731
Views
5
CrossRef citations to date
0
Altmetric
Review

Application of Raman Spectroscopy and Chemometrics for Quality Controls of Fats and Oils: A Review

, , , , , , & show all

References

  • Baeten, V.; Aparicio, R. Edible Oils and Fats Authentication by Fourier Transform Raman Spectrometry. Biotechnol. Agron. Soc. Environ. 2000, 4, 196–203.
  • Rohman, A. Infrared Spectroscopy for Quantitative Analysis and Oil Parameters of Olive Oil and Virgin Coconut Oil: A Review. Int. J. Food Prop. 2017, 20, 1447–1456. DOI: 10.1080/10942912.2016.1213742.
  • Endo, Y. Analytical Methods to Evaluate the Quality of Edible Fats and Oils: The JOCS Standard Methods for Analysis of Fats, Oils and Related Materials (2013) and Advanced Methods. J. Oleo Sci. 2018, 67, 1–10. DOI: 10.5650/jos.ess17130.
  • Negash, Y. A.; Amare, D. E.; Bitew, B. D.; Dagne, H. Assessment of Quality of Edible Vegetable Oils Accessed in Gondar City, Northwest Ethiopia. BMC Res. Notes. 2019, 12, 1–5. DOI: 10.1186/s13104-019-4831-x.
  • Nunes, C. A. Vibrational Spectroscopy and Chemometrics to Assess Authenticity, Adulteration and Intrinsic Quality Parameters of Edible Oils and Fats. Food Res. Int. 2014, 60, 255–261. DOI: 10.1016/j.foodres.2013.08.041.
  • Bansal, S.; Singh, A.; Mangal, M.; Mangal, A. K.; Kumar, S. Food Adulteration: Sources, Health Risks, and Detection Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. DOI: 10.1080/10408398.2014.967834.
  • Li, X.; Zhang, L.; Zhang, Y.; Wang, D.; Wang, X.; Yu, L.; Zhang, W.; Li, P. Review of NIR Spectroscopy Methods for Nondestructive Quality Analysis of Oilseeds and Edible Oils. Trends Food Sci. Technol. 2020, 101, 172–181. DOI: 10.1016/j.tifs.2020.05.002.
  • Rohman, A.; Man, Y. B. C. Application of Fourier Transform Infrared Spectroscopy for Authentication of Functional Food Oils. Appl. Spectrosc. Rev. 2012, 47, 1–13. DOI: 10.1080/05704928.2011.619020.
  • Rohman, A. The Use of Infrared Spectroscopy in Combination with Chemometrics for Quality Control and Authentication of Edible Fats and Oils: A Review. Appl. Spectrosc. Rev. 2017, 52, 589–604. DOI: 10.1080/05704928.2016.1266493.
  • Santos, J. S.; Escher, G. B.; Pereira, J. M. D. S.; Marinho, M. T.; Prado-Silva, L. D.; Sant’Ana, A. S.; Dutra, L. M.; Barison, A.; Granato, D. 1H NMR Combined with Chemometrics Tools for Rapid Characterization of Edible Oils and Their Biological Properties. Ind. Crop Prod. 2018, 116, 191–200. DOI: 10.1016/j.indcrop.2018.02.063.
  • Esteki, M.; Simal-Gandara, J.; Shahsavari, Z.; Zandbaaf, S.; Dashtaki, E.; Vander Heyden, Y. A Review on the Application of Chromatographic Methods, Coupled to Chemometrics, for Food Authentication. Food Control. 2018, 93, 165–182. DOI: 10.1016/j.foodcont.2018.06.015.
  • Peris, M.; Escuder-Gilabert, L. Electronic Noses and Tongues to Assess Food Authenticity and Adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. DOI: 10.1016/j.tifs.2016.10.014.
  • Berghian-Grosan, C.; Magdas, D. A. Raman Spectroscopy and Machine-learning for Edible Oils Evaluation. Talanta. 2020, 218, 121176. DOI: 10.1016/j.talanta.2020.121176.
  • Das, R. S.; Agrawal, Y. K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc. 2011, 57, 163–176. DOI: 10.1016/j.vibspec.2011.08.003.
