitabile, M.; Vanella, A. Antioxidant Activity and Protective Effect on DNA Cleavage of Resveratrol. J. Food Sci. 2002, 67(1), 137–141. DOI: 10.1111/j.1365-2621.2002.tb11373.x.
  • Oh, W.; Shahidi, F. Antioxidant Activity of Resveratrol Ester Derivatives in Food and Biological Model Systems. Food Chem. 2018, 261, 267–273. DOI: 10.1016/j.foodchem.2018.03.085.
  • Zhang, H. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-inflammatory Effects. Curr. Opin. Food. Sci. 2016, 8, 33–42. DOI: 10.1016/j.cofs.2016.02.002.
  • Mishra, R.; Das, A.; Rana, S. Resveratrol Binding to Human Complement Fragment 5a (Hc5a) May Modulate the C5aR Signaling Axes. J. Biomol. Struct. Dyn. 2021, 39(5), 1766–1780. DOI: 10.1080/07391102.2020.1738958.
  • El-Ghazaly, M. A.; Fadel, N. A.; Abdel-Naby, D. H.; Abd El-Rehim, H. A.; Zaki, H. F.; Kenawy, S. A. Potential Anti-inflammatory Action of Resveratrol and Piperine in Adjuvant-induced Arthritis: Effect on Pro-inflammatory Cytokines and Oxidative Stress Biomarkers. Egypt. Rheumatol. 2020, 42(1), 71–77. DOI: 10.1016/j.ejr.2019.08.003.
  • Costa, D.; Campos, N.; A Santos, R.; Guedes-da-silva, F.; Martins-Dinis, M.; Zanphorlin, L.; Ramos, C.; Rangel, L.; Silva, J. Resveratrol Prevents P53 Aggregation in Vitro and in Breast Cancer Cells. Oncotarget. 2018, 9(49), 29112–29122. DOI: 10.18632/oncotarget.25631.
  • Singh, S.; Banerjee, S.; Acosta, E.; Lillard, J.; Singh, R. Resveratrol Induces Cell Cycle Arrest and Apoptosis with Docetaxel in Prostate Cancer Cells via a p53/p21WAF1/CIP1 and p27KIP1 Pathway. Oncotarget. 2017, 8(10), 17216–17228. DOI: 10.18632/oncotarget.15303.
  • Wang, F.-M.; Hu, Z.; Liu, X.; Feng, J.; Augsburger, R.; Gutmann, J.; Glickman, G. Resveratrol Represses Tumor Necrosis Factor α/c-Jun N-terminal Kinase Signaling via Autophagy in Human Dental Pulp Stem Cells. Arch. Oral. Biol. 2019, 97, 116–121. DOI: 10.1016/j.archoralbio.2018.10.020.
  • Chen, H.; Wang, C.; Li, H.; Ma, R.; Yu, Z.; Li, L.; Xiang, M.; Chen, X.; Hua, X.; Yu, Y. A Review of Toxicity Induced by Persistent Organic Pollutants (Pops) and Endocrine-disrupting Chemicals (Edcs) in the Nematode Caenorhabditis Elegans. J. Environ. Manage. 2019, 237, 519–525. DOI: 10.1016/j.jenvman.2019.02.102.
  • Kasiotis, K.; Pratsinis, H.; Kletsas, D.; Haroutounian, S. Resveratrol and Related Stilbenes: Their Anti-aging and Anti-angiogenic Properties. Food Chem. Toxicol. 2013, 61, 112–120. DOI: 10.1016/j.fct.2013.03.038.
  • Carpéné, C.; Les, F.; Cásedas, G.; Peiro, C.; Fontaine, J.; Chaplin, A.; Mercader, J.; Lopez, V. Resveratrol Anti-obesity Effects: Rapid Inhibition of Adipocyte Glucose Utilization. Antioxidants-Basel. 2019, 8(3), 74. DOI: 10.3390/antiox8030074.
  • Boden, M. J.; Brandon, A. E.; Tid-Ang, J. D.; Preston, E.; Wilks, D.; Stuart, E.; Cleasby, M. E.; Turner, N.; Cooney, G. J.; Kraegen, E. W. Overexpression of Manganese Superoxide Dismutase Ameliorates High-fat Diet-induced Insulin Resistance in Rat Skeletal Muscle. Am. J. Physiol. Endocrinol. Metab. 2012, 303(6), E798–805. DOI: 10.1152/ajpendo.00577.2011.
  • Huang, -D.-D.; Shi, G.; Jiang, Y.; Yao, C.; Zhu, C. A Review on the Potential of Resveratrol in Prevention and Therapy of Diabetes and Diabetic Complications. Biomed. Pharmacother. 2020, 125, 109767. DOI: 10.1016/j.biopha.2019.109767.
  • Ku, C.-R.; Lee, H.-J.; Kim, S.-K.; Lee, E.-Y.; Lee, M.-K.; Lee, E.-J.; Lee, E.-J. Resveratrol Prevents Streptozotocin-induced Diabetes by Inhibiting the Apoptosis of Pancreatic β-cell and the Cleavage of Poly (Adp-ribose) Polymerase. Endocr. J. 2012, 59(2), 103–109. DOI: 10.1507/endocrj.ej11-0194.
  • Cheng, A.-S.; Cheng, Y.-H.; Chang, T.-L. Resveratrol Prevents RINm5F Pancreatic cellS from Methylglyoxal-induced Apoptosis. J. Funct. Foods. 2013, 5(4), 1774–1783. DOI: 10.1016/j.jff.2013.07.021.
  • Chang, Y.-P.; Ka, S.-M.; Hsu, W.-H.; Chen, A.; Chao, L.-K.; Lin, -C.-C.; Hsieh, -C.-C.; Chen, M.-C.; Chiu, H.-W.; Ho, C.-L., et al. Resveratrol Inhibits NLRP3 Inflammasome Activation by Preserving Mitochondrial Integrity and Augmenting Autophagy. J. Cell Physiol. 2015, 230(7), 1567–1579. DOI: 10.1002/jcp.24903.
  • Mokni, M.; Hamlaoui, S.; Karkouch, I.; Amri, M.; Marzouki, L.; Limam, F.; Aouani, E. Resveratrol Provides Cardioprotection after Ischemia/reperfusion Injury via Modulation of Antioxidant Enzyme Activities. Iran. J. Pharm. Res. 2013, 12(4), 867–875. DOI: 10.2217/PME.13.73.
