890
Views
6
CrossRef citations to date
0
Altmetric
Review

Dynamic variation of amino acid content during black tea processing: A review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Dong, C.; Liang, G.; Hu, B.; Yuan, H.; Jiang, Y.; Zhu, H.; Qi, J. Prediction of Congou Black Tea Fermentation Quality Indices from Color Features Using Non-Linear Regression Methods. Sci. Rep. 2018, 8, 10535. DOI: 10.1038/s41598-018-28767-2.
  • Li, S.; Lo, C.-Y.; Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Black Tea: Chemical Analysis and Stability. Food Funct. 2013, 4, 10–18. DOI: 10.1039/c2fo30093a.
  • Wan, X. C. Tea Biochemistry; China Agriculture Press: Beijing, China, 2003; 32.
  • Alcázar, A.; Ballesteros, O.; Jurado, J. M.; Pablos, F.; Martín, M. J.; Vilches, J. L.; Navalón, A. Differentiation of Green, White, Black, Oolong, and Pu-erh Teas according to Their Free Amino Acids Content. J. Agric. Food Chem. 2007, 55, 5960–5965. DOI: 10.1021/jf070601a.
  • Li, W.; Xiang, F.; Zhong, M.; Zhou, L.; Liu, H.; Li, S.; Wang, X. Transcriptome and Metabolite Analysis Identifies Nitrogen Utilization Genes in Tea Plant (Camellia Sinensis). Sci. Rep. 1693, 2017(7). DOI: 10.1038/s41598-017-01949-0.
  • Huang, H.; Yao, Q.; Xia, E.; Gao, L. Metabolomics and Transcriptomics Analyses Reveal Nitrogen Influences on the Accumulation of Flavonoids and Amino Acids in Young Shoots of Tea Plant (Camellia Sinensis L.) Associated with Tea Flavor. J. Agric. Food Chem. 2018, 66, 9828–9838. DOI: 10.1021/acs.jafc.8b01995.
  • Feng, L.; Yang, T.; Zhang, Z.; Li, F.; Chen, Q.; Sun, J.; Shi, C.; Deng, W.; Tao, M.; Tai, Y. Identification and Characterization of Cationic Amino Acid Transporters (Cats) in Tea Plant (Camellia Sinensis). Plant Growth Regul. 2018, 84, 57–69. DOI: 10.1007/s10725-017-0321-0.
  • Li, F.; Li, H.; Dong, C.; Yang, T.; Zhang, S.; Bao, S.; Wan, X.; Zhang, Z. Theanine Transporters are Involved in Nitrogen Deficiency Response in Tea Plant (Camellia Sinensis L.). Plant signaling behav 2020, 1728109. DOI: 10.1080/15592324.2020.1728109.
  • Ponmurugan, P.; Baby, U.; Rajkumar, R. Growth, Photosynthetic and Biochemical Responses of Tea Cultivars Infected with Various Diseases. Photosynthetica. 2007, 45, 143–146. DOI: 10.1007/s11099-007-0023-3.
  • Zhang, X.; Wu, H.; Chen, J.; Chen, L.; Wan, X. Chloride and Amino Acids are Associated with K+-alleviated Drought Stress in Tea (Camellia Sinesis). Funct. Plant Biol. 2020, 47, 398–408. DOI: 10.1071/FP19221.
  • Wang, X.; Zeng, L.; Liao, Y.; Zhou, Y.; Xu, X.; Dong, F.; Yang, Z. An Alternative Pathway for the Formation of Aromatic Aroma Compounds Derived from L-phenylalanine via Phenylpyruvic Acid in Tea (Camellia Sinensis (L.) O. Kuntze) Leaves. Food Chem. 2019, 270, 17–24. DOI: 10.1016/j.foodchem.2018.07.056.
  • Zhang, H.; Li, Y.; Lv, Y.; Jiang, Y.; Pan, J.; Duan, Y.; Zhu, Y.; Zhang, S. Influence of Brewing Conditions on Taste Components in Fuding White Tea Infusions. J. Sci. Food Agric. 2017, 97, 2826–2833. DOI: 10.1002/jsfa.8111.