  • Hasanah, L.; Julian, C.; Mulyanti, B.; Aransa, A.; Sumatri, R.; Johari, M. H.; David, J. P. R.; Mohmad, A. R. Photoluminescence and Raman Scattering of GaAs1-xBix Alloy. Sains Malays. 2020, 49, 2559–2564. DOI: 10.17576/jsm-2020-4910-21.
  • Hu, R.; He, T.; Zhang, Z.; Yang, Y.; Liu, M. Safety Analysis of Edible Oil Products via Raman Spectroscopy. Talanta. 2019, 191, 324–332. DOI: 10.1016/j.talanta.2018.08.074.
  • Carmona, M. A.; Lafont, F.; Jiménez-Sanchidrián, C.; Ruiz, J. R. Raman Spectroscopy Study of Edible Oils and Determination of the Oxidative Stability at Frying Temperature. Eur. J. Lipid Sci. Technol. 2014, 116(11), 1451–1456. DOI: 10.1002/ejlt.201400127.
  • Kwofie, F.; Lavine, B. K.; Ottaway, J.; Booksh, K. Incorporating Brand Variability into Classification of Edible Oils by Raman Spectroscopy. J. Chemom. 2019, 37(7), 1–14.
  • Jimenez-Sanchidrian, C.; Ruiz, J. R. Use of Raman Spectroscopy for Analysing Edible Vegetable Oils. Appl. Spectrosc. Rev. 2016, 51(5), 417–430. DOI: 10.1080/05704928.2016.1141292.
  • Ozaki, Y.; Šašić, S. Introduction to Raman Spectroscopy. Pharmaceutical Applications of Raman Spectroscopy; John Wiley & Sons, Inc, 2007. DOi: 10.1002/9780470225882.ch1.
  • Yang, D.; Ying, Y. Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review. Appl. Spectrosc. Rev. 2011, 46, 539–560. DOI: 10.1080/05704928.2011.593216.
  • Handapangoda, C. C.; Nahavandi, S.; Premaratne, M. Review of Nanoscale Spectroscopy in Medicine: Nanoscale Spectroscopy with Applications; CRC Press. Monash University, 2013; pp 439–472. DOI: 10.1201/b15615-12.
  • Li, Y. S.; Church, J. S. Raman Spectroscopy in the Analysis of Food and Pharmaceutical Nanomaterials. J. Food Drug Anal. 2014, 22, 29–48. DOI: 10.1016/j.jfda.2014.01.003.
  • Üçüncüoǧlu, D.; Ilaslan, K.; Boyaci, I. H.; Özay, D. S. Rapid Detection of Fat Adulteration in Bakery Products Using Raman and Near-infrared Spectroscopies. Eur. Food Res. Technol. 2013, 237, 703–710. DOI: 10.1007/s00217-013-2030-x.
  • Dymińska, L.; Calik, M.; Albegar, A. M. M.; Zając, A.; Kostyń, K.; Lorenc, J.; Hanuza, J. Quantitative Determination of the Iodine Values of Unsaturated Plant Oils Using Infrared and Raman Spectroscopy Methods. Int. J. Food Prop. 2017, 20, 2003–2015. DOI: 10.1080/10942912.2016.1230744.
  • Qiu, J.; Hou, H. Y.; Yang, I. S.; Chen, X. B. Raman Spectroscopy Analysis of Free Fatty Acid in Olive Oil. Appl. Sci. (Switzerland). 2019, 9. DOI: 10.3390/app9214510.
  • Bumbrah, G. S.; Sharma, R. M. Raman Spectroscopy – Basic Principle, Instrumentation and Selected Applications for the Characterization of Drugs of Abuse. Egypt. J. Forensic Sci. 2016, 6, 209–215. DOI: 10.1016/j.ejfs.2015.06.001.
  • Craig, A. P.; Franca, A. S.; Irudayaraj, J. Surface-Enhanced Raman Spectroscopy Applied to Food Safety. Annu. Rev. Food Sci. Technol. 2013, 4, 369–380. DOI: 10.1146/annurev-food-022811-101227.
