837
Views
1
CrossRef citations to date
0
Altmetric
Review

The properties and preparation of functional starch: a review

, , , , , , ORCID Icon, , & show all

References

  • Miao, M.; Jiang, B.; Cui, S. W.; Zhang, T.; Jin, Z. Nutrition, Slowly Digestible Starch—A Review. Crit. Rev. Food Sci. 2015, 55(12), 1642–1657. DOI: 10.1080/10408398.2012.704434.
  • Englyst, H. N.; Kingman, S. M.; Cupmmings, J. H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46(Suppl 2), 33–50.
  • Liu, S.; Reimer, M.; Ai, Y. In Vitro Digestibility of Different Types of Resistant Starches under High-temperature Cooking Condition. Food Hydrocolloids. 2020, 107, 105927. DOI: 10.1016/j.foodhyd.2020.105927.
  • Šárka, E.; Dvořáček, V. New Processing and Applications of Waxy Starch (A Review). J. Food Eng. 2017, 206, 77–87. DOI: 10.1016/j.jfoodeng.2017.03.006.
  • Haralampu, S. G. Resistant Starch—a Review of the Physical Properties and Biological Impact of RS3. Carbohydr. Polym. 2000, 41, 285–292. DOI: 10.1016/S0144-8617(99)00147-2.
  • Giuberti, G.; Gallo, A.; Fortunati, P.; Rossi, F. Wheat-based Breads with Slowly Digestible Starch Properties by Increasing the Amylose Content: An in Vitro Approach. Mediterr. J. Nutr. Metab. 2016, 9(2), 101–109. DOI: 10.3233/mnm-160063.
  • Xu, X.; Luo, Z.; Yang, Q.; Xiao, Z.; Lu, X. Effect of Quinoa Flour on Baking Performance, Antioxidant Properties and Digestibility of Wheat Bread. Food Chem. 2019, 294, 87–95. DOI: 10.1016/j.foodchem.2019.05.037.
  • Hu, X.; Guo, B.; Liu, C.; Yan, X.; Chen, J.; Luo, S.; Liu, Y.; Wang, H.; Yang, R.; Zhong, Y., et al. Modification of Potato Starch by Using Superheated Steam. Carbohydr. Polym. 2018, 198, 375–384. DOI: 10.1016/j.carbpol.2018.06.110.
  • Hung, P. V.; Huong, N. T.; Phi, N. T.; Tien, N. N. Physicochemical Characteristics and in Vitro Digestibility of Potato and Cassava Starches under Organic Acid and Heat-moisture Treatments. Int. J. Biol. Macromol. 2017, 95, 299–305. DOI: 10.1016/j.ijbiomac.2016.11.074.
  • Flores-Silva, P. C.; Roldan-Cruz, C. A.; Chavez-Esquivel, G.; Vernon-Carter, E. J.; Bello-Perez, L. A.; Alvarez-Ramirez, J. In Vitro Digestibility of Ultrasound-treated Corn Starch. Starch - Stärke. 2017, 69, 9–10. DOI: 10.1002/star.201700040.
  • Yang, Z.; Xu, X.; Singh, R.; De. Campo, L.; Gilbert, E. P.; Wu, Z.; Hemar, Y. Effect of Amyloglucosidase Hydrolysis on the Multi-scale Supramolecular Structure of Corn Starch. Carbohydr. Polym. 2019, 212, 40–50. DOI: 10.1016/j.carbpol.2019.02.028.
  • Zhang, H.; Zhou, X.; Wang, T.; He, J.; Yue, M.; Luo, X.; Wang, L.; Wang, R.; Chen, Z. Enzymatically Modified Waxy Corn Starch with Amylosucrase: The Effect of Branch Chain Elongation on Structural and Physicochemical Properties. Food Hydrocolloids. 2017, 63, 518–524. DOI: 10.1016/j.foodhyd.2016.09.043.
  • Zou, J.; Xu, M.; Tian, J.; Li, B. Impact of Continuous and Repeated Dry Heating Treatments on the Physicochemical and Structural Properties of Waxy Corn Starch. Int. J. Biol. Macromol. 2019, 135, 379–385. DOI: 10.1016/j.ijbiomac.2019.05.147.
  • Hu, X. P.; Zhang, B.; Jin, Z. Y.; Xu, X. M.; Chen, H. Q. Effect of High Hydrostatic Pressure and Retrogradation Treatments on Structural and Physicochemical Properties of Waxy Wheat Starch. Food Chem. 2017, 232, 560–565. DOI: 10.1016/j.foodchem.2017.04.040.
  • Su, H.; Tu, J.; Zheng, M.; Deng, K.; Miao, S.; Zeng, S.; Zheng, B.; Lu, X. Effects of Oligosaccharides on Particle Structure, Pasting and Thermal Properties of Wheat Starch Granules under Different Freezing Temperatures. Food Chem. 2020, 315, 126209. DOI: 10.1016/j.foodchem.2020.126209.
  • Zhang, H.; Hou, H.; Liu, P.; Wang, W.; Dong, H. Effects of Acid Hydrolysis on the Physicochemical Properties of Pea Starch and Its Film Forming Capacity. Food Hydrocolloids. 2019, 87, 173–179. DOI: 10.1016/j.foodhyd.2018.08.009.
  • Zhu, F. Structures, Properties, and Applications of Lotus Starches. Food Hydrocolloids. 2017, 63, 332–348. DOI: 10.1016/j.foodhyd.2016.08.034.
  • Zeng, F.; Li, T.; Gao, Q.; Liu, B.; Yu, S. Physicochemical Properties and in Vitro Digestibility of High Hydrostatic Pressure Treated Waxy Rice Starch. Int. J. Biol. Macromol. 2018, 120, 1030–1038. DOI: 10.1016/j.ijbiomac.2018.08.121.