  • Scharbert, S.; Hofmann, T. Molecular Definition of Black Tea Taste by Means of Quantitative Studies, Taste Reconstitution, and Omission Experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. DOI: 10.1021/jf050294d.
  • Co, H.; Sanderson, G. Biochemistry of Tea Fermentation: Conversion of Amino Acids to Black Tea Aroma Constituents. J. Food Sci. 1970, 35, 160–164. DOI: 10.1111/j.1365-2621.1970.tb12128.x.
  • Gong, Y.; Luo, Y.; Huang, J.; Zhang, J.; Peng, Y.; Liu, Z.; Baolu, Z. Theanine Improves Stress Resistance in Caenorhabditis Elegans. J. Funct. Foods. 2012, 4, 988–993. DOI: 10.1016/j.jff.2012.04.005.
  • Deb, S.; Dutta, A.; Phukan, B. C.; Manivasagam, T.; Thenmozhi, A. J.; Bhattacharya, P.; Paul, R.; Borah, A. Neuroprotective Attributes of L-theanine, a Bioactive Amino Acid of Tea, and Its Potential Role in Parkinson’s Disease Therapeutics. Neurochem. Int. 2019, 129, 104478. DOI: 10.1016/j.neuint.2019.104478.
  • Zeng, L.; Lin, L.; Peng, Y.; Yuan, D.; Zhang, S.; Gong, Z.; Xiao, W. L-Theanine Attenuates Liver Aging by Inhibiting Advanced Glycation End Products in D-galactose-induced Rats and Reversing an Imbalance of Oxidative Stress and Inflammation. Exp. Gerontology. 2020, 131, 110823. DOI: 10.1016/j.exger.2019.110823.
  • Pouliot-Mathieu, K.; Gardner-Fortier, C.; Lemieux, S.; St-Gelais, D.; Champagne, C. P.; Vuillemard, J.-C. Effect of Cheese Containing Gamma-aminobutyric Acid-producing Lactic Acid Bacteria on Blood Pressure in Men. PharmaNutrition. 2013, 1, 141–148. DOI: 10.1016/j.phanu.2013.06.003.
  • Kim, Y. S.; Yoon, B.-E. Altered GABAergic Signaling in Brain Disease at Various Stages of Life. Exp neurobiol. 2017, 26, 122–131. DOI: 10.5607/en.2017.26.3.122.
  • Diana, M.; Quílez, J.; Rafecas, M. Gamma-aminobutyric Acid as a Bioactive Compound in Foods: A Review. J. Funct. Foods. 2014, 10, 407–420. DOI: 10.1016/j.jff.2014.07.004.
  • Zhang, L.; Cao, Q.; Granato, D.; Xu, Y.; Ho, C. Association between Chemistry and Taste of Tea: A Review. Trends Food Sci. Technol. 2020, 101, 139–149. DOI: 10.1016/j.tifs.2020.05.015.
  • Sari, F.; Velioglu, Y. S. Changes in Theanine and Caffeine Contents of Black Tea with Different Rolling Methods and Processing Stages. Eur. Food Res. Technol. 2013, 237, 229–236. DOI: 10.1007/s00217-013-1984-z.
  • Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of Different Drying Methods on the Sensory Quality and Chemical Components of Black Tea. LWT. 2019, 99, 112–118. DOI: 10.1016/j.lwt.2018.09.036.
  • Yu, P.; Chen, P.; Huang, H.; Zhao, X.; Zhong, N.; Liu, S.; Zheng, H.; Gong, Y. Influence of Processing Steps on the Formation of Main Taste Compounds in Congou Black Tea Made from the Cultivar Baojing Huangjincha 1 (In Chinese). Food Sci. 2020, 41, 185–191. DOI: 10.7506/spkx1002-6630-20190612-130.
  • Zhong, N.; Liu, S. Transcriptome and Phytochemical Analysis Reveals the Alteration of Plant Hormones, Characteristic Metabolites, and Related Gene Expression in Tea (Camellia Sinensis L.) Leaves during Withering. Plants 2020, 9, 204. DOI: 10.3390/plants9020204.