  • Lohumi, S.; Lee, S.; Lee, H.; Cho, B. K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. DOI: 10.1016/j.tifs.2015.08.003.
  • Rohman, A.; Windarsih, A.; Lukitaningsih, E.; Rafi, M.; Betania, K.; Fadzillah, N. A. The Use of FTIR and Raman Spectroscopy in Combination with Chemometrics for Analysis of Biomolecules in Biomedical Fluids: A Review. Biomed. Spectrosc. Imaging. 2020, 8, 55–71. DOI: 10.3233/bsi-200189.
  • Zheng, J.; He, L. Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Compr. Rev. Food Sci. F. 2014, 13, 317–328. DOI: 10.1111/1541-4337.12062.
  • Mazivila, S. J.; Olivieri, A. C. Chemometrics Coupled to Vibrational Spectroscopy and Spectroscopic Imaging for the Analysis of Solid-phase Pharmaceutical Products: A Brief Review on Non-destructive Analytical Methods. Trac-Trends Anal. Chem. 2018, 108, 74–87. DOI: 10.1016/j.trac.2018.08.013.
  • Rohman, A.; Windarsih, A.; Erwanto, Y.; Zakaria, Z. Review on Analytical Methods for Analysis of Porcine Gelatine in Food and Pharmaceutical Products for Halal Authentication. Trends Food Sci. Technol. 2020, 101, 122–132. DOI: 10.1016/j.tifs.2020.05.008.
  • Rohman, A.; Che Man, Y. B. Application of FTIR Spectroscopy for Monitoring the Stabilities of Selected Vegetable Oils during Thermal Oxidation. Int. J. Food Prop. 2013, 16, 1594–1603. DOI: 10.1080/10942912.2011.603874.
  • Li, Q.; Chen, J.; Huyan, Z.; Kou, Y.; Xu, L.; Yu, X.; Gao, J. M. Application of Fourier Transform Infrared Spectroscopy for the Quality and Safety Analysis of Fats and Oils: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3597–3611. DOI: 10.1080/10408398.2018.1500441.
  • Guzmán, E.; Baeten, V.; Fernández Pierna, J. A.; García-Mesa, J. A. Application of Low-resolution Raman Spectroscopy for the Analysis of Oxidized Olive Oil. Food Control. 2011, 22(12), 2036–2040. DOI: 10.1016/j.foodcont.2011.05.025.
  • Gouvinhas, I.; Machado, N.; Carvalho, T.; De Almeida, J. M. M. M.; Barros, A. I. R. N. A. Short Wavelength Raman Spectroscopy Applied to the Discrimination and Characterization of Three Cultivars of Extra Virgin Olive Oils in Different Maturation Stages. Talanta. 2015, 132, 829–835. DOI: 10.1016/j.talanta.2014.10.042.
  • El-Abassy, R. M.; Donfack, P.; Materny, A. Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis. J. Am. Oil Chem. Soc. 2009, 86(6), 507–511. DOI: 10.1007/s11746-009-1389-0.
  • Samyn, P.; Van Nieuwkerke, D.; Schoukens, G.; Vonck, L.; Stanssens, D.; Van Den Abbeele, H. Quality and Statistical Classification of Brazilian Vegetable Oils Using Mid-infrared and Raman Spectroscopy. Appl. Spectrosc. 2012, 66, 552–565. DOI: 10.1366/11-06484.
  • Portarena, S.; Anselmi, C.; Zadra, C.; Farinelli, D.; Famiani, F.; Baldacchini, C.; Brugnoli, E. Cultivar Discrimination, Fatty Acid Profile and Carotenoid Characterization of Monovarietal Olive Oils by Raman Spectroscopy at a Single Glance. Food Control. 2019, 96, 137–145. DOI: 10.1016/j.foodcont.2018.09.011.
  • Jiang, Y.; Su, M.; Yu, T.; Du, S.; Liao, L. Quantitative Determination of Peroxide Value of Edible Oil by Algorithm-assisted Liquid Interfacial Surface Enhanced Raman Spectroscopy. Food Chem. 2020. DOI: 10.1016/j.foodchem.2020.128709.