  • Borah, P. K.; Deka, S. C.; Duary, R. K. Effect of Repeated Cycled Crystallization on Digestibility and Molecular Structure of Glutinous Bora Rice Starch. Food Chem. 2017, 223, 31–39. DOI: 10.1016/j.foodchem.2016.12.022.
  • Li, W.; Tian, X.; Wang, P.; Saleh, A.; Luo, Q.; Zheng, J.; Ouyang, S.; Zhang, G. Recrystallization Characteristics of High Hydrostatic Pressure Gelatinized Normal and Waxy Corn Starch. Int. J. Biol. Macromol. 2016, 83, 171–177. DOI: 10.1016/j.ijbiomac.2015.11.057.
  • Li, Y.; Li, C.; Gu, Z.; Hong, Y.; Cheng, L.; Li, Z. Effect of Modification with 1,4-α-glucan Branching Enzyme on the Rheological Properties of Cassava Starch. Int. J. Biol. Macromol. 2017, 103, 630–639. DOI: 10.1016/j.ijbiomac.2017.05.045.
  • Wu, C.; Wu, Q. Y.; Wu, M.; Jiang, W.; Qian, J. Y.; Rao, S. Q.; Zhang, L.; Li, Q.; Zhang, C. Effect of Pulsed Electric Field on Properties and Multi-scale Structure of Japonica Rice Starch. LWT - Food Sci. Technol. 2019, 116, 108515. DOI: 10.1016/j.lwt.2019.108515.
  • Piecyk, M.; Druzynska, B.; Oltarzewska, A.; Wolosiak, R.; Worobiej, E.; Ostrowska-Ligeza, E. Effect of Hydrothermal Modifications on Properties and Digestibility of Grass Pea Starch. Int. J. Biol. Macromol. 2018, 118, 2113–2120. DOI: 10.1016/j.ijbiomac.2018.07.063.
  • Corgneau, M.; Gaiani, C.; Petit, J.; Nikolova, Y.; Banon, S.; Ritié-Pertusa, L.; Scher, J.; Le, D. T. L. Digestibility of Common Native Starches with Reference to Starch Granule Size, Shape and Surface Features Towards Guidelines for Starch-containing Food Products. Int. J. Food Sci. Technol. 2019, 54(6), 2132–2140. DOI: 10.1111/ijfs.14120.
  • Jeong, D.; Han, J. A.; Liu, Q.; Chung, H. J. Effect of Processing, Storage, and Modification on in Vitro Starch Digestion Characteristics of Food Legumes: A Review. Food Hydrocolloids. 2019, 90, 367–376. DOI: 10.1016/j.foodhyd.2018.12.039.
  • Han, H.; Hou, J.; Yang, N.; Zhang, Y.; Chen, H.; Zhang, Z.; Shen, Y.; Huang, S.; Guo, S. Insight on the Changes of Cassava and Potato Starch Granules during Gelatinization. Int. J. Biol. Macromol. 2019, 126, 37–43. DOI: 10.1016/j.ijbiomac.2018.12.201.
  • Chi, C. D.; Li, X. X.; Lu, P.; Miao, S.; Zhang, Y. P.; Chen, L. Dry Heating and Annealing Treatment Synergistically Modulate Starch. Int. J. Biol. Macromol. 2019, 137, 554–561. DOI: 10.1016/j.ijbiomac.2019.06.137.
  • Yang, Z.; Chaib, S.; Gu, Q.; Hemar, Y. Impact of Pressure on Physicochemical Properties of Starch Dispersions. Food Hydrocolloids. 2017, 68, 164–177. DOI: 10.1016/j.foodhyd.2016.08.032.
  • Hizukuri, S.; Takeda, Y.; Yasuda, M.; Suzuki, A. Multi-branched Nature of Amylose and the Action of Debranching Enzymes. Carbohydr. Res. 1981, 94(2), 205–213. DOI: 10.1016/j.foodhyd.2017.07.003.
  • Castro, L. M. G.; Alexandre, E. M. C.; Saraiva, J. A.; Pintado, M. Impact of High Pressure on Starch Properties: A Review. Food Hydrocolloids. 2020, 106, 105877. DOI: 10.1016/j.foodhyd.2020.105877.
  • Schirmer, M.; Jekle, M.; Becker, T. Starch Gelatinization and Its Complexity for Analysis. Starch - Stärke. 2015, 67(1–2), 30–41. DOI: 10.1002/star.201400071.
  • Ren, J.; Chen, S.; Li, C.; Gu, Z.; Cheng, L.; Hong, Y.; Li, Z. A Two-stage Modification Method Using 1,4-alpha-glucan Branching Enzyme Lowers the in Vitro Digestibility of Corn Starch. Food Chem. 2020, 305, 125441. DOI: 10.1016/j.foodchem.2019.125441.
  • He, W.; Wei, C. Progress in C-type Starches from Different Plant Sources. Food Hydrocolloids. 2017, 73, 162–175. DOI: 10.1016/j.foodhyd.2017.07.003.
  • Wang, J.; Guo, K.; Fan, X.; Feng, G.; Wei, C. Physicochemical Properties of C-Type Starch from Root Tuber of Apios Fortunei in Comparison with Maize, Potato, and Pea Starches. Molecules. 2018, 23(9). DOI: 10.3390/molecules23092132.
  • Zheng, Y. F.; Wang, Q.; Li, B. Y.; Lin, L. M.; Tundis, R.; Loizzo, M. R.; Zheng, B. D.; Xiao, J. B. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato. Molecules. 2016, 21(7), 11. DOI: 10.3390/molecules21070932.
  • Guo, L.; Deng, Y.; Lu, L.; Zou, F.; Cui, B. Synergistic Effects of Branching Enzyme and Transglucosidase on the Modification of Potato Starch Granules. Int. J. Biol. Macromol. 2019, 130, 499–507. DOI: 10.1016/j.ijbiomac.2019.02.160.