  • Wu, Z. J.; Ma, H. Y.; Zhuang, J. iTRAQ-based Proteomics Monitors the Withering Dynamics in Postharvest Leaves of Tea Plant (Camellia Sinensis). Mol. Genet. Genomics. 2018, 293, 45–59. DOI: 10.1007/s00438-017-1362-9.
  • Li, D.; Li, C. Y.; Hu, C. J.; Yang, Y. S.; Lin, C.; Zhao, D.; Li, Q. S.; Ye, J. H.; Zheng, X. Q.; Liang, Y. R., et al. Study on the Accumulation Mechanism of Amino Acids during Bruising and Withering Treatment of Oolong Tea. J. Agric. Food Chem. 2020, 68, 14071–14080. DOI: 10.1021/acs.jafc.0c05344.
  • Jabeen, S.; Alam, S.; Saleem, M.; Ahmad, W.; Bibi, R.; Hamid, F. S.; Shah, H. U. Withering Timings Affect the Total Free Amino Acids and Mineral Contents of Tea Leaves during Black Tea Manufacturing. Arabian J. Chem. 2019, 12, 2411–2417. DOI: 10.1016/j.arabjc.2015.03.011.
  • Senthil Kumar, R.; Murugesan, S.; Kottur, G.; Gyamfi, D. Chapter 4-Black Tea: The Plants, Processing/manufacturing and Production. In Tea in Health and Disease Prevention; Preedy, V.R., Ed.; American Academic Press: Salt Lake City, 2013; pp 41–57. DOI: 10.1016/B978-0-12-384937-3.00004-5.
  • Chen, Y.; Zeng, L.; Liao, Y.; Li, J.; Zhou, B.; Yang, Z.; Tang, J. Enzymatic Reaction-Related Protein Degradation and Proteinaceous Amino Acid Metabolism during the Black Tea (Camellia Sinensis) Manufacturing Process. Foods. 2020, 9(1), 66. DOI: 10.3390/foods9010066.
  • Chen, Y.; Fu, X.; Mei, X.; Zhou, Y.; Cheng, S.; Zeng, L.; Dong, F.; Yang, Z. Proteolysis of Chloroplast Proteins Is Responsible for Accumulation of Free Amino Acids in Dark-treated Tea (Camellia Sinensis) Leaves. J. Proteomics. 2017, 157, 10–17. DOI: 10.1016/j.jprot.2017.01.017.
  • Yu, Z.; Yang, Z. Understanding Different Regulatory Mechanisms of Proteinaceous and Non-proteinaceous Amino Acid Formation in Tea (Camellia Sinensis) Provides New Insights into the Safe and Effective Alteration of Tea Flavor and Function. Crit. Rev. Food Sci. Nutr. 2020, 60, 844–858. DOI: 10.1080/10408398.2018.1552245.
  • Deb, S.; Pou, K. J. A Review of Withering in the Processing of Black Tea. J Biosystems Eng. 2016, 41, 365–372. DOI: 10.5307/JBE.2016.41.4.365.
  • Hua, J.; Yuan, H.; Wang, W.; Jiang, Y.; Liu, Q.; Chen, G.; Wang, F. Effect of Withering Temperature on Dynamic Changes of Main Biochemical Components and Enzymatic Activity of Tea Fresh Leaves (In Chinese). J. Tea Sci. 2015, 35, :73–81. DOI: 10.13305/j.cnki.jts.2015.01.014.
  • Teng, R.-M.; Wu, Z.-J.; Ma, H.-Y.; Wang, Y.-X.; Zhuang, J. Differentially Expressed Protein are Involved in Dynamic Changes of Catechins Contents in Postharvest Tea Leaves under Different Temperatures. J. Agric. Food Chem. 2019, 67, 7547–7560. DOI: 10.1021/acs.jafc.9b01705.
  • Tomlins, K. I.; Mashingaidze, A. Influence of Withering, Including Leaf Handling, on the Manufacturing and Quality of Black Teas — A Review. Food Chem. 1997, 60, 573–580. DOI: 10.1016/S0308-8146(97)00035-6.
