244
Views
7
CrossRef citations to date
0
Altmetric
Review

Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review

, , , &

References

  • Zakka, P.; Karnib, M.; Matar, M.; Bdeir, S.; Al Hariri, M.; Ghemrawi, M.; Ballout, J.; Mahfouz, R.; Jaffa, A.; Saleh, B. A. Genomic and Proteomic Study of the Inflammatory Pathway in Patients with Atrial Fibrillation and Cardiometabolic Syndrome. J. Am. Coll. Cardiol. 2017, 69(11_Supplement), 468. DOI: 10.1016/S0735-1097(17)33857-3.
  • Angeli, F.; Reboldi, G.; Verdecchia, P. Hypertension, Inflammation and Atrial Fibrillation. J. Hypertens. 2014, 32(3), 480–483. DOI: 10.1097/HJH.0000000000000112.
  • Mahajan, A.; Tabassum, R.; Chavali, S.; Dwivedi, O. P.; Bharadwaj, M.; Tandon, N.; Bharadwaj, D. High-sensitivity C-reactive Protein Levels and Type 2 Diabetes in Urban North Indians. J Clin Endocrinol Metab. 2009, 94(6), 2123–2127. DOI: 10.1210/jc.2008-2754.
  • Arima, H.; Kubo, M.; Yonemoto, K.; Doi, Y.; Ninomiya, T.; Tanizaki, Y.; Hata, J.; Matsumura, K.; Iida, M.; Kiyohara, Y. High-sensitivity C-reactive Protein and Coronary Heart Disease in a General Population of Japanese: The Hisayama Study. Arterioscler Thromb Vasc Bio. 2008, 28(7), 1385–1391. DOI: 10.1161/ATVBAHA.107.157164.
  • Cardin, S.; Li, D.; Thorin-Trescases, N.; Leung, T.-K.; Thorin, E.; Nattel, S. Evolution of the Atrial Fibrillation Substrate in Experimental Congestive Heart Failure: Angiotensin-dependent And-independent Pathways. Cardiovasc. Res. 2003, 60(2), 315–325. DOI: 10.1016/j.cardiores.2003.08.014.
  • Kawanishi, N.; Mizokami, T.; Yano, H.; Suzuki, K. Exercise Attenuates M1 Macrophages and CD8+ T Cells in the Adipose Tissue of Obese Mice. Med. Sci. Sports Exercise. 2013, 45(9), 1684–1693. DOI: 10.1249/MSS.0b013e31828ff9c6.
  • Chan, D. C.; Barrett, H. P.; Watts, G. F. Dyslipidemia in Visceral Obesity. Am J Cardiovasc Drugs. 2004, 4(4), 227–246. DOI: 10.2165/00129784-200404040-00004.
  • Snel, M.; Jonker, J. T.; Schoones, J.; Lamb, H.; De Roos, A.; Pijl, H.; Smit, J.; Meinders, A.; Jazet, I. Ectopic Fat and Insulin Resistance: Pathophysiology and Effect of Diet and Lifestyle Interventions. Int. J. Endocrinol. 2012, 2012, 1025–1042. DOI: 10.1155/2012/983814.
  • Hawkey, C.;. Cyclooxygenase Inhibition: Between the Devil and the Deep Blue Sea. Gut. 2002, 50(suppl 3), iii25–iii30. DOI: 10.1136/gut.50.suppl_3.iii25.
  • Park, S. Y.; Ahn, C. B.; Je, J. Y. Antioxidant and Anti‐inflammatory Activities of Protein Hydrolysates from Mytilus Edulis and Ultrafiltration Membrane Fractions. J. Food Biochem. 2014, 38(5), 460–468. DOI: 10.1111/jfbc.12070.
  • Ahn, C.-B.; Cho, Y.-S.; Je, J.-Y. Purification and Anti-inflammatory Action of Tripeptide from Salmon Pectoral Fin Byproduct Protein Hydrolysate. Food Chem. 2015, 168, 151–156. DOI: 10.1016/j.foodchem.2014.05.112.
  • Kim, Y.-S.; Ahn, C.-B.; Je, J.-Y. Anti-inflammatory Action of High Molecular Weight Mytilus Edulis Hydrolysates Fraction in LPS-induced RAW264. 7 Macrophage via NF-κB and MAPK Pathways. Food Chem. 2016, 202, 9–14. DOI: 10.1016/j.foodchem.2016.01.114.
  • Lee, H. A.; Kim, I. H.; Nam, T. J. Bioactive Peptide from Pyropia Yezoensis and Its Anti-inflammatory Activities. Int.J. Mol. Med. 2015, 36(6), 1701–1706. DOI: 10.3892/ijmm.2015.2386.
  • Thorkelsson, G.; Slizyte, R.; Gildberg, A.; Kristinsson, H. G. Fish Proteins and Peptide Products: Processing Q5 Methods, Quality and Functional Properties. In Marine Funct Food; Luten, J. B.,Eds, The Netherlands: Wageningen Academic Publishers. 2009, 115–133.
  • ERS Americans’ seafood consumption below recommendations. https://www.ers.usda.gov/amber-waves/2016/october/americans-seafood-consumption-below-recommendations (Aug11, 2020).
  • Hu, Y.; Yuan, C.; Yu, K.; Qu, Y.; Chen, S.; Wang, X.; Kimura, I. An Online Survey Study of Consumer Preferences on Aquatic Products in China: Current Seafood Consumption Patterns and Trends. Fish Aquacul J. 2014, 5(2), 1–6.
  • Trondsen, T.; Braaten, T.; Lund, E.; Eggen, A. Consumption of Seafood—the Influence of Overweight and Health Beliefs. Food Qual. Preference. 2004, 15(4), 361–374. DOI: 10.1016/S0950-3293(03)00083-1.
  • FAO the State of World Fisheries and Aquaculture. http://www.fao.org/3/i2727e/i2727e00.htm 2012. (Aug05, 2020).
  • Statista Global fish production from 2002 to 2019. https://www.statista.com/statistics/264577/total-world-fish-production-since-2002 (Aug23, 2020).
  • FAO the State of World’s Fisheries and Aquaculture. http://www.fao.org/publications/sofia/2016/en 2016. (Aug11, 2020),
  • FAO A third assessment of global marine fisheries discards. http://www.fao.org/3/CA2905EN/ca2905en.pdf (Aug02, 2020).
  • Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. In Global Food Losses and Food Waste, ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems (2011: Düsseldorf, Germany) Düsseldorf, Food and Agriculture Organization of the United Nations: 2011, 2011.
  • Arvanitoyannis, I. S.; Kassaveti, A. Fish Industry Waste: Treatments, Environmental Impacts, Current and Potential Uses. Int. J. Food Sci. Technol. 2008, 43(4), 726–745. DOI: 10.1111/j.1365-2621.2006.01513.x.
  • Ghaly, A.; Ramakrishnan, V.; Brooks, M.; Budge, S.; Dave, D. Fish Processing Wastes as A Potential Source of Proteins Amino Acids and Oils: A Critical Review. J Microb Biochem Technol. 2013, 5(4), 107–129.
  • Abachi, S.; Bazinet, L.; Beaulieu, L. Antihypertensive and Angiotensin-I-Converting Enzyme (Ace)-inhibitory Peptides from Fish as Potential Cardioprotective Compounds. Mar. Drugs. 2019, 17(11), 613–652. DOI: 10.3390/md17110613.
  • Shaviklo, A. R.;. Development of Fish Protein Powder as an Ingredient for Food Applications: A Review. J. Food Sci. Technol. 2015, 52(2), 648–661. DOI: 10.1007/s13197-013-1042-7.
  • Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M. Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar. Drugs. 2017, 15(5), 143–161. DOI: 10.3390/md15050143.
  • Silva, T.; Moreira-Silva, J.; Marques, A.; Domingues, A.; Bayon, Y.; Reis, R. Marine Origin Collagens and Its Potential Applications. Mar. Drugs. 2014, 12(12), 5881–5901. DOI: 10.3390/md12125881.
  • Guillen, J.; Natale, F.; Carvalho, N.; Casey, J.; Hofherr, J.; Druon, J.-N.; Fiore, G.; Gibin, M.; Zanzi, A.; Martinsohn, J. T. Global Seafood Consumption Footprint. Ambio. 2019, 48(2), 111–122. DOI: 10.1007/s13280-018-1060-9.
  • Ahn, C.-B.; Je, J.-Y.; Cho, Y.-S. Antioxidant and Anti-inflammatory Peptide Fraction from Salmon Byproduct Protein Hydrolysates by Peptic Hydrolysis. Food Res. Int. 2012, 49(1), 92–98. DOI: 10.1016/j.foodres.2012.08.002.