  • Li, H.; Li, J.; Xiao, Y.; Cui, B.; Guo, L. In Vitro Digestibility of Rice Starch Granules Modified by β-amylase, Transglucosidase and Pullulanase. Int. J. Biol. Macromol. 2019, 136, 1228–1236. DOI: 10.1016/j.ijbiomac.2019.06.111.
  • Lu, Z. H.; Belanger, N.; Donner, E.; Liu, Q. Debranching of Pea Starch Using Pullulanase and Ultrasonication Synergistically to Enhance Slowly Digestible and Resistant Starch. Food Chem. 2018, 268, 533–541. DOI: 10.1016/j.foodchem.2018.06.115.
  • Li, X.; Pei, J.; Fei, T.; Zhao, J.; Wang, Y.; Li, D. Production of Slowly Digestible Corn Starch Using Hyperthermophilic Staphylothermus Marinus Amylopullulanase in Bacillus Subtilis. Food Chem. 2019, 277, 1–5. DOI: 10.1016/j.foodchem.2018.10.092.
  • Li, X.; Miao, M.; Jiang, H.; Xue, J.; Jiang, B.; Zhang, T.; Gao, Y.; Jia, Y. Partial Branching Enzyme Treatment Increases the Low Glycaemic Property and Alpha-1,6 Branching Ratio of Maize Starch. Food Chem. 2014, 164, 502–509. DOI: 10.1016/j.foodchem.2014.05.074.
  • Li, D.; Fei, T.; Wang, Y.; Zhao, Y.; Dai, L.; Fu, X.; Li, X. A Cold-active 1,4-alpha-glucan Branching Enzyme from Bifidobacterium Longum Reduces the Retrogradation and Enhances the Slow Digestibility of Wheat Starch. Food Chem. 2020, 324, 126855. DOI: 10.1016/j.foodchem.2020.126855.
  • Lin, L.; Zhang, Q.; Zhang, L.; Wei, C. Evaluation of the Molecular Structural Parameters of Normal Rice Starch and Their Relationships with Its Thermal and Digestion Properties. Molecules. 2017, 22(9), 1526. DOI: 10.3390/molecules22091526.
  • Xu, J.; Chen, L.; Guo, X.; Liang, Y.; Xie, F. W. Understanding the Multi-scale Structure and Digestibility of Different Waxy Maize Starches - ScienceDirect. Int. J. Biol. Macromol. 2020, 144, 252–258. DOI: 10.1016/j.ijbiomac.2019.12.110.
  • Hanashiro, I.; Sakaguchi, I.; Yamashita, H. Branched Structures of Rice Amylose Examined by Differential Fluorescence Detection of Side-chain Distribution. J. Appl. Glycoence. 2013, 60(1), 79–85. DOI: 10.5458/jag.jag.JAG-2012_012.
  • Yee, J. C.; Román, L.; Carbajo, J. P.; Aguirre-Cruz, A.; Martinez, M. M. The Molecular Structure of Starch from Different Musa Genotypes: Higher Branching Density of Amylose Chains Seems to Promote Enzyme-resistant Structures. Food Hydrocolloids. 2021, 112, 106351. DOI: 10.1016/j.foodhyd.2020.106351.
  • Bertoft, E.; Piyachomkwan, K.; Chatakanonda, P.; Sriroth, K. Internal Unit Chain Composition in Amylopectins. Carbohydr. Polym. 2008, 74(3), 527–543. DOI: 10.1016/j.carbpol.2008.04.011.
  • Bertoft, E. Analyzing Starch Molecular Structure. Starch Food (Second Edition). 2018, 97–149. DOI: 10.1016/B978-0-08-100868-3.00002-0.
  • Shi, L.; Fu, X.; Huang, Q.; Zhang, B. Single Helix in V-type Starch Carrier Determines the Encapsulation Capacity of Ethylene. Carbohydr. Polym. 2017, 174, 798–803. DOI: 10.1016/j.carbpol.2017.06.102.
  • Jenkins, D. J.; Wolever, T. M.; Taylor, R. H.; Barker, H.; Fielden, H.; Baldwin, J. M.; Bowling, A. C.; Newman, H. C.; Jenkins, A. L.; Goff, D. V. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 3(34), 362–366. DOI: 10.1051/rnd:19820717.
  • Ai, Y.; Jane, J. L. Macronutrients in Corn and Human Nutrition. Compr. Rev. Food Sci. Food Saf. 2016, 15(3), 581–598. DOI: 10.1111/1541-4337.12192.
  • Liu, G.; Gu, Z.; Hong, Y.; Wei, H.; Zhang, C.; Huang, S.; Chen, Y.; Lu, Y.; Li, Y. Hydrocolloids, Effects of Molecular Interactions in Debranched High Amylose Starch on Digestibility and Hydrogel Properties. Food Hydrocolloids. 2019, 101, 105498. DOI: 10.1016/j.foodhyd.2019.105498.
  • Gutierrez, A.; Guo, J.; Feng, J.; Tan, L.; Kong, L. Hydrocolloids, Inhibition of Starch Digestion by Gallic Acid and Alkyl Gallates. Food Hydrocolloids. 2019, 102, 105603. DOI: 10.1016/j.foodhyd.2019.105603.
  • Teymoori, F.; Farhadnejad, H.; Moslehi, N.; Mirmiran, P.; Mokhtari, E.; Azizi, F. The Association of Dietary Insulin and Glycemic Indices with the Risk of Type 2 Diabetes. Clin. Nutr. 2020, 40, 2138–2144. DOI: 10.1016/j.clnu.2020.09.038.