  • Wang, H.; Liu, Y.; Zhou, H.; Hu, S.; Huang, J.; Lei, P. Dynamic Changes of Amino Acids and Catechins in Black Tea Processed with Different Withering Treatments (In Chinese). China Tea Proce. 2018, 4, 29–34. DOI: 10.15905/j.cnki.33-1157/ts.2018.04.007.
  • Ye, Y.; Yan, J.; Cui, J.; Mao, S.; Li, M.; Liao, X.; Tong, H. Dynamic Changes in Amino Acids, Catechins, Caffeine and Gallic Acid in Green Tea during Withering. J. Food Compost. Anal. 2018, 66, 98–108. DOI: 10.1016/j.jfca.2017.12.008.
  • Chen, Q.; Zhu, Y.; Dai, W.; Lv, H.; Mu, B.; Li, P.; Tan, J.; Ni, D.; Lin, Z. Aroma Formation and Dynamic Changes during White Tea Processing. Food Chem. 2019, 274, 915–924. DOI: 10.1016/j.foodchem.2018.09.072.
  • Wang, Y.; Zheng, P.-C.; Liu, -P.-P.; Song, X.-W.; Guo, F.; Li, -Y.-Y.; Ni, D.-J.; Jiang, C.-J. Novel Insight into the Role of Withering Process in Characteristic Flavor Formation of Teas Using Transcriptome Analysis and Metabolite Profiling. Food Chem. 2019, 272, 313–322. DOI: 10.1016/j.foodchem.2018.08.013.
  • Yu, X.; Li, Y.; He, C.; Zhou, J.; Chen, Y.; Yu, Z.; Wang, P.; Ni, D. Nonvolatile Metabolism in Postharvest Tea (Camellia Sinensis L.) Leaves: Effects of Different Withering Treatments on Nonvolatile Metabolites, Gene Expression Levels, and Enzyme Activity. Food Chem. 2020, 126992. DOI: 10.1016/j.foodchem.2020.126992.
  • Cheng, S.; Fu, X.; Liao, Y.; Xu, X.; Zeng, L.; Tang, J.; Li, J.; Lai, J.; Yang, Z. Differential Accumulation of Specialized Metabolite L-theanine in Green and Albino-induced Yellow Tea (Camellia Sinensis) Leaves. Food Chem. 2019, 276, 93–100. DOI: 10.1016/j.foodchem.2018.10.010.
  • Liu, Z. W.; Wu, Z. J.; Li, H.; Wang, Y. X.; Zhuang, J. L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia Sinensis L.) Tissues and Cultivars. Front. Plant Sci. 2017, 8, 498. DOI: 10.3389/fpls.2017.00498.
  • Roberts, G.; Sanderson, G. Changes Undergone by Free Amino‐acids during the Manufacture of Black Tea. J. Sci. Food Agric. 1966, 17, 182–188. DOI: 10.1002/jsfa.2740170409.
  • Liu, Z. W.; Li, H.; Wang, W. L.; Wu, Z. J.; Cui, X.; Zhuang, J. CsGOGAT Is Important in Dynamic Changes of Theanine Content in Postharvest Tea Plant Leaves under Different Temperature and Shading Spreadings. J. Agric. Food Chem. 2017, 65, 9693–9702. DOI: 10.1021/acs.jafc.7b04552.
  • Tsushida, T.; Takeo, T. An Enzyme Hydrolyzing L-theanine in Tea Leaves. Agric Biol Chem. 1985, 49, 2913–2917. DOI: 10.1271/bbb1961.49.2913.
  • Fu, X.; Cheng, S.; Liao, Y.; Xu, X.; Wang, X.; Hao, X.; Xu, P.; Dong, F.; Yang, Z. Characterization of L-theanine Hydrolase in Vitro and Subcellular Distribution of Its Specific Product Ethylamine in Tea (Camellia Sinensis). J. Agric. Food Chem. 2020, 68, 10842–10851. DOI: 10.1021/acs.jafc.0c01796.