  • Fitzgerald, A.; Rai, P.; Marchbank, T.; Taylor, G.; Ghosh, S.; Ritz, B.; Playford, R. Reparative Properties of a Commercial Fish Protein Hydrolysate Preparation. Gut. 2005, 54(6), 775–781. DOI: 10.1136/gut.2004.060608.
  • Mallet, J.-F.; Duarte, J.; Vinderola, G.; Anguenot, R.; Beaulieu, M.; Matar, C. The Immunopotentiating Effects of Shark-derived Protein Hydrolysate. Nutrition. 2014, 30(6), 706–712. DOI: 10.1016/j.nut.2013.10.025.
  • Duarte, J.; Vinderola, G.; Ritz, B.; Perdigón, G.; Matar, C. Immunomodulating Capacity of Commercial Fish Protein Hydrolysate for Diet Supplementation. Immunobiology. 2006, 211(5), 341–350. DOI: 10.1016/j.imbio.2005.12.002.
  • Sable, R.; Parajuli, P.; Jois, S. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications. Mar. Drugs. 2017, 15(4), 124–161. DOI: 10.3390/md15040124.
  • Heo, S.-Y.; Ko, S.-C.; Jung, W.-K. The Pepsinolytic Hydrolysate from Johnius Belengerii Frame Inhibited LPS-stimulated Production of Pro-inflammatory Mediators via the Inactivating of JNK and NF-κB Pathways in RAW 264.7 Macrophages. Fish Aquatic Sci. 2018, 21(1), 1–8. DOI: 10.1186/s41240-018-0091-2.
  • Sung, N.-Y.; Jung, P.-M.; Yoon, M.; Kim, J.-S.; Choi, J.-I.; Jeong, H. G.; Lee, J.-W.; Kim, J.-H. Anti-inflammatory Effect of Sweetfish-derived Protein and Its Enzymatic Hydrolysate on LPS-induced RAW264. 7 Cells via Inhibition of NF-κB Transcription. Fish. Sci. 2012, 78(2), 381–390. DOI: 10.1007/s12562-011-0461-5.
  • Chalamaiah, M.; Hemalatha, R.; Jyothirmayi, T.; Diwan, P. V.; Bhaskarachary, K.; Vajreswari, A.; Kumar, R. R.; Kumar, B. D. Chemical Composition and Immunomodulatory Effects of Enzymatic Protein Hydrolysates from Common Carp (Cyprinus Carpio) Egg. Nutrition. 2015, 31(2), 388–398. DOI: 10.1016/j.nut.2014.08.006.
  • Da Rocha, M.; Alemán, A.; Baccan, G. C.; López-Caballero, M. E.; Gómez-Guillén, C.; Montero, P.; Prentice, C. Anti-inflammatory, Antioxidant, and Antimicrobial Effects of Underutilized Fish Protein Hydrolysate. J. Aquat. Food Prod. Technol. 2018, 27(5), 592–608. DOI: 10.1080/10498850.2018.1461160.
  • Roblet, C.; Akhtar, M. J.; Mikhaylin, S.; Pilon, G.; Gill, T.; Marette, A.; Bazinet, L. Enhancement of Glucose Uptake in Muscular Cell by Peptide Fractions Separated by Electrodialysis with Filtration Membrane from Salmon Frame Protein Hydrolysate. J. Funct. Foods. 2016, 22, 337–346. DOI: 10.1016/j.jff.2016.01.003.
  • Durand, R.; Pellerin, G.; Thibodeau, J.; Fraboulet, E.; Marette, A.; Bazinet, L. Screening for Metabolic Syndrome Application of a Herring By-product Hydrolysate after Its Separation by Electrodialysis with Ultrafiltration Membrane and Identification of Novel Anti-inflammatory Peptides. Sep. Purif. Technol. 2020, 235, 1–9. DOI: 10.1016/j.seppur.2019.116205.
  • Kangsanant, S.; Thongraung, C.; Jansakul, C.; Murkovic, M.; Seechamnanturakit, V. Purification and Characterisation of Antioxidant and Nitric Oxide Inhibitory Peptides from T Ilapia (Oreochromis Niloticus) Protein Hydrolysate. Int. J. Food Sci. Technol. 2015, 50(3), 660–665. DOI: 10.1111/ijfs.12680.
  • Cheng, M.-L.; Wang, H.-C.; Hsu, K.-C.; Hwang, J.-S. Anti-inflammatory Peptides from Enzymatic Hydrolysates of Tuna Cooking Juice. Food Agric. Immunol. 2015, 26(6), 770–781. DOI: 10.1080/09540105.2015.1036352.
  • Ungureanu-Longrois, D.; Balligand, J.-L.; Simmons, W. W.; Okada, I.; Kobzik, L.; Lowenstein, C. J.; Kunkel, S. L.; Michel, T.; Kelly, R. A.; Smith, T. W. Induction of Nitric Oxide Synthase Activity by Cytokines in Ventricular Myocytes Is Necessary but Not Sufficient to Decrease Contractile Responsiveness to β-adrenergic Agonists. Circ. Res. 1995, 77(3), 494–502. DOI: 10.1161/01.RES.77.3.494.
  • Coleman, J. W.;. Nitric Oxide in Immunity and Inflammation. Int. Immunopharmacol. 2001, 1(8), 1397–1406. DOI: 10.1016/S1567-5769(01)00086-8.
  • Huang, F. P.; Niedbala, W.; Wei, X. Q.; Xu, D.; Feng, G. J.; Robinson, J. H.; Lam, C.; Liew, F. Y. Nitric Oxide Regulates Th1 Cell Development through the Inhibition of IL‐12 Synthesis by Macrophages. Eur. J. Immunol. 1998, 28(12), 4062–4070. DOI: 10.1002/(SICI)1521-4141(199812)28:12<4062::AID-IMMU4062>3.0.CO;2-K.
  • Duan, J.; Murohara, T.; Ikeda, H.; Katoh, A.; Shintani, S.; Sasaki, K.-I.; Kawata, H.; Yamamoto, N.; Imaizumi, T. Hypercholesterolemia Inhibits Angiogenesis in Response to Hindlimb Ischemia: Nitric Oxide–dependent Mechanism. Circulation. 2000, 102(suppl_3), Iii-370-Iii-376.
  • Mather, K. J.; Lteif, A.; Steinberg, H. O.; Baron, A. D. Interactions between Endothelin and Nitric Oxide in the Regulation of Vascular Tone in Obesity and Diabetes. Diabetes. 2004, 53(8), 2060–2066. DOI: 10.2337/diabetes.53.8.2060.
  • Hermann, M.; Flammer, A.; Lüscher, T. F. Nitric Oxide in Hypertension. J. Clin. Hypertens. 2006, 8, 17–29. DOI: 10.1111/j.1524-6175.2006.06032.x.
  • Sugita, H.; Kaneki, M.; Tokunaga, E.; Sugita, M.; Koike, C.; Yasuhara, S.; Tompkins, R. G.; Martyn, J. J. Inducible Nitric Oxide Synthase Plays a Role in LPS-induced Hyperglycemia and Insulin Resistance. Am J Physiol-Endocrinol Metab. 2002, 282(2), E386–E394. DOI: 10.1152/ajpendo.00087.2001.
  • Chevrier, G.; Mitchell, P. L.; Rioux, L.-E.; Hasan, F.; Jin, T.; Roblet, C. R.; Doyen, A.; Pilon, G.; St-Pierre, P.; Lavigne, C. Low-molecular-weight Peptides from Salmon Protein Prevent Obesity-linked Glucose Intolerance, Inflammation, and Dyslipidemia in LDLR−/−/ApoB100/100 Mice–3. J. Nutr. 2015, 145(7), 1415–1422. DOI: 10.3945/jn.114.208215.
  • Saigusa, M.; Nishizawa, M.; Shimizu, Y.; Saeki, H. In Vitro and in Vivo Anti-inflammatory Activity of Digested Peptides Derived from Salmon Myofibrillar Protein Conjugated with a Small Quantity of Alginate Oligosaccharide. Biosci., Biotechnol., Biochem. 2015, 79(9), 1518–1527. DOI: 10.1080/09168451.2015.1031075.
  • Madani, Z.; Sener, A.; Malaisse, W. J.; Dalila, A. Y. Sardine Protein Diet Increases Plasma Glucagon-like Peptide-1 Levels and Prevents Tissue Oxidative Stress in Rats Fed a High-fructose Diet. Mol. Med. Rep. 2015, 12(5), 7017–7026. DOI: 10.3892/mmr.2015.4324.