  • Shaikh, F.; Ali, T. M.; Mustafa, G.; Hasnain, A. Comparative Study on Effects of Citric and Lactic Acid Treatment on Morphological, Functional, Resistant Starch Fraction and Glycemic Index of Corn and Sorghum Starches. Int. J. Biol. Macromol. 2019, 135, 314–327. DOI: 10.1016/j.ijbiomac.2019.05.115.
  • Sharma, B.; Gujral, H. S. Modulation in Quality Attributes of Dough and Starch Digestibility of Unleavened Flat Bread on Replacing Wheat Flour with Different Minor Millet Flours. Int. J. Biol. Macromol. 2019, 141, 117–124. DOI: 10.1016/j.ijbiomac.2019.08.252.
  • Lee, N.; Seo, J. M.; Kim, H. S.; Seo, D. H.; Kim, J.; Choi, H.; Lee, B. H. Citric-acid Treatment during Rice Processing Increases the Level of Slowly Digestible Starch with a Potential to Regulate the Post-prandial Blood Glucose Level. J. Cereal Sci. 2019, 89, 102821. DOI: 10.1016/j.jcs.2019.102821.
  • Shang, W.; Si, X.; Zhou, Z.; Wang, J.; Strappe, P.; Blanchard, C. Studies on the Unique Properties of Resistant Starch and Chito-oligosaccharide Complexes for Reducing High-fat Diet-induced Obesity and Dyslipidemia in Rats. J. Funct. Foods. 2017, 38, 20–27. DOI: 10.1016/j.jff.2017.08.032.
  • Si, X.; Strappe, P.; Blanchard, C.; Zhou, Z. Enhanced Anti-obesity Effects of Complex of Resistant Starch and Chitosan in High Fat Diet Fed Rats. Carbohydr. Polym. 2017, 157, 834–841. DOI: 10.1016/j.carbpol.2016.10.042.
  • Rosado, C. P.; Rosa, V. H. C.; Martins, B. C.; Soares, A. C.; Santos, I. B.; Monteiro, E. B.; Moura-Nunes, N.; Da Costa, C. A.; Mulder, A.; Daleprane, J. B. Resistant Starch from Green Banana (Musa Sp.) Attenuates Non-alcoholic Fat Liver Accumulation and Increases Short-chain Fatty Acids Production in High-fat Diet-induced Obesity in Mice. Int. J. Biol. Macromol. 2020, 145, 1066–1072. DOI: 10.1016/j.ijbiomac.2019.09.199.
  • Prado-Silva, L.; Azevedo, L.; Oliveira, J. A. C.; Moreira, A. P. M.; Schmiele, M.; Chang, Y. K.; Paula, F. B. A.; Clerici, M. T. P. S. Sesame and Resistant Starch Reduce the Colon Carcinogenesis and Oxidative Stress in 1,2-dimethylhydrazine-induced Cancer in Wistar Rats. Food Res. Int. 2014, 62, 609–617. DOI: 10.1016/j.foodres.2014.04.027.
  • Zhang, L.; Hu, X.; Xu, X.; Jin, Z.; Tian, Y. Slowly Digestible Starch Prepared from Rice Starches by Temperature-cycled Retrogradation. Carbohydr. Polym. 2011, 84(3), 970–974. DOI: 10.1016/j.carbpol.2010.12.056.
  • Ashogbon, A. O.; Akintayo, E. T. Recent Trend in the Physical and Chemical Modification of Starches from Different Botanical Sources: A Review. Starch Strke. 2014, 66(1–2), 41–57. DOI: 10.1002/star.201300106.
  • Din, ZU; Xiong, H; Fei, P. Physical and Chemical Modification of Starches: A Review. Crit. Rev. Food Sci. 2015, 57(12), 2691–2705 .
  • Lan, X.; Xie, S.; Wu, J.; Xie, F.; Liu, X.; Wang, Z. Thermal and Enzymatic Degradation Induced Ultrastructure Changes in Canna Starch: Further Insights into Short-range and Long-range Structural Orders. Food Hydrocolloids. 2016, 58, 335–342. DOI: 10.1016/j.foodhyd.2016.02.018.
  • Punia, S. Barley Starch Modifications: Physical, Chemical and Enzymatic - A Review. Int. J. Biol. Macromol. 2020, 144, 578–585. DOI: 10.1016/j.ijbiomac.2019.12.088.
  • Deka, D.; Sit, N. Dual Modification of Taro Starch by Microwave and Other Heat Moisture Treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. DOI: 10.1016/j.ijbiomac.2016.07.040.
  • Li, N.; Cai, Z.; Guo, Y.; Xu, T.; Qiao, D.; Zhang, B.; Zhao, S.; Huang, Q.; Niu, M.; Jia, C., et al. Hierarchical Structure and Slowly Digestible Features of Rice Starch following Microwave Cooking with Storage. Food Chem. 2019, 295, 475–483. DOI: 10.1016/j.foodchem.2019.05.151.
  • Tian, Y.; Li, D.; Zhao, J.; Xu, X.; Jin, Z. Effect of High Hydrostatic Pressure (HHP) on Slowly Digestible Properties of Rice Starches. Food Chem. 2014, 152, 225–229. DOI: 10.1016/j.foodchem.2013.11.162.
  • Tian, Y.; Zhang, L.; Xu, X.; Xie, Z.; Zhao, J.; Jin, Z. Effect of Temperature-cycled Retrogradation on Slow Digestibility of Waxy Rice Starch. Int. J. Biol. Macromol. 2012, 51(5), 1024–1027. DOI: 10.1016/j.ijbiomac.2012.08.024.
  • Wang, H.; Liu, Y.; Chen, L.; Li, X.; Wang, J.; Xie, F. Insights into the Multi-scale Structure and Digestibility of Heat-moisture Treated Rice Starch. Food Chem. 2018, 242, 323–329. DOI: 10.1016/j.foodchem.2017.09.014.