  • Aykas, D. P.; Karaman, A. D.; Keser, B.; Rodriguez-Saona, L. Non-targeted Authentication Approach for Extra Virgin Olive Oil. Foods. 2020, 9, 1–17. DOI: 10.3390/foods9020221.
  • Sottero, B.; Leonarduzzi, G.; Testa, G.; Gargiulo, S.; Poli, G.; Biasi, F. Lipid Oxidation Derived Aldehydes and Oxysterols between Health and Disease. Eur. J. Lipid Sci. Technol. 2018, 121(1), 1700047. DOI: 10.1002/ejlt.201700047.
  • Vieira, S. A.; Zhang, G.; Decker, E. A. Biological Implications of Lipid Oxidation Products. J. Am. Oil Chem.’ Soc. 2017, 94, 339–351. DOI: 10.1007/s11746-017-2958-2.
  • Sultana, R.; Perluigi, M.; Butterfield, D. A. Lipid Peroxidation Triggers Neurodegeneration: A Redox Proteomics View into the Alzheimer Disease Brain. Free Radic. Biol. Med. 2012, 62, 157–169. DOI: 10.1016/j.freeradbiomed.2012.09.027.
  • Davi, G.; Falco, A.; Patrono, C. Lipid Peroxidation in Diabetes Mellitus. Antioxid. Redox Signal. 2005, 7(1–2), 256–268. DOI: 10.1089/ars.2005.7.256.
  • Zhong, S.; Li, L.; Shen, X.; Li, Q.; Xu, W.; Wang, X.; Tao, Y.; Yin, H. An Update on Lipid Oxidation and Inflammation in Cardiovascular Diseases. Free Radic. Biol. Med. 2019, 144, 266–278. DOI: 10.1016/j.freeradbiomed.2019.03.036.
  • Yee, T. P.; Tiu, T. K. Effects of Oxidized Oils on Inflammation-related Cancer Risk. J. Oil Palm Res. 2019, 31(1), 1–13.
  • Li, Y.; Driver, M.; Decker, E.; He, L. Lipid and Lipid Oxidation Analysis Using Surface Enhanced Raman Spectroscopy (SERS) Coupled with Silver Dendrites. Food Res. Inter. 2014, 58, 1–6. DOI: 10.1016/j.foodres.2014.01.056.
  • Valasi, L.; Kokotou, M. G.; Pappas, C. S. G. C.-M. S. FTIR and Raman Spectroscopic Analysis of Fatty Acids of Pistacia Vera (Greek Variety “Aegina”) Oils from Two Consecutive Harvest Periods and Chemometric Differentiation of Oils Quality. Food Res. Inter. 2021, 148, 110590. DOI: 10.1016/j.foodres.2021.110590.
  • Rukunudin, I. H.; White, P. J.; Bern, C. J.; Bailey, T. B. A Modified Method for Determining Free Fatty Acids from Small Soybean Oil Sample Sizes. J. Am. Oil Chem. Soc. 1998, 75, 563–568. DOI: 10.1007/s11746-998-0066-z.
  • Liu, H.; Chen, Y.; Shi, C.; Yang, X.; Han, D. FT-IR and Raman Spectroscopy Data Fusion with Chemometrics for Simultaneous Determination of Chemical Quality Indices of Edible Oils during Thermal Oxidation. LWT. 2020, 119, 108906. DOI: 10.1016/j.lwt.2019.108906.
  • Uysal, R. S.; Boyaci, I. H.; Genis, H. E.; Tamer, U. Determination of Butter Adulteration with Margarine Using Raman Spectroscopy. Food Chem. 2013, 141, 4397–4403. DOI: 10.1016/j.foodchem.2013.06.061.
  • Jiménez-Carvelo, A. M.; Osorio, M. T.; Koidis, A.; González-Casado, A.; Cuadros-Rodríguez, L. Chemometric Classification and Quantification of Olive Oil in Blends with Any Edible Vegetable Oils Using FTIR-ATR and Raman Spectroscopy. Food Sci. Technol. 2017, 86, 174–184. DOI: 10.1016/j.lwt.2017.07.050.