  • Kinnersley, A. M.; Turano, F. J. Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress. Critical Rev Plant Sci. 2000, 19, 479–509. DOI: 10.1080/07352680091139277.
  • Xing, S. G.; Jun, Y. B.; Hau, Z. W.; Liang, L. Y. Higher Accumulation of γ-aminobutyric Acid Induced by Salt Stress through Stimulating the Activity of Diamine Oxidases in Glycine Max (L.) Merr. Roots. Plant Physiol. Biochem. 2007, 45, 560–566. DOI: 10.1016/j.plaphy.2007.05.007.
  • Mei, X.; Xu, X.; Yang, Z. Characterization of Two Tea Glutamate Decarboxylase Isoforms Involved in GABA Production. Food Chem. 2020, 305, 125440. DOI: 10.1016/j.foodchem.2019.125440.
  • Mei, X.; Chen, Y.; Zhang, L.; Fu, X.; Wei, Q.; Grierson, D.; Zhou, Y.; Huang, Y.; Dong, F.; Yang, Z. Dual Mechanisms Regulating Glutamate Decarboxylases and Accumulation of Gamma-aminobutyric Acid in Tea (Camellia Sinensis) Leaves Exposed to Multiple Stresses. Sci. Rep. 2016, 6, 23685. DOI: 10.1038/srep23685.
  • Lin, Z.; Lin, Z.; Yin, J.; Tan, J. Influence of Anaerobic Treatment on the Amount of γ- Aminobutyric Acid and the Quality of Tea Leaf (In Chinese). Food Sci. 2004, 25, 35–39. DOI: 10.3321/j.1002-6630.2004.02.003.
  • Nguyen, Q. S.; Nguyen, C. B.; Le, T. L.; Ho, S. V.; Nguyen, T. D. H.; Nguyen, V. T. Effects of Anaerobic Fermentation in a Nitrogen Atmosphere on Bioactive Compound Content in Vietnamese GABA Tea. Vietnam J Sci Technol Eng. 2018, 60, 37–41. DOI: 10.31276/VJSTE.60(3).37.
  • Sawai, Y.; Yamaguchi, Y.; Miyama, D.; Yoshitomi, H. Cycling Treatment of Anaerobic and Aerobic Incubation Increases the Content of γ-aminobutyric Acid in Tea Shoots. Amino Acids. 2001, 20, 331–334. DOI: 10.1007/s007260170049.
  • Dai, W.; Xie, D.; Lin, Z.; Yang, C.; Peng, Q.; Tan, J.; Lin, Z. A Nontargeted and Targeted Metabolomics Study on the Dynamic Changes in Metabolite Levels during the Anaerobic Treatment of γ-aminobutyric Acid (GABA) Tea. Lwt. 2020, 126, 109313. DOI: 10.1016/j.lwt.2020.109313.
  • Liao, J.; Wu, X.; Xing, Z.; Li, Q.; Duan, Y.; Fang, W.; Zhu, X. γ-Aminobutyric Acid (GABA) Accumulation in Tea (Camellia Sinensis L.) Through the GABA Shunt and Polyamine Degradation Pathways under Anoxia. J. Agric. Food Chem. 2017, 65, 3013–3018. DOI: 10.1021/acs.jafc.7b00304.
  • Yılmaz, C.; Özdemir, F.; Gökmen, V. Investigation of Free Amino Acids, Bioactive and Neuroactive Compounds in Different Types of Tea and Effect of Black Tea Processing. Lwt. 2020, 117, 108655. DOI: 10.1016/j.lwt.2019.108655.
  • Wan, X. C.; Xia, T. Secondary Metabolism of Tea Plant (In Chinese); China Science Press: Beijing, China, 2015.
  • Wu, H.; Huang, W.; Chen, Z.; Chen, Z.; Shi, J.; Kong, Q.; Sun, S.; Jiang, X.; Chen, D.; Yan, S. GC–MS-based Metabolomic Study Reveals Dynamic Changes of Chemical Compositions during Black Tea Processing. Food Res. Int. 2019, 120, 330–338. DOI: 10.1016/j.foodres.2019.02.039.