  • Van Hung, P.; Chau, H. T.; Phi, N. T. In Vitro Digestibility and in Vivo Glucose Response of Native and Physically Modified Rice Starches Varying Amylose Contents. Food Chem. 2016, 191, 74–80. DOI: 10.1016/j.foodchem.2015.02.118.
  • Agama-Acevedo, E.; Bello-Perez, L. A.; Lim, J.; Lee, B. H.; Hamaker, B. R. Pregelatinized Starches Enriched in Slowly Digestible and Resistant Fractions. LWT - Food Sci. Technol. 2018, 97, 187–192. DOI: 10.1016/j.lwt.2018.06.007.
  • Ji, Y. In Vitro Digestion and Physicochemical Characteristics of Corn Starch Mixed with Amino Acid Modified by Low Pressure Treatment. Food Chem. 2018, 242, 421–426. DOI: 10.1016/j.foodchem.2017.09.073.
  • Chen, Y.; Yang, Q.; Xu, X.; Qi, L.; Dong, Z.; Luo, Z.; Lu, X.; Peng, X. Structural Changes of Waxy and Normal Maize Starches Modified by Heat Moisture Treatment and Their Relationship with Starch Digestibility. Carbohydr. Polym. 2017, 177, 232–240. DOI: 10.1016/j.carbpol.2017.08.121.
  • Trung, P. T. B.; Ngoc, L. B. B.; Hoa, P. N.; Tien, N. N. T.; Hung, P. V. Impact of Heat-moisture and Annealing Treatments on Physicochemical Properties and Digestibility of Starches from Different Colored Sweet Potato Varieties. Int. J. Biol. Macromol. 2017, 105, 1071–1078. DOI: 10.1016/j.ijbiomac.2017.07.131.
  • Boonna, S.; Tongta, S. Structural Transformation of Crystallized Debranched Cassava Starch during Dual Hydrothermal Treatment in Relation to Enzyme Digestibility. Carbohydr. Polym. 2018, 191, 1–7. DOI: 10.1016/j.carbpol.2018.03.006.
  • Su, C.; Zhao, K.; Zhang, B.; Liu, Y.; Jing, L.; Wu, H.; Gou, M.; Jiang, H.; Zhang, G.; Li, W. The Molecular Mechanism for Morphological, Crystal, Physicochemical and Digestible Property Modification of Wheat Starch after Repeated versus Continuous Heat-moisture Treatment. LWT - Food Sci. Technol. 2020, 129, 109399. DOI: 10.1016/j.lwt.2020.109399.
  • Van Hung, P.; Binh, V. T.; Nhi, P. H. Y.; Phi, N. T. L. Effect of Heat-moisture Treatment of Unpolished Red Rice on Its Starch Properties and in Vitro and in Vivo Digestibility. Int. J. Biol. Macromol. 2020, 154, 1–8. DOI: 10.1016/j.ijbiomac.2020.03.071.
  • Su, C.; Saleh, A. S. M.; Zhang, B.; Zhao, K.; Ge, X.; Zhang, Q.; Li, W. Changes in Structural, Physicochemical, and Digestive Properties of Normal and Waxy Wheat Starch during Repeated and Continuous Annealing. Carbohydr. Polym. 2020, 247, 116675. DOI: 10.1016/j.carbpol.2020.116675.
  • Tian, Y.; Zhan, J.; Zhao, J.; Xie, Z.; Xu, X.; Jin, Z. Preparation of Products Rich in Slowly Digestible Starch (SDS) from Rice Starch by a Dual-retrogradation Treatment. Food Hydrocolloids. 2013, 31, 1–4. DOI: 10.1016/j.foodhyd.2012.09.005.
  • Ding, Y.; Liang, Y.; Luo, F.; Ouyang, Q.; Lin, Q. Understanding the Mechanism of Ultrasonication Regulated the Digestibility Properties of Retrograded Starch following Vacuum Freeze Drying. Carbohydr. Polym. 2020, 228, 115350. DOI: 10.1016/j.carbpol.2019.115350.
  • Vernon-Carter, E. J.; Alvarez-Ramirez, J.; Bello-Perez, L. A.; Gonzalez, M.; Reyes, I.; Alvarez-Poblano, L. Supplementing White Maize Masa with Anthocyanins: Effects on Masa Rheology and on the in Vitro Digestibility and Hardness of Tortillas. J. Cereal Sci. 2020, 91, 102883. DOI: 10.1016/j.jcs.2019.102883.
  • Yang, J.; Gu, Z.; Zhu, L.; Cheng, L.; Li, Z.; Li, C.; Hong, Y. Buckwheat Digestibility Affected by the Chemical and Structural Features of Its Main Components. Food Hydrocolloids. 2019, 96, 596–603. DOI: 10.1016/j.foodhyd.2019.06.001.
  • Liu, K.; Zhang, B.; Chen, L.; Li, X.; Zheng, B. Hierarchical Structure and Physicochemical Properties of Highland Barley Starch following Heat Moisture Treatment. Food Chem. 2019, 271, 102–108. DOI: 10.1016/j.foodchem.2018.07.193.
  • Chung, H. J.; Liu, Q.; Hoover, R. Impact of Annealing and Heat-moisture Treatment on Rapidly Digestible, Slowly Digestible and Resistant Starch Levels in Native and Gelatinized Corn, Pea and Lentil Starches. Carbohydr. Polym. 2009, 75(3), 436–447. DOI: 10.1016/j.carbpol.2008.08.006.
  • Park, E. Y.; Ma, J. G.; Kim, J.; Lee, D. H.; Kim, S. Y.; Kwon, D. J.; Kim, J. Y. Effect of Dual Modification of HMT and Crosslinking on Physicochemical Properties and Digestibility of Waxy Maize Starch. Food Hydrocolloids. 2018, 75, 33–40. DOI: 10.1016/j.foodhyd.2017.09.017.