  • Luo, J.; Zhang, C.; Liu, Q.; Ou, S.; Zhang, L.; Peng, X. Combinative Effect of Sardine Peptides and Quercetin Alleviates Hypertension through Inhibition of Angiotensin I Converting Enzyme Activity and Inflammation. Food Res. Int. 2017, 100, 579–585. DOI: 10.1016/j.foodres.2017.07.019.
  • Abachi, S.; Offret, C.; Fliss, I.; Marette, A.; Bazinet, L.; Beaulieu, L. Isolation of Immuno-modulatory Biopeptides from Atlantic Mackerel (Scomber Scombrus) Protein Hydrolysate Based on Molecular Weight, Charge, and Hydrophobicity. Food Bioprocess. Technol. 2022, 15, (2).
  • Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R. A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R. Interleukins (From IL-1 to IL-38), Interferons, Transforming Growth Factor β, and TNF-α: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2016, 138(4), 984–1010. DOI: 10.1016/j.jaci.2016.06.033.
  • Febbraio, M. A.;. Role of Interleukins in Obesity: Implications for Metabolic Disease. Trends Endocrinol Metab. 2014, 25(6), 312–319. DOI: 10.1016/j.tem.2014.02.004.
  • Masters, S. L.; Dunne, A.; Subramanian, S. L.; Hull, R. L.; Tannahill, G. M.; Sharp, F. A.; Becker, C.; Franchi, L.; Yoshihara, E.; Chen, Z. Activation of the NLRP3 Inflammasome by Islet Amyloid Polypeptide Provides a Mechanism for Enhanced IL-1β in Type 2 Diabetes. Nat. Immunol. 2010, 11(10), 897–904. DOI: 10.1038/ni.1935.
  • Larsen, C. M.; Faulenbach, M.; Vaag, A.; Vølund, A.; Ehses, J. A.; Seifert, B.; Mandrup-Poulsen, T.; Donath, M. Y. Interleukin-1–receptor Antagonist in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2007, 356(15), 1517–1526. DOI: 10.1056/NEJMoa065213.
  • Stienstra, R.; Joosten, L. A.; Koenen, T.; van Tits, B.; van Diepen, J. A.; van Den Berg, S. A.; Rensen, P. C.; Voshol, P. J.; Fantuzzi, G.; Hijmans, A. The Inflammasome-mediated Caspase-1 Activation Controls Adipocyte Differentiation and Insulin Sensitivity. Cell Metab. 2010, 12(6), 593–605. DOI: 10.1016/j.cmet.2010.11.011.
  • Harrison, D. G.; Guzik, T. J.; Lob, H. E.; Madhur, M. S.; Marvar, P. J.; Thabet, S. R.; Vinh, A.; Weyand, C. M. Inflammation, Immunity, and Hypertension. Hypertension. 2011, 57(2), 132–140. DOI: 10.1161/HYPERTENSIONAHA.110.163576.
  • Peeters, A.; Netea, M.; Janssen, M.; Kullberg, B.; Van der Meer, J.; Thien, T. Pro‐inflammatory Cytokines in Patients with Essential Hypertension. Eur. J. Clin. Invest. 2001, 31(1), 31–36. DOI: 10.1046/j.1365-2362.2001.00743.x.
  • Isoda, K.; Sawada, S.; Ayaori, M.; Matsuki, T.; Horai, R.; Kagata, Y.; Miyazaki, K.; Kusuhara, M.; Okazaki, M.; Matsubara, O. Deficiency of Interleukin-1 Receptor Antagonist Deteriorates Fatty Liver and Cholesterol Metabolism in Hypercholesterolemic Mice. J. Biol. Chem. 2005, 280(8), 7002–7009. DOI: 10.1074/jbc.M412220200.
  • Xu, Z.; Dong, A.; Feng, Z.; Li, J. Interleukin-32 Promotes Lipid Accumulation through Inhibition of Cholesterol Efflux. Exp. Ther. Med. 2017, 14(2), 947–952. DOI: 10.3892/etm.2017.4596.
  • Feingold, K. R.; Soued, M.; Adi, S.; Staprans, I.; Neese, R.; Shigenaga, J.; Doerrler, W.; Moser, A.; Dinarello, C. A.; Grunfeld, C. Effect of Interleukin-1 on Lipid Metabolism in the Rat. Similarities to and Differences from Tumor Necrosis Factor. Arteriosclerosis Thrombosis. 1991, 11(3), 495–500. DOI: 10.1161/01.ATV.11.3.495.
  • Rider, P.; Carmi, Y.; Cohen, I. Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations. Int. J. Cell Biol. 2016, 2016(2016), 66–77. DOI: 10.1155/2016/9259646.
  • Pilon, G.; Ruzzin, J.; Rioux, L.-E.; Lavigne, C.; White, P. J.; Frøyland, L.; Jacques, H.; Bryl, P.; Beaulieu, L.; Marette, A. Differential Effects of Various Fish Proteins in Altering Body Weight, Adiposity, Inflammatory Status, and Insulin Sensitivity in High-fat–fed Rats. Metabolism. 2011, 60(8), 1122–1130. DOI: 10.1016/j.metabol.2010.12.005.
  • Grimstad, T.; Bjørndal, B.; Cacabelos, D.; Aasprong, O. G.; Omdal, R.; Svardal, A.; Bohov, P.; Pamplona, R.; Portero-Otin, M.; Berge, R. K. A Salmon Peptide Diet Alleviates Experimental Colitis as Compared with Fish Oil. J. Nutr. Sci. 2013, 2, 1–8. DOI: 10.1017/jns.2012.23.
  • Yang, R.; Zhang, Z.; Pei, X.; Han, X.; Wang, J.; Wang, L.; Long, Z.; Shen, X.; Li, Y. Immunomodulatory Effects of Marine Oligopeptide Preparation from Chum Salmon (Oncorhynchus Keta) in Mice. Food Chem. 2009, 113(2), 464–470. DOI: 10.1016/j.foodchem.2008.07.086.
  • Yang, R.; Pei, X.; Wang, J.; Zhang, Z.; Zhao, H.; Li, Q.; Zhao, M.; Li, Y. Protective Effect of a Marine Oligopeptide Preparation from Chum Salmon (Oncorhynchus Keta) on Radiation‐induced Immune Suppression in Mice. J. Sci. Food Agric. 2010, 90(13), 2241–2248. DOI: 10.1002/jsfa.4077.
  • Subhan, F.; Kang, H. Y.; Lim, Y.; Ikram, M.; Baek, S.-Y.; Jin, S.; Jeong, Y. H.; Kwak, J. Y.; Yoon, S. Fish Scale Collagen Peptides Protect against CoCl2/TNF-α-induced Cytotoxicity and Inflammation via Inhibition of ROS, MAPK, and NF-κB Pathways in HaCaT Cells. Oxid. Med. Cell. Longev. 2017, 2017(2017), 1–17. DOI: 10.1155/2017/9703609.
  • Liu, C.; Liu, X.; Xue, Y.; Ding, T.; Sun, J. Hydrolyzed Tilapia Fish Collagen Modulates the Biological Behavior of Macrophages under Inflammatory Conditions. RSC Adv. 2015, 5(39), 30727–30736. DOI: 10.1039/C5RA02355F.
  • Toopcham, T.; Mes, J. J.; Wichers, H. J.; Yongsawatdigul, J. Immunomodulatory Activity of Protein Hydrolysates Derived from Virgibacillus Halodenitrificans SK1-3-7 Proteinase. Food Chem. 2017, 224, 320–328. DOI: 10.1016/j.foodchem.2016.12.041.
  • Kim, M.-J.; Sung, N.-Y.; Byun, E.-H.; Nam, H.-S.; Ahn, D.-H. Immune-enhancement Effects of Tuna Cooking Drip and Its Enzymatic Hydrolysate in Balb/c Mice. Food Sci. Biotechnol. 2018, 27(1), 131–137. DOI: 10.1007/s10068-017-0278-9.
  • Kang, B.-K.; Kim, M.-J.; Ahn, D.-H. Anti-inflammatory Activity of Ethanolic Extract from Skipjack Tuna (Katsuwonus Pelamis) Heart in LPS-induced RAW 264.7 Cells and Mouse Ear Edema Model. Food Sci. Biotechnol. 2016, 25(3), 847–854. DOI: 10.1007/s10068-016-0140-5.
  • Wallenius, V.; Wallenius, K.; Ahrén, B.; Rudling, M.; Carlsten, H.; Dickson, S. L.; Ohlsson, C.; Jansson, J.-O. Interleukin-6-deficient Mice Develop Mature-onset Obesity. Nat. Med. 2002, 8(1), 75–79. DOI: 10.1038/nm0102-75.