  • Ma, X.; Sun, Z.; Han, X.; Li, S.; Jiang, X.; Chen, S.; Zhang, J.; Lu, H. Neuroprotective Effect of Resveratrol via Activation of Sirt1 Signaling in a Rat Model of Combined Diabetes and Alzheimer’s Disease. Front. Neurosci. 2020, 13, 1400. DOI: 10.3389/fnins.2019.01400.
  • Chen, J.; Wei, N.; Lopez-Garcia, M.; Ambrose, D.; Lee, J.; Annelin, C.; Peterson, T. Development and Evaluation of Resveratrol, Vitamin E, and Epigallocatechin Gallate Loaded Lipid Nanoparticles for Skin Care Applications. Eur. J. Pharm. Biopharm. 2017, 117, 286–291. DOI: 10.1016/j.ejpb.2017.04.008.
  • Robinson, K.; Mock, C.; Liang, D. Pre-formulation Studies of Resveratrol. Drug Dev. Ind. Pharm. 2015, 41(9), 1464–1469. DOI: 10.3109/03639045.2014.958753.
  • Santos, A.-C.; Pereira, I.; Pereira-Silva, M.; Ferreira, L.; Caldas, M.; Collado-González, M.; Magalhães, M.; Figueiras, A.; Ribeiro, A. J.; Veiga, F. Nanotechnology-based Formulations for Resveratrol Delivery: Effects on Resveratrol in Vivo Bioavailability and Bioactivity. Coll. Surf. B. 2019, 180, 127–140. DOI: 10.1016/j.colsurfb.2019.04.030.
  • Esfanjani, A.; Jafari, S. Biopolymer Nano-particles and Natural Nano-carriers for Nano-encapsulation of Phenolic Compounds. Coll. Surf. B. 2016, 146, 532–543. DOI: 10.1016/j.colsurfb.2016.06.053.
  • Dai, T.; Li, R.; Liu, C.; Liu, W.; Li, T.; Chen, J.; Kharat, M.; McClements, D. J. Effect of Rice Glutelin-resveratrol Interactions on the Formation and Stability of Emulsions: A Multiphotonic Spectroscopy and Molecular Docking Study. Food Hydrocolloid. 2019, 97, 105234. DOI: 10.1016/j.foodhyd.2019.105234.
  • Cheng, H.; Fang, Z.; Wusigale, B.; M., A.; Chen, Y.; Liang, L. Complexation of Trans- and Cis-resveratrol with Bovine Serum Albumin, β-lactoglobulin or α-lactalbumin. Food Hydrocolloid. 2018, 81, 242–252. DOI: 10.1016/j.foodhyd.2018.02.037.
  • Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Carbonyl and Carboxylate Crosslinked Cyclodextrin as a Nanocarrier for Resveratrol: In Silico, in Vitro and in Vivo Evaluation. J. Incl. Phenom. Macro. 2018, 92, 261–272. DOI: 10.1007/s10847-018-0843-8.
  • Chen, S.; Zong, J.; Jiang, L.; Ma, C.; Li, H.; Zhang, D. Improvement of Resveratrol Release Performance and Stability in Extruded Microparticle by the α-amylase Incorporation. J. Food. Eng. 2020, 274, 109842. DOI: 10.1016/j.jfoodeng.2019.109842.
  • Fan, Y.; Zeng, X.; Yi, J.; Zhang, Y. Fabrication of Pea Protein Nanoparticles with Calcium-induced Cross-linking for the Stabilization and Delivery of Antioxidative Resveratrol. Int. J. Bio. Macromol. 2020, 152, 189–198. DOI: 10.1016/j.ijbiomac.2020.02.248.
  • Nunes, R.; Baião, A.; Monteiro, D.; Das Neves, J.; Sarmento, B. Zein Nanoparticles as Low-cost, Safe, and Effective Carriers to Improve the Oral Bioavailability of Resveratrol. Drug Deliv. Transl. Re. 2020, 10(3), 826–837. DOI: 10.1007/s13346-020-00738-z.
  • Cheng, H.; Fan, Q.; Liu, T.; Wusigale,; Liang, L. Co-encapsulation of α-tocopherol and Resveratrol in Oil-in-water Emulsion Stabilized by Sodium Caseinate: Impact of Polysaccharide on the Stability and Bioaccessibility. J. Food. Eng. 2020, 264, 109685. DOI: 10.1016/j.jfoodeng.2019.109685.
  • Cardia, M. C.; Caddeo, C.; Lai, F.; Fadda, A. M.; Sinico, C.; Luhmer, M. (1)H NMR Study of the Interaction of Trans-resveratrol with Soybean Phosphatidylcholine Liposomes. Sci. Rep. 2019, 9(1), 17736. DOI: 10.1038/s41598-019-54199-7.
  • Liu, Y.; Fan, Y.; Gao, L.; Zhang, Y.; Yi, J. Enhanced pH and Thermal Stability, Solubility and Antioxidant Activity of Resveratrol by Nanocomplexation with Alpha-lactalbumin. Food Func. 2018, 9(9), 4781–4790. DOI: 10.1039/c8fo01172a.
  • Min, J. B.; Kim, E. S.; Lee, J. S.; Lee, H. G. Preparation, Characterization, and Cellular Uptake of Resveratrol-loaded Trimethyl Chitosan Nanoparticles. Food Sci. Biotechnol. 2018, 27(2), 441–450. DOI: 10.1007/s10068-017-0272-2.
  • Suktham, K.; Koobkokkruad, T.; Wutikhun, T.; Surassmo, S. Efficiency of Resveratrol-loaded Sericin Nanoparticles: Promising Bionanocarriers for Drug Delivery. Int. J. Pharm. 2018, 537(1–2), 48–56. DOI: 10.1016/j.ijpharm.2017.12.015.
  • Zu, Y.; Zhang, Y.; Wang, W.; Zhao, X.; Han, X.; Wang, K.; Ge, Y. Preparation and in Vitro/in Vivo Evaluation of Resveratrol-loaded Carboxymethyl Chitosan Nanoparticles. Drug. Deliv. 2016, 23(3), 981–991. DOI: 10.3109/10717544.2014.924167.