  • Yang, H.; Irudayaraj, J. Comparison of Near-infrared, Fourier Transform-infrared, and Fourier transform-Raman Methods for Determining Olive Pomace Oil Adulteration in Extra Virgin Olive Oil. J. Am. Oil Chem. Soc. 2001, 78, 889–895. DOI: 10.1007/s11746-001-0360-6.
  • Zou, M. Q.; Xiao-Fang, Z.; Xiao-Hua, Q.; Han-Lu, M.; Dong, Y.; Chun-Wei, L.; Guo, X.; Wang, H. Rapid Authentication of Olive Oil Adulteration by Raman Spectrometry. J. Agric. Food Chem. 2009, 57, 6001–6006. DOI: 10.1021/jf900217s.
  • Baeten, V.; Meurens, M.; Morales, M. T.; Aparicio, R. Detection of Virgin Olive Oil Adulteration by Fourier Transform Raman Spectroscopy. J. Agric. Food Chem. 1996, 44, 2225–2230. DOI: 10.1021/jf9600115.
  • López-Díez, E. C.; Bianchi, G.; Goodacre, R. Rapid Quantitative Assessment of the Adulteration of Virgin Olive Oils with Hazelnut Oils Using Raman Spectroscopy and Chemometrics. J. Agric. Food Chem. 2003, 51, 6145–6150. DOI: 10.1021/jf034493d.
  • McDowell, D.; Osorio, M. T.; Elliott, C. T.; Koidis, A. Detection of Refined Sunflower and Rapeseed Oil Addition in Cold Pressed Rapeseed Oil Using Mid Infrared and Raman Spectroscopy. Eur. J. Lipid Sci. Technol. 2018, 120, 1700472. DOI: 10.1002/ejlt.201700472.
  • Nedeljkovic, A.; Tomasevic, I.; Miocinovic, J.; Pudja, P. Feasibility of Discrimination of Dairy Creams and Cream-like Analogues Using Raman Spectroscopy and Chemometric Analysis. Food Chem. 2017, 232, 487–492. DOI: 10.1016/j.foodchem.2017.03.165.
  • Lee, J. Y.; Park, J. H.; Mun, H.; Shim, W. B.; Lim, S. H.; Kim, M. G. Quantitative Analysis of Lard in Animal Fat Mixture Using Visible Raman Spectroscopy. Food Chem. 2018, 254, 109–114. DOI: 10.1016/j.foodchem.2018.01.185.
  • Carmona, M. A.; Lafont, F.; Jiménez-Sanchidrián, C.; Ruiz, J. R. Characterization of Macadamia and Pecan Oils and Detection of Mixtures with Other Edible Seed Oils by Raman Spectroscopy. Grasas Y Aceites. 2015, 66. DOI: 10.3989/gya.1191142.
  • Nedeljković, A.; Rösch, P.; Popp, J.; Miočinović, J.; Radovanović, M.; Pudja, P. Raman Spectroscopy as a Rapid Tool for Quantitative Analysis of Butter Adulterated with Margarine. Food Anal. Methods. 2016, 9, 1315–1320. DOI: 10.1007/s12161-015-0317-1.
  • Ghazali, H. H.; Tukiran, N. A. Analysis of Pork Adulteration in Recycled Frying Oils Using Raman Spectroscopy. Malays. J. Halal Res. 2021, 4, 2021. DOI: 10.2478/mjhr-2021-0004.
  • Yang, H.; Irudayaraj, J.; Paradkar, M. M. Discriminant Analysis of Edible Oils and Fats by FTIR, FT-NIR and FT-Raman Spectroscopy. Food Chem. 2005, 93, 25–32. DOI: 10.1016/j.foodchem.2004.08.039.
  • Gao, F.; Xu, L.; Zhang, Y.; Yang, Z.; Han, L.; Liu, X. Analytical Raman Spectroscopic Study for Discriminant Analysis of Different Animal-derived Feedstuff: Understanding the High Correlation between Raman Spectroscopy and Lipid Characteristics. Food Chem. 2018, 240, 989–996. DOI: 10.1016/j.foodchem.2017.07.143.