  • Yanni, A. E.; Perrea, D. N.; Yatzidis, H. A. Effect of Antiatherogenic L-aspartate and L-glutamate on Serum Lipoproteins Cholesterol and Apolipoproteins A-1 and B in Rabbits Fed with High Cholesterol Diet. Nutr. Metab. Cardiovasc. Dis. 2005, 15(3), 161–165. DOI: 10.1016/j.numecd.2004.06.001.
  • Pot, G. K.; Geelen, A.; Majsak-Newman, G.; Harvey, L. J.; Nagengast, F. M.; Witteman, B. J.; van de Meeberg, P. C.; Hart, A. R.; Schaafsma, G.; Lund, E. K. Increased Consumption of Fatty and Lean Fish Reduces Serum C-Reactive Protein Concentrations but Not Inflammation Markers in Feces and in Colonic Biopsies–4. J. Nutr. 2009, 140(2), 371–376. DOI: 10.3945/jn.109.113472.
  • Grieger, J. A.; Miller, M. D.; Cobiac, L. Investigation of the Effects of a High Fish Diet on Inflammatory Cytokines, Blood Pressure, and Lipids in Healthy Older Australians. Food Nutr. Res. 2014, 58(1), 1–11. DOI: 10.3402/fnr.v58.20369.
  • Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor Necrosis Factor Signaling. Cell Death Differentiat. 2003, 10(1), 45–65. DOI: 10.1038/sj.cdd.4401189.
  • Parameswaran, N.; Patial, S. Tumor Necrosis factor-α Signaling in Macrophages. Crit Rev Eukaryotic Gene Exp. 2010, 20(2), 87–103. DOI: 10.1615/CritRevEukarGeneExpr.v20.i2.10.
  • Herlaar, E.; Brown, Z. P38 MAPK Signalling Cascades in Inflammatory Disease. Mol Med Today. 1999, 5(10), 439–447. DOI: 10.1016/S1357-4310(99)01544-0.
  • Chen, X.; Xun, K.; Chen, L.; Wang, Y. TNF‐α, a Potent Lipid Metabolism Regulator. Cell Biochemistry and Function: Cellular Biochemistry and Its Modulation by Active Agents or Disease. 2009, 27(7), 407–416. DOI: 10.1002/cbf.1596.
  • Moller, D. E.;. Potential Role of TNF-α in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. Trends Endocrinol Metab. 2000, 11(6), 212–217. DOI: 10.1016/S1043-2760(00)00272-1.
  • Peraldi, P.; Hotamisligil, G. S.; Buurman, W. A.; White, M. F.; Spiegelman, B. M. Tumor Necrosis Factor (TNF)-α Inhibits Insulin Signaling through Stimulation of the P55 TNF Receptor and Activation of Sphingomyelinase. J. Biol. Chem. 1996, 271(22), 13018–13022. DOI: 10.1074/jbc.271.22.13018.
  • Hotamisligil, G. S.; Shargill, N. S.; Spiegelman, B. M. Adipose Expression of Tumor Necrosis Factor-alpha: Direct Role in Obesity-linked Insulin Resistance. Science. 1993, 259(5091), 87–91. DOI: 10.1126/science.7678183.
  • Morin, C. L.; Eckel, R. H.; Marcel, T.; Pagliassotti, M. J. High Fat Diets Elevate Adipose Tissue-derived Tumor Necrosis factor-α Activity. Endocrinology. 1997, 138(11), 4665–4671. DOI: 10.1210/endo.138.11.5519.
  • Fernandez-Real, J.-M.; Lainez, B.; Vendrell, J.; Rigla, M.; Castro, A.; Peñarroja, G.; Broch, M.; Pérez, A.; Richart, C.; Engel, P. Shedding of TNF-α Receptors, Blood Pressure, and Insulin Sensitivity in Type 2 Diabetes Mellitus. Am J Physiol-Endocrinol Metab. 2002, 282(4), E952–E959. DOI: 10.1152/ajpendo.00444.2001.
  • Bautista, L.; Vera, L.; Arenas, I.; Gamarra, G. Independent Association between Inflammatory Markers (C-reactive Protein, Interleukin-6, and TNF-α) and Essential Hypertension. J. Human Hypertens. 2005, 19(2), 149–154. DOI: 10.1038/sj.jhh.1001785.
  • Kemanetzoglou, E.; Andreadou, E. CNS Demyelination with TNF-α Blockers. Curr Neurol Neurosci Rep. 2017, 17(4), 1–15. DOI: 10.1007/s11910-017-0742-1.
  • Madani, Z.; Louchami, K.; Sener, A.; Malaisse, W. J.; Ait Yahia, D. Dietary Sardine Protein Lowers Insulin Resistance, Leptin and TNF-α and Beneficially Affects Adipose Tissue Oxidative Stress in Rats with Fructose-induced Metabolic Syndrome. Int.J. Mol. Med. 2012, 29(2), 311–318. DOI: 10.3892/ijmm.2011.836.
  • Choe, I.-H.; Jeon, H. J.; Eom, S.-H.; Han, Y.-K.; Kim, Y. S.; Lee, S.-H. The Anti-inflammatory Effect of a Glycosylation Product Derived from the High Hydrostatic Pressure Enzymatic Hydrolysate of a Flatfish Byproduct. Food Funct. 2016, 7(6), 2557–2565. DOI: 10.1039/C5FO01557J.
  • Ritsu, M.; Kawakami, K.; Kanno, E.; Tanno, H.; Ishii, K.; Imai, Y.; Maruyama, R.; Tachi, M. Critical Role of Tumor Necrosis factor-α in the Early Process of Wound Healing in Skin. J Dermatol Dermatologic Surg. 2017, 21(1), 14–19. DOI: 10.1016/j.jdds.2016.09.001.
  • Tonks, A.; Cooper, R. A.; Price, A.; Molan, P. C.; Jones, K. Stimulation of TNF-α Release in Monocytes by Honey. Cytokine. 2001, 14(4), 240–242. DOI: 10.1006/cyto.2001.0868.
  • Tau, G.; Rothman, P. Biologic Functions of the IFN-γ Receptors. Allergy. 1999, 54(12), 1233–1251. DOI: 10.1034/j.1398-9995.1999.00099.x.
  • Schroder, K.; Hertzog, P. J.; Ravasi, T.; Hume, D. A. Interferon‐γ: An Overview of Signals, Mechanisms and Functions. J. Leukocyte Biol. 2004, 75(2), 163–189. DOI: 10.1189/jlb.0603252.
  • Kim, J. H.; Park, K.; Lee, S. B.; Kang, S.; Park, J. S.; Woo Ahn, C.; Nam, J. S. Relationship between NK Cell Activity and Glucose Control in Patients with Type 2 Diabetes and Prediabetes. J Diabetes Invest. 2019, 67, 1–15.
  • Mahmoud, M. A.; Ghareeb, D. A.; Sahyoun, H. A.; Elshehawy, A. A.; Elsayed, M. M. In Vivo Interrelationship between Insulin Resistance and Interferon Gamma Production: Protective and Therapeutic Effect of Berberine. Evid. Based Complement. Altern. Med. 2016, 2016, 1–7. DOI: 10.1155/2016/2039897.
  • Markó, L.; Kvakan, H.; Park, J.-K.; Qadri, F.; Spallek, B.; Binger, K. J.; Bowman, E. P.; Kleinewietfeld, M.; Fokuhl, V.; Dechend, R. Interferon-γ Signaling Inhibition Ameliorates Angiotensin II–induced Cardiac Damage. Hypertension. 2012, 60(6), 1430–1436. DOI: 10.1161/HYPERTENSIONAHA.112.199265.
  • Kossmann, S.; Schwenk, M.; Hausding, M.; Karbach, S. H.; Schmidgen, M. I.; Brandt, M.; Knorr, M.; Hu, H.; Kröller-Schön, S.; Schönfelder, T. Angiotensin II–induced Vascular Dysfunction Depends on interferon-γ–driven Immune Cell Recruitment and Mutual Activation of Monocytes and NK-cells. Arterioscler., Thromb., Vasc. Biol. 2013, 33(6), 1313–1319. DOI: 10.1161/ATVBAHA.113.301437.
  • Yang, H.; Youm, Y.-H.; Vandanmagsar, B.; Ravussin, A.; Gimble, J. M.; Greenway, F.; Stephens, J. M.; Mynatt, R. L.; Dixit, V. D. Obesity Increases the Production of Proinflammatory Mediators from Adipose Tissue T Cells and Compromises TCR Repertoire Diversity: Implications for Systemic Inflammation and Insulin Resistance. J. Immunol. 2010, 185(3), 1836–1845. DOI: 10.4049/jimmunol.1000021.