  • Varatharajan, V.; Hoover, R.; Liu, Q.; Seetharaman, K. The Impact of Heat-moisture Treatment on the Molecular Structure and Physicochemical Properties of Normal and Waxy Potato Starches. Carbohydr. Polym. 2010, 81(2), 466–475. DOI: 10.1016/j.carbpol.2010.03.002.
  • Zou, J.; Xu, M.; Wang, R.; Li, W. Structural and Physicochemical Properties of Mung Bean Starch as Affected by Repeated and Continuous Annealing and Their in Vitro Digestibility. Int. J. Food Prop. 2019, 22(1), 898–910. DOI: 10.1080/10942912.2019.1611601.
  • Zhao, K.; Zhang, B.; Su, C.; Gong, B.; Zheng, J.; Jiang, H.; Zhang, G.; Li, W. Repeated Heat-Moisture Treatment: A More EffectiveWay for Structural and Physicochemical Modification of Mung Bean Starch Compared with Continuous Way. Food Bioprocess. Technol. 2020, 13(3), 452–461. DOI: 10.1007/s11947-020-02405-0.
  • Zhou, S.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Effect of Heat-moisture Treatment on the in Vitro Digestibility and Physicochemical Properties of Starch-hydrocolloid Complexes. Food Hydrocolloids. 2020, 104, 105736. DOI: 10.1016/j.foodhyd.2020.105736.
  • Raghunathan, R.; Pandiselvam, R.; Kothakota, A.; Khaneghah, A. M. The Application of Emerging Non-thermal Technologies for the Modification of Cereal Starches. LWT- Food Sci. Technol. 2020, 138, 110795. DOI: 10.1016/j.lwt.2020.110795.
  • Ashogbon, A. O.; Akintayo, E. T. Recent Trend in the Physical and Chemical Modification of Starches from Different Botanical Sources: A Review. Starch-Strke. 2014, 66(1–2), 41–57. DOI: 10.1002/star.201300106.
  • Ding, Y.; Luo, F.; Lin, Q. Insights into the Relations between the Molecular Structures and Digestion Properties of Retrograded Starch after Ultrasonic Treatment. Food Chem. 2019, 294, 248–259. DOI: 10.1016/j.foodchem.2019.05.050.
  • Yang, Q. Y.; Lu, X. X.; Chen, Y. Z.; Luo, Z. G.; Xiao, Z. G. Fine Structure, Crystalline and Physicochemical Properties of Waxy Corn Starch Treated by Ultrasound Irradiation. Ultrasonics - Sonochem. 2019, 51, 350–358. DOI: 10.1016/j.ultsonch.2018.09.001.
  • Li, Y.; Wu, Z.; Wan, N.; Wang, X.; Yang, M. Extraction of High-amylose Starch from Radix Puerariae Using High-intensity Low-frequency Ultrasound. Ultrasonics - Sonochem. 2019, 59, 104710. DOI: 10.1016/j.ultsonch.2019.104710.
  • Chen, Z. G.; Huang, J. R.; Pu, H. Y.; Yang, Q.; Fang, C. L. The Effects of HHP (High Hydrostatic Pressure) on the Interchain Interaction and the Conformation of Amylopectin and Double-amylose Molecules. Int. J. Biol. Macromol. 2020, 155, 91–102. DOI: 10.1016/j.ijbiomac.2020.03.190.
  • Wang, S.; Hu, X.; Wang, Z.; Bao, Q.; Li, S. Preparation and Characterization of Highly Lipophilic Modified Potato Starch by Ultrasound and Freeze-thaw Treatments. Ultrason. Sonochem. 2020, 105054. DOI: 10.1016/j.ultsonch.2020.105054.
  • Wang, Y.; Chen, L.; Yang, T.; Ma, Y.; Jin, Z. A Review of Structural Transformations and Properties Changes in Starch during Thermal Processing of Foods. Food Hydrocolloids. 2021, 113, 106543. DOI: 10.1016/j.foodhyd.2020.106543.
  • Tu, D.; Ou, Y.; Zheng, Y.; Zhang, Y.; Zheng, B.; Zeng, H. Effects of Freeze-thaw Treatment and Pullulanase Debranching on the Structural Properties and Digestibility of Lotus Seed Starch-glycerin Monostearin Complexes. Int. J. Biol. Macromol. 2021, 177, 447–454. DOI: 10.1016/j.ijbiomac.2021.02.168.
  • Zheng, Y.; Zhang, C.; Tian, Y.; Zhang, Y.; Zeng, S. Effects of Freeze–thaw Pretreatment on the Structural Properties and Digestibility of Lotus Seed Starch–glycerin Monostearin Complexes. Food Chem. 2021, 350, 129231. DOI: 10.1016/j.foodchem.2021.129231.
  • Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Safety, Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food. 2015, 14(5), 568–585. DOI:10.1111/1541-4337.12143.
  • Guraya, H. S.; James, C.; Champagne, E. T.; Strke; Strke. Effect of Enzyme Concentration and Storage Temperature on the Formation of Slowly Digestible Starch from Cooked Debranched Rice Starch. Starch Strke. 2001, 53, 131–139. DOI: 10.1002/1521-379X(200104)53:3/4<131::AID-STAR131>3.0.CO;2-M.
  • Englyst, K.; Goux, A.; Meynier, A.; Quigley, M.; Englyst, H.; Brack, O.; Vinoy, S. Inter-laboratory Validation of the Starch Digestibility Method for Determination of Rapidly Digestible and Slowly Digestible Starch. Food Chem. 2018, 245, 1183–1189. DOI: 10.1016/j.foodchem.2017.11.037.