  • Guo, C.; Yin, J.; Chen, D. Co-encapsulation of Curcumin and Resveratrol into Novel Nutraceutical Hyalurosomes Nano-food Delivery System Based on Oligo-hyaluronic Acid-curcumin Polymer. Carbohydr. Polym. 2018, 181, 1033–1037. DOI: 10.1016/j.carbpol.2017.11.046.
  • Chen, Y.; Li, D.; Chen, W.; Zhang, J. Preparation and Physicochemical Characterisation of Resveratrol-ovalbumin Microparticles. Int. J. Food. Sci. Tech. 2015, 50(10), 2201–2207. DOI: 10.1111/ijfs.12883.
  • Pandita, D.; Kumar, S.; Poonia, N.; Lather, V. Solid Lipid Nanoparticles Enhance Oral Bioavailability of Resveratrol, a Natural Polyphenol. Food. Res. Int. 2014, 62, 1165–1174. DOI: 10.1016/j.foodres.2014.05.059.
  • Seethu, B. G.; Pushpadass, H. A.; Emerald, F. M. E.; Nath, B. S.; Naik, N. L.; Subramanian, K. S. Electrohydrodynamic Encapsulation of Resveratrol Using Food-grade Nanofibres: Process Optimization, Characterization and Fortification. Food Bioprocess. Tech. 2020, 13(2), 341–354. DOI: 10.1007/s11947-019-02399-4.
  • Gandhi, H.; Rathore, C.; Dua, K.; Vihal, S.; Tambuwala, M. M.; Negi, P. Efficacy of Resveratrol Encapsulated Microsponges Delivered by Pectin Based Matrix Tablets in Rats with Acetic Acid-induced Ulcerative Colitis. Drug Dev. Ind. Pharm. 2020, 46(3), 365–375. DOI: 10.1080/03639045.2020.1724127.
  • Nazlı, A. B.; Açıkel, Y. S. Loading of Cancer Drug Resveratrol to pH-Sensitive, Smart, Alginate-chitosan Hydrogels and Investigation of Controlled Release Kinetics. Journal of Drug Delivery Science and Technology. 2019, 53, 101199. DOI: 10.1016/j.jddst.2019.101199.
  • Iglesias, N.; Galbis, E.; Diaz-Blanco, M. J.; Lucas, R.; Benito, E.; De-paz, M. V. Nanostructured Chitosan-based Biomaterials for Sustained and Colon-specific Resveratrol Release. Int. J. Mol. Sci. 2019, 20(2), 398. DOI: 10.3390/ijms20020398.
  • Prezotti, F. G.; Boni, F. I.; Ferreira, N. N.; Silva, D. S. E.; Campana-Filho, S. P.; Almeida, A.; Vasconcelos, T.; Gremiao, M. P. D.; Cury, B. S. F.; Sarmento, B. Gellan Gum/pectin Beads are Safe and Efficient for the Targeted Colonic Delivery of Resveratrol. Polymers-Basel. 2018, 10(1), 50. DOI: 10.3390/polym10010050.
  • Feng, W.; Yue, C.; Wusigale,; Ni, Y.; Liang, L. Preparation and Characterization of Emulsion-filled Gel Beads for the Encapsulation and Protection of Resveratrol and Alpha-tocopherol. Food Res. Int. 2018, 108, 161–171. DOI: 10.1016/j.foodres.2018.03.035.
  • Steiner, B. M.; Shukla, V.; McClements, D. J.; Li, Y. O.; Sancho-Madriz, M.; Davidov-Pardo, G. Encapsulation of Lutein in Nanoemulsions Stabilized by Resveratrol and Maillard Conjugates. J. Food Sci. 2019, 84(9), 2421–2431. DOI: 10.1111/1750-3841.14751.
  • Casanova, F.; Nascimento, -L.-G.-L.; Silva, M.-F.-N.; Carvalho, A.-F.; Gaucheron, F. Interactions between Caseins and Food-derived Bioactive Molecules: A Review. Food Chem. 2021, 359, 129850. DOI: 10.1016/j.foodchem.2021.129820.
  • Gorji, E.-G.; Rocchi, E.; Schleining, G.; Bender-Bojalil, D.; Furtmüller, P.-G.; Piazza, L.; Iturri, J.; Toca-Herrera, J. Characterization of Resveratrol–milk Protein Interaction. J. Food Eng. 2015, 167, 217–225. DOI: 10.1016/j.jfoodeng.2015.05.032.
  • Liang, L.; Tajmir-Riahi, H. A.; Subirade, M. Interaction of β-Lactoglobulin with Resveratrol and Its Biological Implications. Biomacromolecules. 2008, 9(1), 50–56. DOI: 10.1021/bm700728k.
  • Cheng, H.; Yanfang, L.; Yin, X.; Subirade, M.; Liang, L. The β-casein-resveratrol Complex: Physicochemical Characteristics and Implications for Enhanced Nutrition. J. Serb. Chem. Soc. 2016, 81(7), 739–750. DOI: 10.2298/jsc151029025c.
  • Zhang, J.; Liu, X.; Subirade, M.; Zhou, P.; Liang, L. A Study of Multi-ligand Beta-lactoglobulin Complex Formation. Food Chem. 2014, 165, 256–261. DOI: 10.1016/j.foodchem.2014.05.109.
  • Wu, Y.; Cheng, H.; Chen, Y.; Chen, L.; Fang, Z.; Liang, L. Formation of a Multiligand Complex of Bovine Serum Albumin with Retinol, Resveratrol, and (-)-epigallocatechin-3-gallate for the Protection of Bioactive Components. J. Agr. Food Chem. 2017, 65(14), 3019–3030. DOI: 10.1021/acs.jafc.7b00326.
  • Guo, Q.; Su, J.; Shu, X.; Yuan, F.; Mao, L.; Gao, Y. Development of High Methoxyl Pectin-surfactant-pea Protein Isolate Ternary Complexes: Fabrication, Characterization and Delivery of Resveratrol. Food Chem. 2020, 321, 126706. DOI: 10.1016/j.foodchem.2020.126706.
  • de Oliveira Makson, G. B.; Guimarães, A. G.; Araújo Adriano, A. S.; Quintans Jullyana, S. S.; Santos, M. R. V.; Quintans-Júnior, L. J. Cyclodextrins: Improving the Therapeutic Response of Analgesic Drugs: A Patent Review. Expert. Opin. Ther. Pat. 2015, 25(8), 897–907. DOI: 10.1517/13543776.2015.1045412.