  • Rocha, V. Z.; Folco, E. J.; Sukhova, G.; Shimizu, K.; Gotsman, I.; Vernon, A. H.; Libby, P. Interferon-γ, a Th1 Cytokine, Regulates Fat Inflammation: A Role for Adaptive Immunity in Obesity. Circ. Res. 2008, 103(5), 467–476. DOI: 10.1161/CIRCRESAHA.108.177105.
  • Miller, C. H.; Maher, S. G.; Young, H. A. Clinical Use of interferon‐γ. Ann. N.Y. Acad. Sci. 2009, 1182(1), 69–79. DOI: 10.1111/j.1749-6632.2009.05069.x.
  • Sheng, K.-C.; Day, S.; Wright, M. D.; Stojanovska, L.; Apostolopoulos, V. Enhanced Dendritic Cell-mediated Antigen-specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation. J Drug Delivery. 2013, 2013, 1–8. DOI: 10.1155/2013/516749.
  • Hu, X.; Li, W.-P.; Meng, C.; Ivashkiv, L. B. Inhibition of IFN-γ Signaling by Glucocorticoids. J. Immunol. 2003, 170(9), 4833–4839. DOI: 10.4049/jimmunol.170.9.4833.
  • Skurkovich, B.; Skurkovich, S. Inhibition of IFN-γ as a Method of Treatment of Various Autoimmune Diseases, Including Skin Diseases. In Cytokines as Potential Therapeutic Targets for Inflammatory Skin Diseases , Heidelberg: Springer, 2005; 56, pp 1–27. DOI:10.1007/3-540-37673-9_1.
  • Heo, Y.; Mondal, T. K.; Gao, D.; Kasten-Jolly, J.; Kishikawa, H.; Lawrence, D. A. Posttranscriptional Inhibition of Interferon-gamma Production by Lead. Toxicol. Sci. 2006, 96(1), 92–100. DOI: 10.1093/toxsci/kfl182.
  • Chalamaiah, M.; Hemalatha, R.; Jyothirmayi, T.; Diwan, P. V.; Kumar, P. U.; Nimgulkar, C.; Kumar, B. D. Immunomodulatory Effects of Protein Hydrolysates from Rohu (Labeo Rohita) Egg (Roe) in BALB/c Mice. Food Res. Int. 2014, 62, 1054–1061. DOI: 10.1016/j.foodres.2014.05.050.
  • Bagga, D.; Wang, L.; Farias-Eisner, R.; Glaspy, J. A.; Reddy, S. T. Differential Effects of Prostaglandin Derived from ω-6 and ω-3 Polyunsaturated Fatty Acids on COX-2 Expression and IL-6 Secretion. Proc. National Academy Sci. 2003, 100(4), 1751–1756. DOI: 10.1073/pnas.0334211100.
  • Osborn, O.; Gram, H.; Zorrilla, E. P.; Conti, B.; Bartfai, T. Insights into the Roles of the Inflammatory Mediators IL-1, IL-18 and PGE2 in Obesity and Insulin Resistance. Swiss Med Weekly. 2008, 138(4546), 665–673. /aop/smw-aop12276.
  • Olefsky, J. M.;. Interaction between Insulin Receptors and Glucose Transport: Effect of Prostaglandin E2. Biochem. Biophys. Res. Commun. 1977, 75(2), 271–276. DOI: 10.1016/0006-291X(77)91039-7.
  • Docanto, M. M.; Ham, S.; Corbould, A.; Brown, K. A. Obesity-associated Inflammatory Cytokines and Prostaglandin E2 Stimulate Glucose Transporter mRNA Expression and Glucose Uptake in Primary Human Adipose Stromal Cells. J. Interferon Cytokine Res. 2015, 35(8), 600–605. DOI: 10.1089/jir.2014.0194.
  • Bagi, Z.; Erdei, N.; Toth, A.; Li, W.; Hintze, T. H.; Koller, A.; Kaley, G. Type 2 Diabetic Mice Have Increased Arteriolar Tone and Blood Pressure: Enhanced Release of COX-2–Derived Constrictor Prostaglandins. Arterioscler., Thromb., Vasc. Biol. 2005, 25(8), 1610–1616. DOI: 10.1161/01.ATV.0000172688.26838.9f.
  • Enomoto, N.; Ikejima, K.; Yamashina, S.; Enomoto, A.; Nishiura, T.; Nishimura, T.; Brenner, D. A.; Schemmer, P.; Bradford, B. U.; Rivera, C. A. Kupffer Cell-derived Prostaglandin E2 Is Involved in Alcohol-induced Fat Accumulation in Rat Liver. Am J Physiol-Gastrointestinal Liver Physiol. 2000, 279(1), G100–G106. DOI: 10.1152/ajpgi.2000.279.1.G100.
  • Hsieh, P. S.; Jin, J. S.; Chiang, C. F.; Chan, P. C.; Chen, C. H.; Shih, K. C. COX‐2‐mediated Inflammation in Fat Is Crucial for Obesity‐linked Insulin Resistance and Fatty Liver. Obesity. 2009, 17(6), 1150–1157. DOI: 10.1038/oby.2008.674.
  • Suleyman, H.; Demircan, B.; Karagoz, Y. Anti-inflammatory and Side Effects of Cyclo-oxygenase Inhibitors. Pharmacol Rep. 2007, 59(3), 247–258.
  • Jang, H. L.; Liceaga, A. M.; Yoon, K. Y. Isolation and Characteristics of Anti-inflammatory Peptides from Enzymatic Hydrolysates of Sandfish (Arctoscopus Japonicus) Protein. J. Aquat. Food Prod. Technol. 2017, 26(2), 234–244. DOI: 10.1080/10498850.2016.1221015.
  • Kangsanant, S.; Murkovic, M.; Thongraung, C. Antioxidant and Nitric Oxide Inhibitory Activities of Tilapia (Oreochromis Niloticus) Protein Hydrolysate: Effect of Ultrasonic Pretreatment and Ultrasonic‐assisted Enzymatic Hydrolysis. Int. J. Food Sci. Technol. 2014, 49(8), 1932–1938. DOI: 10.1111/ijfs.12551.
  • Hou, H.; Fan, Y.; Wang, S.; Si, L.; Li, B. Immunomodulatory Activity of Alaska Pollock Hydrolysates Obtained by Glutamic Acid biosensor–Artificial Neural Network and the Identification of Its Active Central Fragment. J. Funct. Foods. 2016, 24, 37–47. DOI: 10.1016/j.jff.2016.03.033.
  • Hou, H.; Fan, Y.; Li, B.; Xue, C.; Yu, G.; Zhang, Z.; Zhao, X. Purification and Identification of Immunomodulating Peptides from Enzymatic Hydrolysates of Alaska Pollock Frame. Food Chem. 2012, 134(2), 821–828. DOI: 10.1016/j.foodchem.2012.02.186.
  • Azuma, K.; Osaki, T.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Minami, S. Effects of Fish Scale Collagen Peptide on an Experimental Ulcerative Colitis Mouse Model. PharmaNutrition. 2014, 2(4), 161–168. DOI: 10.1016/j.phanu.2014.10.001.
  • Bu, Y.; Elango, J.; Zhang, J.; Bao, B.; Guo, R.; Palaniyandi, K.; Robinson, J. S.; Geevaretnam, J.; Regenstein, J. M.; Wu, W. Immunological Effects of Collagen and Collagen Peptide from Blue Shark Cartilage on 6T-CEM Cells. Process Biochem. 2017, 57, 219–227. DOI: 10.1016/j.procbio.2017.04.008.
  • Liu, Y.; Zheng, L.; Xu, J.; Sun‐waterhouse, D.; Sun, B.; Su, G.; Zhao, M. Identification of Novel Peptides with High Stability against in Vitro Hydrolysis from Bovine Elastin Hydrolysates and Evaluation of Their Elastase Inhibitory Activity. Int. J. Food Sci. Technol. 2019, 55(1), 99–108. DOI: 10.1111/ijfs.14256.
  • Mercier, A.; Gauthier, S. F.; Fliss, I. L. Immunomodulating Effects of Whey Proteins and Their Enzymatic Digests. Int Dairy J. (2004), 14(3), 175–183.
  • Kong, X.; Guo, M.; Hua, Y.; Cao, D.; Zhang, C. Enzymatic Preparation of Immunomodulating Hydrolysates from Soy Proteins. Bioresour. Technol. 2008, 99(18), 8873–8879. DOI: 10.1016/j.biortech.2008.04.056.