  • Patel, H.; Royall, P. G.; Gaisford, S.; Williams, G. R.; Edwards, C. H.; Warren, F. J.; Flanagan, B. M.; Ellis, P. R.; Butterworth, P. J. Structural and Enzyme Kinetic Studies of Retrograded Starch: Inhibition of Alpha-amylase and Consequences for Intestinal Digestion of Starch. Carbohydr. Polm: Sci. Technol. 2017, 164, 154–161. DOI: 10.1016/j.carbpol.2017.01.040.
  • Liu, G.; Gu, Z.; Hong, Y.; Cheng, L.; Li, C. Structure, Functionality and Applications of Debranched Starch: A Review. Trends Food Sci. Technol. 2017, 63, 70–79. DOI: 10.1016/j.tifs.2017.03.004.
  • Han, Z.; Shi, R.; Sun, D. W. Effects of Novel Physical Processing Techniques on the Multi-structures of Starch. Trends Food Sci. Technol. 2020, 97, 126–135. DOI: 10.1016/j.tifs.2020.01.006.
  • Liu, H.; Guo, X.; Li, Y.; Li, H.; Fan, H.; Wang, M. In Vitro Digestibility and Changes in Physicochemical and Textural Properties of Tartary Buckwheat Starch under High Hydrostatic Pressure. J. Food Eng. 2016, 189, 64–71. DOI: 10.1016/j.jfoodeng.2016.05.015.
  • Wang, J.; Zhu, H.; Li, S.; Wang, S.; Wang, S.; Copeland, L. Insights into Structure and Function of High Pressure-modified Starches with Different Crystalline Polymorphs. Int. J. Biol. Macromol. 2017, 102, 414–424. DOI: 10.1016/j.ijbiomac.2017.04.042.
  • Li, N.; Wang, L.; Zhao, S.; Qiao, D.; Jia, C.; Niu, M.; Lin, Q.; Zhang, B. An Insight into Starch Slowly Digestible Features Enhanced by Microwave Treatment. Food Hydrocolloids. 2020, 103, 105690. DOI: 10.1016/j.foodhyd.2020.105690.
  • Xia, J.; Zhu, D.; Chang, H.; Yan, X.; Yan, Y. Effects of Water-deficit and High-nitrogen Treatments on Wheat Resistant Starch Crystalline Structure and Physicochemical Properties. Carbohydr. Polym. 2020, 234, 115905. DOI: 10.1016/j.carbpol.2020.115905.
  • Ciardullo, K.; Donner, E.; Thompson, M. R.; Liu, Q. Influence of Extrusion Mixing on Preparing Lipid Complexed Pea Starch for Functional Foods. Starch-Stärke. 2018, 71, 7–8. DOI: 10.1002/star.201800196.
  • Yan, X.; Wu, Z. Z.; Li, M. Y.; Yin, F.; Ren, K. X.; Tao, H. The Combined Effects of Extrusion and Heat-moisture Treatment on the Physicochemical Properties and Digestibility of Corn Starch. Int. J. Biol. Macromol. 2019, 134, 1108–1112. DOI: 10.1016/j.ijbiomac.2019.05.112.
  • Liu, W.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. In Structure and In-vitro Digestibility of Waxy Corn Starch Debranched by Pullulanase. Food Hydrocolloids. 2017, 67, 104–110. DOI: 10.1016/j.foodhyd.2016.12.036.
  • Liu, W.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. In Structure and in - Vitro Digestibility of Waxy Corn Starch Debranched by Pullulanase. Food Hydrocolloids. 2017, 67, 104–110. DOI: 10.1016/j.foodhyd.2016.12.036.
  • Zhang, H.; Wang, R.; Chen, Z.; Zhong, Q. Enzymatically Modified Starch with Low Digestibility Produced from Amylopectin by Sequential Amylosucrase and Pullulanase Treatments. Food Hydrocolloids. 2019, 95, 195–202. DOI: 10.1016/j.foodhyd.2019.04.036.
  • Jo, A. R.; Kim, H. R.; Choi, S. J.; Lee, J. S.; Chung, M. N.; Han, S. K.; Park, C. S.; Moon, T. W. Preparation of Slowly Digestible Sweet Potato Daeyumi Starch by Dual Enzyme Modification. Carbohydr. Polym. 2016, 143, 164–171. DOI: 10.1016/j.carbpol.2016.02.021.
  • Hu, L.; Zheng, Y.; Peng, Y.; Yao, C.; Zhang, H. The Optimization of Isoamylase Processing Conditions for the Preparation of High-amylose Ginkgo Starch. Int. J. Biol. Macromol. 2016, 86, 105–111. DOI: 10.1016/j.ijbiomac.2016.01.045.
  • Li, H.; Li, J.; Xiao, Y.; Cui, B.; Fang, Y.; Guo, L. In Vitro Digestibility of Rice Starch Granules Modified by β-amylase, Transglucosidase and Pullulanase. Int. J. Biol. Macromol. 2019, 136, 1228–1236. DOI: 10.1016/j.ijbiomac.2019.06.111.
  • Li, H.; Gui, Y.; Li, J.; Zhu, Y.; Cui, B.; Guo, L. Modification of Rice Starch Using a Combination of Autoclaving and Triple Enzyme Treatment: Structural, Physicochemical and Digestibility Properties. Int. J. Biol. Macromol. 2020, 144, 500–508. DOI: 10.1016/j.ijbiomac.2019.12.112.
  • Pan, T.; Lin, L.; Zhang, L.; Zhang, C.; Liu, Q.; Wei, C. Changes in Kernel Properties, in Situ Gelatinization, and Physicochemical Properties of Waxy Rice with Inhibition of Starch Branching Enzyme during Cooking. Int. J. Food Sci. Technol. 2019, 54(9), 2780–2791. DOI: 10.1111/ijfs.14193.