  • Arora, D.; Saneja, A.; Jaglan, S. Cyclodextrin-based Delivery Systems for Dietary Pharmaceuticals. Environ. Chem. Lett. 2019, 17(3), 1263–1270. DOI: 10.1007/s10311-019-00878-w.
  • Swaminathan, S.; Cavalli, R.; Trotta, F. Cyclodextrin-based Nanosponges: A Versatile Platform for Cancer Nanotherapeutics Development. WIREs Nanomed. Nanobiotechnol. 2016, 8(4), 579–601. DOI: 10.1002/wnan.1384.
  • Cheng, J. G.; Tian, B. R.; Huang, Q.; Ge, H. R.; Wang, Z. Z. Resveratrol Functionalized Carboxymethyl-β-Cyclodextrin: Synthesis, Characterization, and Photostability. Journal of Chemistry. 2018, 2018, 6789076. DOI: 10.1155/2018/6789076.
  • Berta, G.-N.; Romano, F.; Vallone, R.; Abbadessa, G.; Scipio, F.-D.; Defabianis, P. An Innovative Strategy for Oral Biofilm Control in Early Childhood Based on a Resveratrol-cyclodextrin Nanotechnology Approach. Materials. 2021, 14(14), 3801. DOI: 10.3390/ma14143801.
  • Yang, Z.; Argenziano, M.; Salamone, P.; Pirro, E.; Sprio, A.; Di Scipio, F.; Carere, M.; Quaglino, E.; Cavallo, F.; Cavalli, R., et al. Preclinical Pharmacokinetics Comparison between Resveratrol 2-hydroxypropyl-β-cyclodextrin Complex and Resveratrol Suspension after Oral Administration. J. Incl. Phenom. Macro. 2016, 86, 263–271. DOI: 10.1007/s10847-016-0657-5.
  • He, J.; Zheng, Z. P.; Zhu, Q.; Guo, F.; Chen, J. Encapsulation Mechanism of Oxyresveratrol by Beta-cyclodextrin and Hydroxypropyl-beta-cyclodextrin and Computational Analysis. Molecules. 2017, 22(11), 1801. DOI: 10.3390/molecules22111801.
  • Matencio, A.; Garcia-Carmona, F.; Lopez-Nicolas, J. M. The Inclusion Complex of Oxyresveratrol in Modified Cyclodextrins: A Thermodynamic, Structural, Physicochemical, Fluorescent and Computational Study. Food Chem. 2017, 232, 177–184. DOI: 10.1016/j.foodchem.2017.04.027.
  • Zhu, P.; He, J.; Huang, S.; Han, L.; Chang, C.; Zhang, W. Encapsulation of Resveratrol in Zein-polyglycerol Conjugate Stabilized O/w Nanoemulsions: Chemical Stability, in Vitro Gastrointestinal Digestion, and Antioxidant Activity. LWT-Food Sci. Technol. 2021, 149, 112049. DOI: 10.1016/j.lwt.2021.112049.
  • Bayraktar, O.; Yahsi, Y.; Köse, M.-D. Electroencapsulation of Trans-resveratrol in Nanoparticles Composed of Silk Fibroin and Soluble Eggshell Membrane Protein. Food Bioprocess. Tech. 2021, 14, 334–351. DOI: 10.1007/s11947-020-02576-w.
  • Fonseca, D. P.; Khalil, N. M.; Mainardes, R. M. Bovine Serum Albumin-based Nanoparticles Containing Resveratrol: Characterization and Antioxidant Activity. J. Drug Deliv. Sci. Tec. 2017, 39, 147–155. DOI: 10.1016/j.jddst.2017.03.017.
  • Peñalva, R.; Morales, J.; González Navarro, C.; Larrañeta, E.; Quincoces, G.; Penuelas, I.; Irache, J. Increased Oral Bioavailability of Resveratrol by Its Encapsulation in Casein Nanoparticles. Int. J. Mol. Sci. 2018, 19(9), 2816. DOI: 10.3390/ijms19092816.
  • O’Sullivan, J.; Murray, B.; Flynn, C.; Norton, I. The Effect of Ultrasound Treatment on the Structural, Physical and Emulsifying Properties of Animal and Vegetable Proteins. Food Hydrocolloid. 2016, 53, 141–154. DOI: 10.1016/j.foodhyd.2015.02.009.
  • Jayan, H.; Maria Leena, M.; Sivakama Sundari, S. K.; Moses, J. A.; Anandharamakrishnan, C. Improvement of Bioavailability for Resveratrol through Encapsulation in Zein Using Electrospraying Technique. J. Funct. Foods. 2019, 57, 417–424. DOI: 10.1016/j.jff.2019.04.007.
  • Zhang, F.; Khan, M. A.; Cheng, H.; Liang, L. Co-encapsulation of α-tocopherol and Resveratrol within Zein Nanoparticles: Impact on Antioxidant Activity and Stability. J. Food Eng. 2019, 247, 9–18. DOI: 10.1016/j.jfoodeng.2018.11.021.
  • Qiu, C.; Wang, B.; Wang, Y.; Teng, Y. Effects of Colloidal Complexes Formation between Resveratrol and Deamidated Gliadin on the Bioaccessibility and Lipid Oxidative Stability. Food Hydrocolloid. 2017, 69, 466–472. DOI: 10.1016/j.foodhyd.2017.02.020.
  • Khan, M.; Fang, Z.; Na, W.; Cheng, H.; Gao, Y.; Deng, Z.; Liang, L. Encapsulation and Protection of Resveratrol in Kafirin and Milk Protein Nanoparticles. Int. J. Food Sci. Technol. 2019, 54(11), 2998–3007. DOI: 10.1111/ijfs.14212.
  • Lin, Y.-H.; Mi, F.-L.; Chen, C.-T.; Chang, W.-C.; Peng, S.-F.; Liang, H.-F.; Sung, H.-W. Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery. Biomacromolecules. 2007, 8(1), 146–152. DOI: 10.1021/bm0607776.
  • Wu, J.; Wang, Y.; Yang, H.; Liu, X.; Lu, Z. Preparation and Biological Activity Studies of Resveratrol Loaded Ionically Cross-linked chitosan-TPP Nanoparticles. Carbohydr. Polym. 2017, 175, 170–177. DOI: 10.1016/j.carbpol.2017.07.058.