  • Vogel, H. J.; Schibli, D. J.; Jing, W.; Lohmeier-Vogel, E. M.; Epand, R. F.; Epand, R. M. Towards a Structure-function Analysis of Bovine Lactoferricin and Related Tryptophan-and Arginine-containing Peptides. Biochem. Cell Biol. 2002, 80(1), 49–63. DOI: 10.1139/o01-213.
  • Ahn, M. Y.; Hwang, J. S.; Ham, S. A.; Hur, J.; Jo, Y.; Lee, S.; Choi, M.-J.; Han, S. G.; Seo, H. G. Subcritical Water-hydrolyzed Fish Collagen Ameliorates Survival of Endotoxemic Mice by Inhibiting HMGB1 Release in a HO-1-dependent Manner. Biomed. Pharmacother. 2017, 93, 923–930. DOI: 10.1016/j.biopha.2017.07.041.
  • Mccain, J.;. The Disease Burden of the Most Common Autoimmune Diseases. Managed Care (Langhorne, Pa.). 2016, 25(7), 28–32.
  • Bonaccio, M.; Di Castelnuovo, A.; Pounis, G.; De Curtis, A.; Costanzo, S.; Persichillo, M.; Cerletti, C.; Donati, M. B.; De Gaetano, G.; Iacoviello, L. A Score of Low-grade Inflammation and Risk of Mortality: Prospective Findings from the Moli-sani Study. Haematologica. 2016, 101(11), 1434–1441. DOI: 10.3324/haematol.2016.144055.
  • Esser, N.; Paquot, N.; Scheen, A. J. Inflammatory Markers and Cardiometabolic Diseases. Acta Clinica Belgica. 2015, 70(3), 193–199. DOI: 10.1179/2295333715Y.0000000004.
  • Dort, J.; Sirois, A.; Leblanc, N.; Côté, C. H.; Jacques, H. Beneficial Effects of Cod Protein on Skeletal Muscle Repair following Injury. Appl Physiol Nutr Metab. 2012, 37(3), 489–498. DOI: 10.1139/h2012-021.
  • Dort, J.; Leblanc, N.; Bolduc, J.; Maltais-Giguère, J.; Côté, C. H.; Jacques, H., Can Cod Protein Improve Skeletal Muscle Repair following Injury? 2011.
  • Dort, J.; Leblanc, N.; Maltais-Giguère, J.; Liaset, B.; Côté, C. H.; Jacques, H.; Blachier, F. Beneficial Effects of Cod Protein on Inflammatory Cell Accumulation in Rat Skeletal Muscle after Injury are Driven by Its High Levels of Arginine, Glycine, Taurine and Lysine. PLoS One. 2013, 8(10), 1–14. DOI: 10.1371/journal.pone.0077274.
  • Espe, M.; Holen, E.; He, J.; Provan, F.; Chen, L.; Øysæd, K.; Seliussen, J. Hydrolyzed Fish Proteins Reduced Activation of Caspase-3 in H2O2 Induced Oxidative Stressed Liver Cells Isolated from Atlantic Salmon (Salmo Salar). SpringerPlus. 2015, 4(1), 1–9. DOI: 10.1186/s40064-015-1432-6.
  • Picard-Deland, É.; Lavigne, C.; Marois, J.; Bisson, J.; Weisnagel, S. J.; Marette, A.; Holub, B.; Chu, E.; Frohlich, J.; Hill, J. S. Dietary Supplementation with Fish Gelatine Modifies Nutrient Intake and Leads to Sex-dependent Responses in TAG and C-reactive Protein Levels of Insulin-resistant Subjects. J. Nutr. Sci. 2012, 1, 1–10. DOI: 10.1017/jns.2012.13.
  • Raizel, R.; Leite, J. S. M.; Hypólito, T. M.; Coqueiro, A. Y.; Newsholme, P.; Cruzat, V. F.; Tirapegui, J. Determination of the Anti-inflammatory and Cytoprotective Effects of L-glutamine and L-alanine, or Dipeptide, Supplementation in Rats Submitted to Resistance Exercise. Br. J. Nutr. 2016, 116(3), 470–479. DOI: 10.1017/S0007114516001999.
  • Choi, Y. H.; Choi, Y. S.; Kim, Y. K.; Rahman, M. S.; Pradeep, G.; Yoo, J. C.; Suh, J.-W. A Multifunctional Alanine-rich Anti-inflammatory Peptide BCP61 Showed Potent Inhibitory Effects by Inhibiting Both NF-κB and MAPK Expression. Inflammation. 2017, 40(2), 688–696. DOI: 10.1007/s10753-017-0515-7.
  • Hoffman, J.; Gepner, Y.; Hoffman, M. W.; Zelicha, H.; Shapira, S.; Ostfeld, I. Effect of High-dose, Short-duration B-alanine Supplementation on Circulating IL-10 Concentrations during Intense Military Training. J. Strength Conditioning Res. 2018, 00, 1–4.
  • Chau, J. Y.; Tiffany, C. M.; Nimishakavi, S.; Lawrence, J. A.; Pakpour, N.; Mooney, J. P.; Lokken, K. L.; Caughey, G. H.; Tsolis, R. M.; Luckhart, S. Malaria-associated L-arginine Deficiency Induces Mast Cell-associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia. Infect. Immun. 2013, 81(10), 3515–3526. DOI: 10.1128/IAI.00380-13.
  • Korish, A. A.;. Multiple Antioxidants and L-arginine Modulate Inflammation and Dyslipidemia in Chronic Renal Failure Rats. Renal Failure. 2010, 32(2), 203–213. DOI: 10.3109/08860221003592820.
  • Zhang, R.; Kubo, M.; Murakami, I.; Setiawan, H.; Takemoto, K.; Inoue, K.; Fujikura, Y.; Ogino, K. l-Arginine Administration Attenuates Airway Inflammation by Altering L-arginine Metabolism in an NC/Nga Mouse Model of Asthma. J. Clin. Biochem. Nutr. 2015, 56(3), 201–207. DOI: 10.3164/jcbn.14-140.
  • Hnia, K.; Gayraud, J.; Hugon, G.; Ramonatxo, M.; De La Porte, S.; Matecki, S.; Mornet, D. L-arginine Decreases Inflammation and Modulates the Nuclear factor-κB/matrix Metalloproteinase Cascade in Mdx Muscle Fibers. Am. J. Pathol. 2008, 172(6), 1509–1519. DOI: 10.2353/ajpath.2008.071009.
  • Bin, P.; Liu, S.; Chen, S.; Zeng, Z.; Huang, R.; Yin, Y.; Liu, G. The Effect of Aspartate Supplementation on the Microbial Composition and Innate Immunity on Mice. Amino Acids. 2017, 49(12), 2045–2051. DOI: 10.1007/s00726-017-2467-5.
  • Li, Y.; Han, H.; Yin, J.; He, X.; Tang, Z.; Li, T.; Yao, K.; Yin, Y. D-and l-Aspartate Regulates Growth Performance, Inflammation and Intestinal Microbial Community in Young Pigs. Food Funct. 2019, 10(2), 1028–1037. DOI: 10.1039/C8FO01410H.
  • Hasegawa, S.; Ichiyama, T.; Sonaka, I.; Ohsaki, A.; Okada, S.; Wakiguchi, H.; Kudo, K.; Kittaka, S.; Hara, M.; Furukawa, S. Cysteine, Histidine and Glycine Exhibit Anti‐inflammatory Effects in Human Coronary Arterial Endothelial Cells. Clin. Exp. Immunol. 2012, 167(2), 269–274. DOI: 10.1111/j.1365-2249.2011.04519.x.
  • Salman, Z. K.; Refaat, R.; Selima, E.; El Sarha, A.; Ismail, M. A. The Combined Effect of Metformin and L-cysteine on Inflammation, Oxidative Stress and Insulin Resistance in Streptozotocin-induced Type 2 Diabetes in Rats. Eur. J. Pharmacol. 2013, 714(1–3), 448–455. DOI: 10.1016/j.ejphar.2013.07.002.
  • Suzuki, J.-I.; Kodera, Y.; Miki, S.; Ushijima, M.; Takashima, M.; Matsutomo, T.; Morihara, N. Anti-inflammatory Action of Cysteine Derivative S-1-propenylcysteine by Inducing MyD88 Degradation. Sci. Rep. 2018, 8(1), 1–10. DOI: 10.1038/s41598-018-32431-0.
  • Ni, H.; Lu, L.; Deng, J.; Fan, W.; Li, T.; Yao, J. Effects of Glutamate and Aspartate on Serum Antioxidative Enzyme, Sex Hormones, and Genital Inflammation in Boars Challenged with Hydrogen Peroxide. Mediators Inflammation. 2016, 2016, 1–10.