  • Zeng, L.; Zhou, Y.; Gui, J.; Fu, X.; Mei, X.; Zhen, Y.; Ye, T.; Du, B.; Dong, F.; Watanabe, N., et al. Formation of Volatile Tea Constituent Indole during the Oolong Tea Manufacturing Process. J. Agric. Food Chem. 2016, 64, 5011–5019. DOI: 10.1021/acs.jafc.6b01742.
  • Dong, C.; An, T.; Zhu, H.; Wang, J.; Hu, B.; Jiang, Y.; Yang, Y.; Li, J. Rapid Sensing of Key Quality Components in Black Tea Fermentation Using Electrical Characteristics Coupled to Variables Selection Algorithms. Sci. Rep. 2020, 10, 1598. DOI: 10.1038/s41598-020-58637-9.
  • Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea Aroma Formation from Six Model Manufacturing Processes. Food Chem. 2019, 285, 347–354. DOI: 10.1016/j.foodchem.2019.01.174.
  • Ho, C. T.; Zheng, X.; Li, S. Tea Aroma Formation. Food Sci Human Wellness. 2015, 4, 9–27. DOI: 10.1016/j.fshw.2015.04.001.
  • Kraujalytė, V.; Pelvan, E.; Alasalvar, C. Volatile Compounds and Sensory Characteristics of Various Instant Teas Produced from Black Tea. Food Chem. 2016, 194, 864–872. DOI: 10.1016/j.foodchem.2015.08.051.
  • Tan, J.; Dai, W.; Lu, M.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Lin, Z. Study of the Dynamic Changes in the Non-volatile Chemical Constituents of Black Tea during Fermentation Processing by a Non-targeted Metabolomics Approach. Food Res. Int. 2016, 79, 106–113. DOI: 10.1016/j.foodres.2015.11.018.
  • Temple, S. J.; Temple, C. M.; Boxtel, A. J. The Effect of Drying on Black Tea Quality. J. Sci. Food Agric. 2001, 81, 764–772. DOI: 10.1002/jsfa.881.
  • Zhen, Y. S.; Chen, Z. M.; Cheng, S. J.; Chen, M. L. Tea: Bioactivity and Therapeutic Potential; CRC Press: London, 2002.
  • Tanaka, T.; Watarumi, S.; Fujieda, M.; Kouno, I. New Black Tea Polyphenol Having N-ethyl-2-pyrrolidinone Moiety Derived from Tea Amino Acid Theanine: Isolation, Characterization and Partial Synthesis. Food Chem. 2005, 93, 81–87. DOI: 10.1016/j.foodchem.2004.09.013.
  • Yu, H.; Seow, Y.-X.; Ong, P. K. C.; Zhou, W. Kinetic Study of High-intensity Ultrasound-assisted Maillard Reaction in a Model System of D-glucose and Glycine. Food Chem. 2018, 269, 628–637. DOI: 10.1016/j.foodchem.2018.07.053.
  • Jiao, Y.; He, J.; Li, F.; Tao, G.; Zhang, S.; Zhang, S.; Qin, F.; Zeng, M.; Chen, J. Nε-(carboxymethyl) Lysine and Nε-(carboxyethyl) Lysine in Tea and the Factors Affecting Their Formation. Food Chem. 2017, 232, 683–688. DOI: 10.1016/j.foodchem.2017.04.059.
  • Bi, K.; Zhang, L.; Qiao, X.; Xu, Z. Tea Polyphenols as Inhibitors of Furan Formed in the Maillard Model System and Canned Coffee Model. J. Food Sci. 2017, 82, 1271–1277. DOI: 10.1111/1750-3841.13691.
  • Jiao, Y.; He, J.; He, Z.; Gao, D.; Qin, F.; Xie, M.; Zeng, M.; Chen, J. Formation of Nε-(carboxymethyl) Lysine and Nε-(carboxyethyl) Lysine during Black Tea Processing. Food Res. Int. 2019, 121, 738–745. DOI: 10.1016/j.foodres.2018.12.051.