  • Fu, D.; Han, B.; Dong, W.; Yang, Z.; Lv, Y.; Liu, W. Effects of Carboxymethyl Chitosan on the Blood System of Rats. Biochem. Bioph. Res. Co. 2011, 408(1), 110–114. DOI: 10.1016/j.bbrc.2011.03.130.
  • Davidov-Pardo, G.; Perez-Ciordia, S.; Marin-Arroyo, M. R.; McClements, D. J. Improving Resveratrol Bioaccessibility Using Biopolymer Nanoparticles and Complexes: Impact of Protein-carbohydrate Maillard Conjugation. J. Agric. Food Chem. 2015, 63(15), 3915–3923. DOI: 10.1021/acs.jafc.5b00777.
  • Davidov-Pardo, G.; Joye, I. J.; Espinal-Ruiz, M.; McClements, D. J. Effect of Maillard Conjugates on the Physical Stability of Zein Nanoparticles Prepared by Liquid Antisolvent Coprecipitation. J. Agric. Food Chem. 2015, 63(38), 8510–8518. DOI: 10.1021/acs.jafc.5b02699.
  • Joye, I. J.; Nelis, V. A.; McClements, D. J. Gliadin-based Nanoparticles: Stabilization by Post-production Polysaccharide Coating. Food Hydrocolloids. 2015, 43, 236–242. DOI: 10.1016/j.foodhyd.2014.05.021.
  • Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Improved Chemical Stability and Cellular Antioxidant Activity of Resveratrol in Zein Nanoparticle with Bovine Serum Albumin-caffeic Acid Conjugate. Food Chem. 2018, 261, 283–291. DOI: 10.1016/j.foodchem.2018.04.055.
  • Huang, X.; Liu, Y.; Zou, Y.; Liang, X.; Peng, Y.; McClements, D. J.; Hu, K. Encapsulation of Resveratrol in Zein/pectin Core-shell Nanoparticles: Stability, Bioaccessibility, and Antioxidant Capacity after Simulated Gastrointestinal Digestion. Food Hydrocolloid. 2019, 93, 261–269. DOI: 10.1016/j.foodhyd.2019.02.039.
  • Pauluk, D.; Padilha, A. K.; Khalil, N. M.; Mainardes, R. M. Chitosan-coated Zein Nanoparticles for Oral Delivery of Resveratrol: Formation, Characterization, Stability, Mucoadhesive Properties and Antioxidant Activity. Food Hydrocolloid. 2019, 94, 411–417. DOI: 10.1016/j.foodhyd.2019.03.042.
  • Liu, Y.; Liang, X.; Zou, Y.; Peng, Y.; McClements, D. J.; Hu, K. Resveratrol-loaded Biopolymer Core-shell Nanoparticles: Bioavailability and Anti-inflammatory Effects. Food Funct. 2020, 11(5), 4014–4025. DOI: 10.1039/d0fo00195c.
  • Ren, X.; Hou, T.; Liang, Q.; Zhang, X.; Hu, D.; Xu, B.; Chen, X.; Chalamaiah, M.; Ma, H. Effects of Frequency Ultrasound on the Properties of Zein-chitosan Complex Coacervation for Resveratrol Encapsulation. Food Chem. 2019, 279, 223–230. DOI: 10.1016/j.foodchem.2018.11.025.
  • Liu, Y.; Gao, L.; Yi, J.; Fan, Y.; Wu, X.; Zhang, Y. Alpha-Lactalbumin and Chitosan Core-shell Nanoparticles: Resveratrol Loading, Protection, and Antioxidant Activity. Food Funct. 2020, 11(2), 1525–1536. DOI: 10.1039/c9fo01998g.
  • Zhang, L.; Zhang, F.; Fang, Y.; Wang, S. Alginate-shelled SPI Nanoparticle for Encapsulation of Resveratrol with Enhanced Colloidal and Chemical Stability. Food Hydrocolloid. 2019, 90, 313–320. DOI: 10.1016/j.foodhyd.2018.12.042.
  • Xiong, W.; Ren, C.; Li, J.; Li, B. Enhancing the Photostability and Bioaccessibility of Resveratrol Using Ovalbumin-carboxymethylcellulose Nanocomplexes and Nanoparticles. Food Funct. 2018, 9(7), 3788–3797. DOI: 10.1039/c8fo00300a.
  • Guo, Q.; Shu, X.; Hu, Y.; Su, J.; Chen, S.; Decker, E.; Gao, Y. Formulated Protein-polysaccharide-surfactant Ternary Complexes for Co-encapsulation of Curcumin and Resveratrol: Characterization, Stability and in Vitro Digestibility. Food Hydrocolloid. 2021, 111, 106265. DOI: 10.1016/j.foodhyd.2020.106265.
  • Yang, C.; Wang, Y.; Xie, Y.; Liu, G.; Lu, Y.; Wu, W.; Chen, L. Oat Protein-shellac Nanoparticles as a Delivery Vehicle for Resveratrol to Improve Bioavailability in Vitro and in Vivo. Nanomedicine. 2019, 14(21), 2853–2871. DOI: 10.2217/nnm-2019-0244.
  • Liu, F.; Ma, D.; Luo, X.; Zhang, Z.; He, L.; Gao, Y.; McClements, D. J. Fabrication and Characterization of Protein-phenolic Conjugate Nanoparticles for Co-delivery of Curcumin and Resveratrol. Food Hydrocolloid. 2018, 79, 450–461. DOI: 10.1016/j.foodhyd.2018.01.017.
  • Chen, S.; Han, Y.; Jian, L.; Liao, W.; Zhang, Y.; Gao, Y. Fabrication, Characterization, Physicochemical Stability of Zein-chitosan Nanocomplex for Co-encapsulating Curcumin and Resveratrol. Carbohydr. Polym. 2020, 236, 116090. DOI: 10.1016/j.carbpol.2020.116090.
  • Cheng, H.; Fang, Z.; Liu, T.; Gao, Y.; Liang, L. A Study on β-lactoglobulin-triligand-pectin Complex Particle: Formation, Characterization and Protection. Food Hydrocolloid. 2018, 84, 93–103. DOI: 10.1016/j.foodhyd.2018.05.055.
  • Cho, A. R.; Chun, Y. G.; Kim, B. K.; Park, D. J. Preparation of alginate–CaCl2 Microspheres as Resveratrol Carriers. J. Mate. Sci. 2014, 49(13), 4612–4619. DOI: 10.1007/s10853-014-8163-x.