  • Ren, W.; Duan, J.; Yin, J.; Liu, G.; Cao, Z.; Xiong, X.; Chen, S.; Li, T.; Yin, Y.; Hou, Y. Dietary L-glutamine Supplementation Modulates Microbial Community and Activates Innate Immunity in the Mouse Intestine. Amino Acids. 2014, 46(10), 2403–2413. DOI: 10.1007/s00726-014-1793-0.
  • Vargas, M. H.; Del-Razo-Rodríguez, R.; López-García, A.; Lezana-Fernández, J. L.; Chávez, J.; Furuya, M. E.; Marín-Santana, J. C. Effect of Oral Glycine on the Clinical, Spirometric and Inflammatory Status in Subjects with Cystic Fibrosis: A Pilot Randomized Trial. BMC Pulm Med. 2017, 17(1), 1–12. DOI: 10.1186/s12890-017-0528-x.
  • Li, X.; Bradford, B. U.; Wheeler, M. D.; Stimpson, S. A.; Pink, H. M.; Brodie, T. A.; Schwab, J. H.; Thurman, R. G.; Moore, R. N. Dietary Glycine Prevents Peptidoglycan Polysaccharide-induced Reactive Arthritis in the Rat: Role for Glycine-gated Chloride Channel. Infect. Immun. 2001, 69(9), 5883–5891. DOI: 10.1128/IAI.69.9.5883-5891.2001.
  • Ham, D. J.; Caldow, M. K.; Chhen, V.; Chee, A.; Wang, X.; Proud, C. G.; Lynch, G. S.; Koopman, R. Glycine Restores the Anabolic Response to Leucine in a Mouse Model of Acute Inflammation. Am J Physiol-Endocrinol Metab. 2016, 310(11), E970–E981. DOI: 10.1152/ajpendo.00468.2015.
  • Son, D. O.; Satsu, H.; Shimizu, M. Histidine Inhibits Oxidative Stress‐and TNF‐α‐induced Interleukin‐8 Secretion in Intestinal Epithelial Cells. FEBS Lett. 2005, 579(21), 4671–4677. DOI: 10.1016/j.febslet.2005.07.038.
  • Sun, X.; Feng, R.; Li, Y.; Lin, S.; Zhang, W.; Li, Y.; Sun, C.; Li, S. Histidine Supplementation Alleviates Inflammation in the Adipose Tissue of High-fat Diet-induced Obese Rats via the NF-κB-and PPARγ-involved Pathways. Br. J. Nutr. 2014, 112(4), 477–485. DOI: 10.1017/S0007114514001056.
  • DiNicolantonio, J. J.; McCarty, M. F.; OKeefe, J. H. Role of Dietary Histidine in the Prevention of Obesity and Metabolic Syndrome. BMJ Journals, Open Heart. 2018, 5(2), 1–4. DOI:10.1136/openhrt-2017-000676.
  • Feng, R.; Niu, Y.; Sun, X.; Li, Q.; Zhao, C.; Wang, C.; Guo, F.; Sun, C.; Li, Y. Histidine Supplementation Improves Insulin Resistance through Suppressed Inflammation in Obese Women with the Metabolic Syndrome: A Randomised Controlled Trial. Diabetologia. 2013, 56(5), 985–994. DOI: 10.1007/s00125-013-2839-7.
  • Andou, A.; Hisamatsu, T.; Okamoto, S.; Chinen, H.; Kamada, N.; Kobayashi, T.; Hashimoto, M.; Okutsu, T.; Shimbo, K.; Takeda, T. Dietary Histidine Ameliorates Murine Colitis by Inhibition of Proinflammatory Cytokine Production from Macrophages. Gastroenterology. 2009, 136(2), 564–574. DOI: 10.1053/j.gastro.2008.09.062.
  • Lee, J. H.; Park, E.; Jin, H. J.; Lee, Y.; Choi, S. J.; Lee, G. W.; Chang, P.-S.; Paik, H.-D. Anti-inflammatory and Anti-genotoxic Activity of Branched Chain Amino Acids (BCAA) in Lipopolysaccharide (LPS) Stimulated RAW 264.7 Macrophages. Food Sci. Biotechnol. 2017, 26(5), 1371–1377. DOI: 10.1007/s10068-017-0165-4.
  • Murata, K.; Moriyama, M. Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis. Cancer Res. 2007, 67(7), 3263–3268. DOI: 10.1158/0008-5472.CAN-06-3739.
  • Mao, X.; Gu, C.; Ren, M.; Chen, D.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Luo, J.; Wang, J. L-isoleucine Administration Alleviates Rotavirus Infection and Immune Response in the Weaned Piglet Model. Front. Immunol. 2018, 9(1654), 1–12. DOI: 10.3389/fimmu.2018.01654.
  • Nicastro, H.; Carvalho, M.; Barquilha, G.; Ferreira, L. S. Leucine Supplementation: A Possible Anti-inflammatory Strategy Evidences from a Pilot Study. SL Nutr Metab. 2017, 1(1), 114–117.
  • Liu, S.; Wang, L.; Liu, G.; Tang, D.; Fan, X.; Zhao, J.; Jiao, H.; Wang, X.; Sun, S.; Lin, H. Leucine Alters Immunoglobulin a Secretion and Inflammatory Cytokine Expression Induced by Lipopolysaccharide via the Nuclear factor-κB Pathway in Intestine of Chicken Embryos. animal. 2018, 12(9), 1903–1911. DOI: 10.1017/S1751731117003342.
  • Rowlands, D. S.; Nelson, A. R.; Raymond, F.; Metairon, S.; Mansourian, R.; Clarke, J.; Stellingwerff, T.; Phillips, S. M. Protein-leucine Ingestion Activates a Regenerative Inflammo-myogenic Transcriptome in Skeletal Muscle following Intense Endurance Exercise. Physiol Genom. 2015, 48(1), 21–32. DOI: 10.1152/physiolgenomics.00068.2015.
  • Mine, Y.; Zhang, H. Anti-inflammatory Effects of poly-L-lysine in Intestinal Mucosal System Mediated by Calcium-sensing Receptor Activation. J. Agric. Food Chem. 2015, 63(48), 10437–10447. DOI: 10.1021/acs.jafc.5b03812.
  • Han, H.; Yin, J.; Wang, B.; Huang, X.; Yao, J.; Zheng, J.; Fan, W.; Li, T.; Yin, Y.; Chiang, J. O. Effects of Dietary Lysine Restriction on Inflammatory Responses in Piglets. Sci. Rep. 2018, 8(1), 1–8. DOI: 10.1038/s41598-018-20689-3.
  • Zhang, Q.; White, H. M. Regulation of Inflammation, Antioxidant Production, and Methyl-carbon Metabolism during Methionine Supplementation in Lipopolysaccharide-challenged Neonatal Bovine Hepatocytes. J. Dairy Sci. 2017, 100(10), 8565–8577. DOI: 10.3168/jds.2017-12932.
  • Ji, J.; Xu, Y.; Zheng, M.; Luo, C.; Lei, H.; Qu, H.; Shu, D. Methionine Attenuates Lipopolysaccharide-induced Inflammatory Responses via DNA Methylation in Macrophages. ACS Omega. 2019, 4(1), 2331–2336. DOI: 10.1021/acsomega.8b03571.
  • Machado, M.; Azeredo, R.; Fontinha, F.; Fernandez-Boo, S.; Conceição, L. E.; Dias, J.; Costas, B. Dietary Methionine Improves the European Seabass (Dicentrarchus Labrax) Immune Status, Inflammatory Response and Disease Resistance. Front. Immunol. 2018, 9, 1–17. DOI: 10.3389/fimmu.2018.02672.
  • Raynaud-Simon, A.; Belabed, L.; Le Naour, G.; Marc, J.; Capron, F.; Cynober, L.; Darquy, S. Arginine Plus Proline Supplementation Elicits Metabolic Adaptation that Favors Wound Healing in Diabetic Rats. Am. J. Physiol Reg Integr. Comp. Physiol. 2012, 303(10), R1053–R1061. DOI: 10.1152/ajpregu.00003.2012.
  • Andrade, V. S.; Rojas, D. B.; de Andrade, R. B.; Kim, T. D. H.; Vizuete, A. F.; Zanatta, Â.; Wajner, M.; Gonçalves, C.-A. S.; Wannmacher, C. M. D. A Possible Anti-inflammatory Effect of Proline in the Brain Cortex and Cerebellum of Rats. Mol. Neurobiol. 2018, 55(5), 4068–4077. DOI: 10.1007/s12035-017-0626-z.