  • Li, F.; Dong, C.; Yang, T.; Ma, J.; Zhang, S.; Wei, C.; Wan, X.; Zhang, Z. Seasonal Theanine Accumulation and Related Gene Expression in the Roots and Leaf Buds of Tea Plants (Camellia Sinensis L.). Front. Plant Sci. 2019, 10, 1397. DOI: 10.3389/fpls.2019.01397.
  • Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J. Nontargeted Analysis Using Ultraperformance Liquid Chromatography–quadrupole Time-of-flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia Sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. DOI: 10.1021/acs.jafc.5b03967.
  • Yu, P.; Huang, H.; Zhao, X.; Zhong, N.; Zheng, H.; Gong, Y. Distinct Variation in Taste Quality of Congou Black Tea during a Single Spring Season. Food Sci. Nutr., 2020;(8):1848–1856. DOI: 10.1002/fsn3.1467.
  • Qu, F.; Zeng, W.; Tong, X.; Feng, W.; Chen, Y.; Ni, D. The New Insight into the Influence of Fermentation Temperature on Quality and Bioactivities of Black Tea. Lwt. 2020, 117, 108646. DOI: 10.1016/j.lwt.2019.108646.
  • Ai, Z.; Zhang, B.; Chen, Y.; Yu, Z.; Chen, H.; Ni, D. Impact of Light Irradiation on Black Tea Quality during Withering. J. Food Sci. Technol. 2017, 54, 1212–1227. DOI: 10.1007/s13197-017-2558-z.
  • Wang, W.; Xin, H.; Wang, M.; Ma, Q.; Wang, L.; Kaleri, N. A.; Wang, Y.; Li, X. Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia Sinensis Leaf Quality. Front. Plant Sci. 2016, 7, 385. DOI: 10.3389/fpls.2016.00385.
  • Chen, Y.; Zhou, B.; Li, J.; Tang, H.; Tang, J.; Yang, Z. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions. Int. J. Mol. Sci. 2018, 19, 654. DOI: 10.3390/ijms19030654.
  • Guo, X.; Song, C.; Ho, C. T.; Wan, X. Contribution of L-theanine to the Formation of 2,5-dimethylpyrazine, a Key Roasted Peanutty Flavor in Oolong Tea during Manufacturing Processes. Food Chem. 2018, 263, 18–28. DOI: 10.1016/j.foodchem.2018.04.117.
  • Wang, W.; Zhang, L.; Wang, S.; Shi, S.; Jiang, Y.; Li, N.; Tu, P. 8-C N-ethyl-2-pyrrolidinone Substituted Flavan-3-ols as the Marker Compounds of Chinese Dark Teas Formed in the Post-fermentation Process Provide Significant Antioxidative Activity. Food Chem. 2014, 152, 539–545. DOI: 10.1016/j.foodchem.2013.10.117.
  • Dai, W.; Tan, J.; Lu, M.; Zhu, Y.; Li, P.; Peng, Q.; Guo, L.; Zhang, Y.; Xie, D.; Hu, Z., et al. Metabolomics Investigation Reveals that 8-C N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols are Potential Marker Compounds of Stored White Teas. J. Agric. Food Chem. 2018, 66, 7209–7218. DOI: 10.1021/acs.jafc.8b02038.
  • Jiang, H.; Yu, F.; Qin, L.; Zhang, N.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic Change in Amino Acids, Catechins, Alkaloids, and Gallic Acid in Six Types of Tea Processed from the Same Batch of Fresh Tea (Camellia Sinensis L.) Leaves. J. Food Compost. Anal. 2019, 77, 28–38. DOI: 10.1016/j.jfca.2019.01.005.
  • Horanni, R.; Engelhardt, U. H. Determination of Amino Acids in White, Green, Black, Oolong, Pu-erh Teas and Tea Products. J. Food Compost. Anal. 2013, 31, 94–100. DOI: 10.1016/j.jfca.2013.03.005.
  • Kocadağlı, T.; Özdemir, K. S.; Gökmen, V. Effects of Infusion Conditions and Decaffeination on Free Amino Acid Profiles of Green and Black Tea. Food Res. Int. 2013, 53, 720–725. DOI: 10.1016/j.foodres.2012.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.