  • Cardoso, T.; Gonçalves, A.; Estevinho, B. N.; Rocha, F. Potential Food Application of Resveratrol Microparticles: Characterization and Controlled Release Studies. Powder Technol. 2019, 355, 593–601. DOI: 10.1016/j.powtec.2019.07.079.
  • Cho, A. R.; Chun, Y. G.; Kim, B. K.; Park, D. J. Preparation of chitosan-TPP Microspheres as Resveratrol Carriers. J. Food Sci. 2014, 79(4), E568–576. DOI: 10.1111/1750-3841.12395.
  • Ahmad, M.; Qureshi, S.; Maqsood, S.; Gani, A.; Masoodi, F. A. Micro-encapsulation of Folic Acid Using Horse Chestnut Starch and β-cyclodextrin: Microcapsule Characterization, Release Behavior & Antioxidant Potential during GI Tract Conditions. Food Hydrocolloid. 2017, 66, 154–160. DOI: 10.1016/j.foodhyd.2016.11.012.
  • Consoli, L.; Dias, R. A. O.; Da Silva Carvalho, A. G.; Da Silva, V. M.; Hubinger, M. D. Resveratrol-loaded Microparticles: Assessing Maillard Conjugates as Encapsulating Matrices. Powder Technol. 2019, 353, 247–256. DOI: 10.1016/j.powtec.2019.04.085.
  • Zhou, J.; Cheng, W.; Liu, T.; Li, J.; Li, X. Preparation, Characterization, and in Vitro Antioxidant Activity of pH-sensitive Resveratrol Microcapsule in Simulated Intestinal Fluids. Int. J. Food Prop. 2019, 22(1), 804–814. DOI: 10.1080/10942912.2019.1610432.
  • Benjasirimongkol, P.; Piriyaprasarth, S.; Sriamornsak, P. Improving Dissolution and Photostability of Resveratrol Using Redispersible Dry Emulsion: Application of Design Space for Optimizing Formulation and Spray-drying Process. J. Drug Deliv. Sci. Tec. 2019, 51, 411–418. DOI: 10.1016/j.jddst.2019.03.005.
  • Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of Liposomes in Medicine and Drug Delivery. Artif. Cell Nanomed. B. 2016, 44(1), 381–391. DOI: 10.3109/21691401.2014.953633.
  • Yingchoncharoen, P.; Kalinowski, D.; Richardson, D. Lipid-based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is yet to Come. Pharmacol. Rev. 2016, 68(3), 701–787. DOI: 10.1124/pr.115.012070.
  • Askarizadeh, A.; Butler, A.-E.; Badiee, A.; Sahebkar, A. Liposomal Nanocarriers for Statins: A Pharmacokinetic and Pharmacodynamics Appraisal. J. Cell Physiol. 2019, 234(2), 1219–1229. DOI: 10.1002/jcp.27121.
  • Shishir, M.-R.-I.; Karim, N.; Gowd, V.; Zheng, X.; Chen, W. Liposomal Delivery of Natural Product: A Promising Approach in Health Research. Trends. Food Sci. Tech. 2019, 85, 177–200. DOI: 10.1016/j.tifs.2019.01.013.
  • Gan, C.; Cai, K.; Qu, X.; Li, H.; Wei, L.; Cheng, R. Glucose-based Novel Gemini Surfactants: Surface Activities, Aggregation Properties and a Preliminary Study as Nanocarrier for Resveratrol. J. Mol. Liq. 2019, 283, 781–787. DOI: 10.1016/j.molliq.2019.03.153.
  • Zu, Y.; Overby, H.; Ren, G.; Zhaoyang, F.; Zhao, L.; Wang, S. Resveratrol Liposomes and Lipid Nanocarriers: Comparison of Characteristics and Inducing Browning of White Adipocytes. Coll. Surf. B. 2018, 164, 414–423. DOI: 10.1016/j.colsurfb.2017.12.044.
  • Park, S.; Jo, N.; Jeon, H. Chitosan-coated Liposomes for Enhanced Skin Permeation of Resveratrol. J. Ind. Eng. Chem. 2014, 20(4), 1481–1485. DOI: 10.1016/j.jiec.2013.07.035.
  • Shao, P.; Wang, P.; Niu, B.; Kang, J. Environmental Stress Stability of Pectin-stabilized Resveratrol Liposomes with Different Degree of Esterification. Int. J. Biol. Macromol. 2018, 119, 53–59. DOI: 10.1016/j.ijbiomac.2018.07.139.
  • Scalia, S.; Trotta, V.; Iannuccelli, V.; Bianchi, A. Enhancement of in Vivo Human Skin Penetration of Resveratrol by Chitosan-coated Lipid Microparticles. Coll. Surf. B. 2015, 135, 42–49. DOI: 10.1016/j.colsurfb.2015.07.043.
  • Coradini, K.; Lima, F. O.; Oliveira, C. M.; Chaves, P. S.; Athayde, M. L.; Carvalho, L. M.; Beck, R. C. Co-encapsulation of Resveratrol and Curcumin in Lipid-core Nanocapsules Improves Their in Vitro Antioxidant Effects. Eur. J. Pharm. Biopharm. 2014, 88(1), 178–185. DOI: 10.1016/j.ejpb.2014.04.009.
  • Huang, M.; Liang, C.; Tan, C.; Huang, S.; Ying, R.; Wang, Y.; Wang, Z.; Zhang, Y. Liposome Co-encapsulation as a Strategy for the Delivery of Curcumin and Resveratrol. Food Funct. 2019, 10(10), 6447–6458. DOI: 10.1039/c9fo01338e.
  • Paliwal, R.; Paliwal, S. R.; Kenwat, R.; Kurmi, B. D.; Sahu, M. K. Solid Lipid Nanoparticles: A Review on Recent Perspectives and Patents. Expert. Opin. Ther. Pat. 2020, 30(3), 179–194. DOI: 10.1080/13543776.2020.1720649.
  • Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R. Drug Delivery Systems for Resveratrol, a Non-flavonoid Polyphenol: Emerging Evidence in Last Decades. J. Drug Deliv. Sci. Tec. 2019, 51, 591–604. DOI: 10.1016/j.jddst.2019.03.017.