  • Zhou, X.; Zhang, Y.; Wu, X.; Wan, D.; Yin, Y. Effects of Dietary Serine Supplementation on Intestinal Integrity, Inflammation and Oxidative Status in Early-weaned Piglets. Cell. Physiol. Biochem. 2018, 48(3), 993–1002. DOI: 10.1159/000491967.
  • Zhou, X.; Matsushima, Y.; Motoya, T.; Mizukoshi, F.; Ueki, Y.; Sakon, N.; Murakami, K.; Shimizu, T.; Okabe, N.; Nagata, N. Serine Alleviates Dextran Sulfate Sodium-induced Colitis and Regulates the Gut Microbiota in Mice. Front. Microbiol. 2018, 9, 1–10. DOI: 10.3389/fmicb.2018.00001.
  • Zhou, X.; Zhang, Y.; He, L.; Wan, D.; Liu, G.; Wu, X.; Yin, Y. Serine Prevents LPS-induced Intestinal Inflammation and Barrier Damage via P53-dependent Glutathione Synthesis and AMPK Activation. J. Funct. Foods. 2017, 39, 225–232. DOI: 10.1016/j.jff.2017.10.026.
  • Chen, Y.; Zhang, H.; Cheng, Y.; Li, Y.; Wen, C.; Zhou, Y. Dietary L-threonine Supplementation Attenuates Lipopolysaccharide-induced Inflammatory Responses and Intestinal Barrier Damage of Broiler Chickens at an Early Age. Br. J. Nutr. 2018, 119(11), 1254–1262. DOI: 10.1017/S0007114518000740.
  • Dong, Y.-W.; Jiang, W.-D.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q. Threonine Deficiency Decreased Intestinal Immunity and Aggravated Inflammation Associated with NF-κB and Target of Rapamycin Signalling Pathways in Juvenile Grass Carp (Ctenopharyngodon Idella) after Infection with Aeromonas Hydrophila. Br. J. Nutr. 2017, 118(2), 92–108. DOI: 10.1017/S0007114517001830.
  • Chen, S.; Wang, M.; Yin, L.; Ren, W.; Bin, P.; Xia, Y.; Liu, G.; Yang, H.; Tan, B.; Yin, Y. Effects of Dietary Tryptophan Supplementation in the Acetic Acid-induced Colitis Mouse Model. Food Funct. 2018, 9(8), 4143–4152. DOI: 10.1039/C8FO01025K.
  • Ano, Y.; Yoshino, Y.; Uchida, K.; Nakayama, H. Preventive Effects of Tryptophan–methionine Dipeptide on Neural Inflammation and Alzheimer’s Pathology. Int. J. Mol. Sci. 2019, 20(13), 1–11. DOI: 10.3390/ijms20133206.
  • Puratchikody, A.; Umamaheswari, A.; Irfan, N.; Sinha, S.; Manju, S.; Ramanan, M.; Ramamoorthy, G.; Doble, M. A Novel Class of Tyrosine Derivatives as Dual 5-LOX and COX-2/mPGES1 Inhibitors with PGE 2 Mediated Anticancer Properties. New J. Chem. 2019, 43(2), 834–846. DOI: 10.1039/C8NJ04385J.
  • Rasheed, A.; Ashok Kumar, C. Tyrosine and Glycine Derivatives as Potential Prodrugs: Design, Synthesis, and Pharmacological Evaluation of Amide Derivatives of Mefenamic Acid. J. Enzyme Inhib. Med. Chem. 2010, 25(6), 804–811. DOI: 10.3109/14756360903468163.
  • Kakazu, E.; Kanno, N.; Ueno, Y.; Shimosegawa, T. Extracellular Branched-chain Amino Acids, Especially Valine, Regulate Maturation and Function of Monocyte-derived Dendritic Cells. J. Immunol. 2007, 179(10), 7137–7146. DOI: 10.4049/jimmunol.179.10.7137.
  • Zhang, H.; Kovacs-Nolan, J.; Kodera, T.; Eto, Y.; Mine, Y. γ-Glutamyl Cysteine and γ-glutamyl Valine Inhibit TNF-α Signaling in Intestinal Epithelial Cells and Reduce Inflammation in a Mouse Model of Colitis via Allosteric Activation of the Calcium-sensing Receptor. Biochim. Biophys. Acta-Mol. Basis Dis. 2015, 1852(5), 792–804. DOI: 10.1016/j.bbadis.2014.12.023.
  • Han, X.; Xu, Y.; Wang, J.; Pei, X.; Yang, R.; Li, N.; Li, Y. Effects of Cod Bone Gelatin on Bone Metabolism and Bone Microarchitecture in Ovariectomized Rats. Bone. 2009, 44(5), 942–947. DOI: 10.1016/j.bone.2008.12.005.
  • Henaux, L.; Thibodeau, J.; Pilon, G.; Gill, T.; Marette, A.; Bazinet, L. How Charge and Triple Size-Selective Membrane Separation of Peptides from Salmon Protein Hydrolysate Orientate Their Biological Response on Glucose Uptake. Int. J. Mol. Sci. 2019, 20(8), 1939–1954. DOI: 10.3390/ijms20081939.
  • Vieira, E. F.; Van Camp, J.; Ferreira, I. M.; Grootaert, C. Protein Hydrolysate from Canned Sardine and Brewing By-products Improves TNF-α-induced Inflammation in an Intestinal–endothelial Co-culture Cell Model. Eur. J. Nutr. 2018, 57(6), 2275–2286. DOI: 10.1007/s00394-017-1503-2.
  • Sae‐leaw, T.; O’callaghan, Y. C.; Benjakul, S.; O’brien, N. M. Antioxidant, Immunomodulatory and Antiproliferative Effects of Gelatin Hydrolysates from Seabass (L Ates Calcarifer) Skins. Int. J. Food Sci. Technol. 2016, 51(7), 1545–1551. DOI: 10.1111/ijfs.13123.
  • Kim, M.-J.; Bae, N.-Y.; Kim, K.-B.-W.-R.; Park, J.-H.; Park, S.-H.; Cho, Y.-J.; Ahn, D.-H. Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells. KSBB J. 2015, 30(6), 326–331. DOI: 10.7841/ksbbj.2015.30.6.326.
  • Karnjanapratum, S.; O’Callaghan, Y. C.; Benjakul, S.; O’Brien, N. Antioxidant, Immunomodulatory and Antiproliferative Effects of Gelatin Hydrolysate from Unicorn Leatherjacket Skin. J. Sci. Food Agric. 2016, 96(9), 3220–3226. DOI: 10.1002/jsfa.7504.
  • Astre, G.; Deleruyelle, S.; Dortignac, A.; Bonnet, C.; Valet, P.; Dray, C. Diet-induced Obesity and Associated Disorders are Prevented by Natural Bioactive Type 1 Fish Collagen Peptides (Naticol®) Treatment. J. Physiol. Biochem. 2018, 74(4), 647–654. DOI: 10.1007/s13105-018-0650-0.
  • Raksha, N. G.; Potalitsyn, P. Y.; Yurchenko, A. V.; Halenova, T. I.; Savchuk, O. M.; Ostapchenko, L. I. Prevention of Diet-induced Obesity in Rats by Oral Application of Collagen Fragments. Arch Biol Sci. 2018, 70(1), 077–086. DOI: 10.2298/ABS170401027R.
  • Holen, E.; He, J.; Araujo, P.; Seliussen, J.; Espe, M. Hydrolyzed Fish Proteins Modulates Both Inflammatory and Antioxidant Gene Expression as Well as Protein Expression in a Co Culture Model of Liver and Head Kidney Cells Isolated from Atlantic Salmon (Salmo Salar). Fish Shellfish Immunol. 2016, 54, 22–29. DOI: 10.1016/j.fsi.2016.03.030.
  • Zampelas, A.; Panagiotakos, D. B.; Pitsavos, C.; Das, U. N.; Chrysohoou, C.; Skoumas, Y.; Stefanadis, C. Fish Consumption among Healthy Adults Is Associated with Decreased Levels of Inflammatory Markers Related to Cardiovascular Disease: The ATTICA Study. J. Am. Coll. Cardiol. 2005, 46(1), 120–124. DOI: 10.1016/j.jacc.2005.03.048.
  • De Mello, V. D.; Erkkilä, A. T.; Schwab, U. S.; Pulkkinen, L.; Kolehmainen, M.; Atalay, M.; Mussalo, H.; Lankinen, M.; Orešič, M.; Lehto, S. The Effect of Fatty or Lean Fish Intake on Inflammatory Gene Expression in Peripheral Blood Mononuclear Cells of Patients with Coronary Heart Disease. Eur. J. Nutr. 2009, 48(8), 447–455. DOI: 10.1007/s00394-009-0033-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.