  • Portarena, S.; Baldacchini, C.; Brugnoli, E. Geographical Discrimination of Extra-virgin Olive Oils from the Italian Coasts by Combining Stable Isotope Data and Carotenoid Content within a Multivariate Analysis. Food Chem. 2017, 215, 1–6. DOI: 10.1016/j.foodchem.2016.07.135.
  • Dong, W.; Zhang, Y.; Zhang, B.; Wang, X. Quantitative Analysis of Adulteration of Extra Virgin Olive Oil Using Raman Spectroscopy Improved by Bayesian Framework Least Squares Support Vector Machines. Anal. Methods. 2012, 4, 2772–2777. DOI: 10.1039/c2ay25431j.
  • Sánchez-López, E.; Sánchez-Rodríguez, M. I.; Marinas, A.; Marinas, J. M.; Urbano, F. J.; Caridad, J. M.; Moalem, M. Chemometric Study of Andalusian Extra Virgin Olive Oils Raman Spectra: Qualitative and Quantitative Information. Talanta. 2016, 156– 157, 180–190. DOI: 10.1016/j.talanta.2016.05.014.
  • Yazgan, K. N. N.; Bulat, T.; Boyaci, I. H.; Topcu, A. Raman Spectroscopy Coupled with Chemometric Methods for the Discrimination of Foreign Fats and Oils in Cream and Yogurt. J. Food Drug Anal. 2019, 27, 101–110. DOI: 10.1016/j.jfda.2018.06.008.
  • Genis, D. O.; Sezer, B.; Durna, S.; Boyaci, I. H. Determination of Milk Fat Authenticity in Ultra-filtered White Cheese by Using Raman Spectroscopy with Multivariate Data Analysis. Food Chem. 2021, 336, 127699. DOI: 10.1016/j.foodchem.2020.127699.
  • Gao, F.; Ben-Amotz, D.; Zhou, S.; Yang, Z.; Han, L.; Liu, X. Comparison and Chemical Structure-related Basis of Species Discrimination of Animal Fats by Raman Spectroscopy Using Near-infrared and Visible Excitation Lasers. LWT. 2020, 134, 110105. DOI: 10.1016/j.lwt.2020.110105.
  • Taylan, O.; Cebi, N.; Tahsin, Y. M.; Sagdic, O.; Bakhsh, A. A. Detection of Lard in Butter Using Raman Spectroscopy Combined with Chemometrics. Food Chem. 2020, 332, 127344. DOI: 10.1016/j.foodchem.2020.127344.
  • Ryoo, D.; Hwang, J.; Chung, H. Probing Temperature Able to Improve Raman Spectroscopic Discrimination of Adulterated Olive Oils. Microchem. J. 2017, 134, 224–229. DOI: 10.1016/j.microc.2017.06.002.
  • Poiana, M. A.; Alexa, E.; Munteanu, M. F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR Spectroscopy to Detect the Changes in Extra Virgin Olive Oil by Adulteration with Soybean Oil and High Temperature Heat Treatment. Open Chem. 2015, 13, 689–698. DOI: 10.1515/chem-2015-0110.
  • Rohman, A.; Che-Man, Y. B.; Ismail, A.; Hashim, P. FTIR Spectroscopy Coupled with Chemometrics of Multivariate Calibration and Discriminant Analysis for Authentication of Extra Virgin Olive Oil. Int. J. Food Prop. 2017, 20, S1173–S1181. DOI: 10.1080/10942912.2017.1336718.
  • Neves, M. D. G.; Poppi, R. J. Authentication and Identification of Adulterants in Virgin Coconut Oil Using ATR/FTIR in Tandem with DD-SIMCA One Class Modeling. Talanta. 2020, 219. DOI: 10.1016/j.talanta.2020.121338.
  • Becze, A.; Simedru, D. Rapid Detection of Walnut and Pumpkin Oil Adulteration Using Raman Spectroscopy and Partial Least Square Methodology. Not. Bot. Horti Agrobot. Cluj-Napoca. 2020, 48, 1426–1438. DOI: 10.15835/nbha48312024.
  • Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of Olive Oil Adulteration with Waste Cooking Oil via Raman Spectroscopy Combined with iPLS and SiPLS. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 37–43. DOI: 10.1016/j.saa.2017.06.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.