  • Arora, D.; Jaglan, S. Therapeutic Applications of Resveratrol Nanoformulations. Environ. Chem. Lett. 2018, 16, 35–41. DOI: 10.1007/s10311-017-0660-0.
  • Gumireddy, A.; Christman, R.; Kumari, D.; Tiwari, A.; North, E.; Chauhan, H. Preparation, Characterization, and in Vitro Evaluation of Curcumin- and Resveratrol-loaded Solid Lipid Nanoparticles. AAPS PharmSciTech. 2019, 20(4), 145. DOI: 10.1208/s12249-019-1349-4.
  • Shrotriya, S.; Ranpise, N.; Vidhate, B. Skin Targeting of Resveratrol Utilizing Solid Lipid Nanoparticle-engrossed Gel for Chemically Induced Irritant Contact Dermatitis. Drug Deliv. Transl. Res. 2017, 7, 37–52. DOI: 10.1007/s13346-016-0350-7.
  • Ramalingam, P.; Ko, Y. T. Improved Oral Delivery of Resveratrol from N-trimethyl Chitosan-g-palmitic Acid Surface-modified Solid Lipid Nanoparticles. Coll. Surf. B. 2016, 139, 52–61. DOI: 10.1016/j.colsurfb.2015.11.050.
  • Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S. Lipid Nano Scale Cargos for the Protection and Delivery of Food Bioactive Ingredients and Nutraceuticals. Trends Food Sci. Tech. 2018, 74, 132–146. DOI: 10.1016/j.tifs.2018.02.001.
  • Faridi Esfanjani, A.; Assadpour, E.; Jafari, S. M. Improving the Bioavailability of Phenolic Compounds by Loading Them within Lipid-based Nanocarriers. Trends Food Sci. Tech. 2018, 76, 56–66. DOI: 10.1016/j.tifs.2018.04.002.
  • Rafiee, Z.; Jafari, S.-M. Application of Lipid Nanocarriers for the Food Industry. Bioactive Molecules in Food. Ed(s), Jm., M., Ramawat, K. Springer: Cham, 2018; pp 623–665. doi: 10.1007/978-3-319-54528-8_93-1.
  • Davidov-Pardo, G.; McClements, D. Nutraceutical Delivery Systems: Resveratrol Encapsulation in Grape Seed Oil Nanoemulsions Formed by Spontaneous Emulsification. Food Chem. 2015, 167, 205–212. DOI: 10.1016/j.foodchem.2014.06.082.
  • Choi, S.; McClements, D. Nanoemulsions as Delivery Systems for Lipophilic Nutraceuticals: Strategies for Improving Their Formulation, Stability, Functionality and Bioavailability. Food Sci. Biotechnol. 2020, 29(2), 149–168. DOI: 10.1007/s10068-019-00731-4.
  • Lv, X.; Cong, Z.; Liu, Z.; Ma, X.-D.; Xu, M.; Tian, Y.; Zhang, X.; Xu, B.; Zhang, J.; Tang, Z. Improvement of the Solubility, Photostability, Antioxidant Activity and UVB Photoprotection of Trans-resveratrol by Essential Oil Based Microemulsions for Topical Application. J. Drug Deliv. Sci. Tec. 2018, 48, 346–354. DOI: 10.1016/j.jddst.2018.10.017.
  • Chen, Y.; Zhang, H.; Yang, J.; Sun, H. Improved Antioxidant Capacity of Optimization of a Self-microemulsifying Drug Delivery System for Resveratrol. Molecules. 2015, 20(12), 21167–21177. DOI: 10.3390/molecules201219750.
  • Amri, A.; Le Clanche, S.; Thérond, P.; Bonnefont-Rousselot, D.; Borderie, D.; Lai-Kuen, R.; Chaumeil, J.-C.; Sfar, S.; Charrueau, C. Resveratrol Self-emulsifying System Increases the Uptake by Endothelial Cells and Improves Protection against Oxidative Stress-mediated Death. Eur. J. Pharm. Biopharm. 2014, 86(3), 418–426. DOI: 10.1016/j.ejpb.2013.10.015.
  • Tang, H.; Xiang, S.; Li, X.; Zhou, J.; Kuang, C. Preparation and in Vitro Performance Evaluation of Resveratrol for Oral Self-microemulsion. PloS One. 2019, 14(4), e0214544. DOI: 10.1371/journal.pone.0214544.
  • Yang, -F.-F.; Zhou, J.; Hu, X.; Cong, Z.; Liu, C.-Y.; Pan, R.-L.; Chang, Q.; Liao, Y.-H. Improving Oral Bioavailability of Resveratrol by a UDP-glucuronosyltransferase Inhibitory Excipient-based Self-microemulsion. Eur. J. Pharm. Sci. 2018, 114, 303–309. DOI: 10.1016/j.ejps.2017.12.026.
  • Seljak, K.; Ilić, I.; Gašperlin, M.; Zvonar Pobirk, A. Self-microemulsifying Tablets Prepared by Direct Compression for Improved Resveratrol Delivery. Int. J. Pharm. 2018, 548(1), 263–275. DOI: 10.1016/j.ijpharm.2018.06.065.
  • Aloisio, C.; Bueno, M.; Ponte, M.; Paredes, A.; Palma, S.; Longhi, M. Development of Solid Self-emulsifying Drug Delivery Systems (SEDDS) to Improve the Solubility of Resveratrol. Ther. Deliv. 2019, 10, 626–641. DOI: 10.4155/tde-2019-0054.
  • Sessa, M.; Balestrieri, M. L.; Ferrari, G.; Servillo, L.; Castaldo, D.; D’Onofrio, N.; Donsì, F.; Tsao, R. Bioavailability of Encapsulated Resveratrol into Nanoemulsion-based Delivery Systems. Food Chem. 2014, 147, 42–50. DOI: 10.1016/j.foodchem.2013.09.088.
  • Zhou, J.; Zhou, M.; Yang, -F.-F.; Liu, C.-Y.; Pan, R.-L.; Chang, Q.; Liu, X.-M.; Liao, Y.-H. Involvement of the Inhibition of Intestinal Glucuronidation in Enhancing the Oral Bioavailability of Resveratrol by Labrasol Containing Nanoemulsions. Mol. Pharmaceut. 2015, 12(4), 1084–1095. DOI: 10.1021/mp5005838.
  • Fan, Q.; Wang, L.; Song, Y.; Fang, Z.; Subirade, M.; Liang, L. Partition and Stability of Resveratrol in Whey Protein Isolate Oil-in-water Emulsion: Impact of Protein and Calcium Concentrations. Int. Dairy J. 2017, 73, 128–135. DOI: 10.1016/j.idairyj.2017.06.002.
  • Zhang, H.; Fan, Q.; Li, D.; Chen, X.; Liang, L. Impact of Gum Arabic on the Partition and Stability of Resveratrol in Sunflower Oil Emulsions Stabilized by Whey Protein Isolate. Coll. Surf. B. 2019, 181, 749–755. DOI: 10.1016/j.colsurfb.2019.06.034.
  • Shao, P.; Feng, J.; Sun, P.; Ritzoulis, C. Improved Emulsion Stability and Resveratrol Encapsulation by Whey Protein/gum Arabic Interaction at Oil-water Interface. Int. J. Biol. Macromol. 2019, 133, 466–472. DOI: 10.1016/j.ijbiomac.2019.04.126.
  • Consoli, L.; Dias, R. A. O.; Rabelo, R. S.; Furtado, G. F.; Sussulini, A.; Cunha, R. L.; Hubinger, M. D. Sodium Caseinate-corn Starch Hydrolysates Conjugates Obtained through the Maillard Reaction as Stabilizing Agents in Resveratrol-loaded Emulsions. Food Hydrocolloid. 2018, 84, 458–472. DOI: 10.1016/j.foodhyd.2018.06.017.
  • Wang, L.; Gao, Y.; Li, J.; Subirade, M.; Song, Y.; Liang, L. Effect of Resveratrol or Ascorbic Acid on the Stability of Alpha-tocopherol in O/W Emulsions Stabilized by Whey Protein Isolate: Simultaneous Encapsulation of the Vitamin and the Protective Antioxidant. Food Chem. 2016, 196, 466–474. DOI: 10.1016/j.foodchem.2015.09.071.
  • Fang, Z.; Wusigale,; Bao, H.; Ni, Y.; Choijilsuren, N.; Liang, L. Partition and Digestive Stability of α-tocopherol and Resveratrol/naringenin in Whey Protein Isolate Emulsions. Int. Dairy J. 2019, 93, 116–123. DOI: 10.1016/j.idairyj.2019.01.017.
  • Shehzad, Q.; Rehman, A.; Jafari, S.-M.; Zuo, M.; Khan, M.-A.; Ali, A.; Khan, S.; Karim, A.; Usman, M.; Hussain, A., et al. Improving the Oxidative Stability of Fish Oil Nanoemulsions by Co-encapsulation with Curcumin and Resveratrol. Coll. Surf. B. 2021, 199, 111481. DOI: 10.1016/j.colsurfb.2020.111481.
  • Xiao, J.; Li, Y.; Huang, Q. Recent Advances on Food-grade Particles Stabilized Pickering Emulsions: Fabrication, Characterization and Research Trends. Trends Food Sci. Tech. 2016, 55, 48–60. DOI: 10.1016/j.tifs.2016.05.010.
  • Matos, M.; Laca, A.; Rea, F.; Iglesias, O.; Rayner, M.; Gutiérrez, G. O/W Emulsions Stabilized by OSA-modified Starch Granules versus Non-ionic Surfactant: Stability, Rheological Behaviour and Resveratrol Encapsulation. J. Food Eng. 2018, 222, 207–217. DOI: 10.1016/j.jfoodeng.2017.11.009.
  • Wei, Y.; Yu, Z.; Lin, K.; Yang, S.; Tai, K.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Fabrication, Physicochemical Stability, and Microstructure of Coenzyme Q10 Pickering Emulsions Stabilized by Resveratrol-loaded Composite Nanoparticles. Journal of Agricultural and Food Chemistry. 2020, 68(5), 1405–1418. DOI: 10.1021/acs.jafc.9b06678.
  • Cheng, H.; Khan, M. A.; Xie, Z.; Tao, S.; Li, Y.; Liang, L. A Peppermint Oil Emulsion Stabilized by Resveratrol-zein-pectin Complex Particles: Enhancing the Chemical Stability and Antimicrobial Activity in Combination with the Synergistic Effect. Food Hydrocolloid. 2020, 103, 105675. DOI: 10.1016/j.foodhyd.2020.105675.
  • Kanouni, M.; Rosano, H. L.; Naouli, N. Preparation of a Stable Double Emulsion (W1/O/W2): Role of the Interfacial Films on the Stability of the System. Adv. Colloid. Interface. 2002, 99(3), 229–254. DOI: 10.1016/S0001-8686(02)00079-9.
  • Wang, J.; Shi, A.; Agyei, D.; Wang, Q. Formulation of Water-in-oil-in-water (W/O/W) Emulsions Containing Trans-resveratrol. RSC Adv. 2017, 7(57), 35917–35927. DOI: 10.1039/c7ra05945k.
  • Matos, M.; Gutiérrez, G.; Martínez-Rey, L.; Iglesias, O.; Pazos, C. Encapsulation of Resveratrol Using Food-grade Concentrated Double Emulsions: Emulsion Characterization and Rheological Behaviour. J. Food Eng. 2018, 226, 73–81. DOI: 10.1016/j.jfoodeng.2018.01.007.
  • Li, L.; Chen, M.; Jiang, S.; Cheng, J.; Li, X.; Zhang, M.; Jiangb, S. Gelatin/zein Fiber Mats Encapsulated with Resveratrol: Kinetics, Antibacterial Activity and Application for Pork Preservation. Food Hydrocolloid. 2020, 101, 105577. DOI: 10.1016/j.foodhyd.2019.105577.
  • Li, L.; Wang, H.; Chen, M.; Jiang, S.; Jiang, S.; Li, X.; Wang, Q. Butylated Hydroxyanisole Encapsulated in Gelatin Fiber Mats: Volatile Release Kinetics, Functional Effectiveness and Application to Strawberry Preservation. Food Chem. 2018, 269(15), 142–149. DOI: 10.1016/j.foodchem.2018.06.150.
  • Ahmed, R. Z.; Patil, G.; Zaheer, Z. Nanosponges–a Completely New Nano-horizon: Pharmaceutical Applications and Recent Advances. Drug Dev. Ind. Pharm. 2013, 39(9), 1263–1272. DOI: 10.3109/03639045.2012.694610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.