  • Li, Y.; Xu, J.; Zhang, L.; Ding, Z.; Gu, Z.; Shi, G. Investigation of Debranching Pattern of a Thermostable Isoamylase and Its Application for the Production of Resistant Starch. Carbohydr. Res. 2017, 446-447, 93–100. DOI: 10.1016/j.carres.2017.05.016.
  • Ren, J.; Li, C.; Gu, Z.; Cheng, L.; Hong, Y.; Li, Z. Digestion Rate of Tapioca Starch Was Lowed through Molecular Rearrangement Catalyzed by 1,4-α-glucan Branching Enzyme. Food Hydrocolloids. 2018, 84, 117–124. DOI: 10.1016/j.foodhyd.2018.06.005.
  • Zheng, Y.; Ou, Y.; Zhang, Y.; Zheng, B.; Zeng, S.; Zeng, H. Effects of Pullulanase Pretreatment on the Structural Properties and Digestibility of Lotus Seed Starch-glycerin Monostearin Complexes. Carbohydr. Polym. 2020, 240, 116324. DOI: 10.1016/j.carbpol.2020.116324.
  • Li, L.; Yuan, T. Z.; Ai, Y. Development, Structure and in Vitro Digestibility of Type 3 Resistant Starch from Acid-thinned and Debranched Pea and Normal Maize Starches. Food Chem. 2020, 318, 126485. DOI: 10.1016/j.foodchem.2020.126485.
  • Zeng, F.; Li, T.; Zhao, H.; Chen, H.; Yu, X.; Liu, B. Effect of Debranching and Temperature-cycled Crystallization on the Physicochemical Properties of Kudzu (Pueraria Lobata) Resistant Starch. Int. J. Biol. Macromol. 2019, 129, 1148–1154. DOI: 10.1016/j.ijbiomac.2019.01.028.
  • Peng, H.; Qian, L.; Fu, Z.; Xin, L.; Gao, Y. Using a Novel Hyperthermophilic Amylopullulanase to Simplify Resistant Starch Preparation from Rice Starches. J. Funct. Foods. 2021, 80, 104429. DOI: 10.1016/j.jff.2021.104429.
  • Jiang, H.; Miao, M.; Ye, F.; Jiang, B.; Zhang, T. Enzymatic Modification of Corn Starch with 4-alpha-glucanotransferase Results in Increasing Slow Digestible and Resistant Starch. Int. J. Biol. Macromol. 2014, 65, 208–214. DOI: 10.1016/j.ijbiomac.2014.01.044.
  • Yu, L.; Kong, H.; Gu, Z.; Li, C.; Ban, X.; Cheng, L.; Hong, Y.; Li, Z. Two 1,4-α-glucan Branching Enzymes Successively Rearrange Glycosidic Bonds: A Novel Synergistic Approach for Reducing Starch Digestibility. Carbohydr. Polym. 2021, 262, 117968. DOI: 10.1016/j.carbpol.2021.117968.
  • Zhang, G.; Ao, Z.; Hamaker, B. R. Nutritional Property of Endosperm Starches from Maize Mutants: A Parabolic Relationship between Slowly Digestible Starch and Amylopectin Fine Structure. Food Chem. 2008, 56(12), 4686–4694. DOI: 10.1021/jf072822m.
  • Zhong, Y.; Keeratiburana, T.; Kain Kirkensgaard, J. J.; Khakimov, B.; Blennow, A.; Hansen, A. R. Generation of Short-chained Granular Corn Starch by Maltogenic α-amylase and Transglucosidase Treatment. Carbohydr. Polym. 2021, 251, 117056. DOI: 10.1016/j.carbpol.2020.117056.
  • Remya, R.; Jyothi, A. N.; Sreekumar, J. Effect of Chemical Modification with Citric Acid on the Physicochemical Properties and Resistant Starch Formation in Different Starches. Carbohydr. Polym. 2018, 202, 29–38. DOI: 10.1016/j.carbpol.2018.08.128.
  • Hung, P. V.; My, N. T. H.; Phi, N. T. L. Impact of Acid and Heat-moisture Treatment Combination on Physicochemical Characteristics and Resistant Starch Contents of Sweet Potato and Yam Starches. Starch - Stärke. 2014, 66(11–12), 1013–1021. DOI: 10.1002/star.201400104.
  • Mei, J. Q.; Zhou, D. N.; Jin, Z. Y.; Xu, X. M.; Chen, H. Q. Effects of Citric Acid Esterification on Digestibility, Structural and Physicochemical Properties of Cassava Starch. Food Chem. 2015, 187, 378–384. DOI: 10.1016/j.foodchem.2015.04.076.
  • Shi, M.; Gao, Q.; Liu, Y. Changes in the Structure and Digestibility of Wrinkled Pea Starch with Malic Acid Treatment. Polymers. 2018, 10(12), 1359. DOI: 10.3390/polym10121359.
  • Duyen, T. T. M.; Huong, N. T. M.; Phi, N. T. L.; Van Hung, P. Physicochemical Properties and in Vitro Digestibility of Mung-bean Starches Varying Amylose Contents under Citric Acid and Hydrothermal Treatments. Int. J. Biol. Macromol. 2020, 164, 651–658. DOI: 10.1016/j.ijbiomac.2020.07.187.
  • Li, M. N.; Xie, Y.; Chen, H. Q.; Zhang, B. Effects of Heat-moisture Treatment after Citric Acid Esterification on Structural Properties and Digestibility of Wheat Starch, A- and B-type Starch Granules. Food Chem. 2019, 272, 523–529. DOI: 10.1016/j.foodchem.2018.08.079.
  • Xia, H.; Li, Y.; Gao, Q. Preparation and Properties of RS4 Citrate Sweet Potato Starch by Heat-moisture Treatment. Food Hydrocolloids. 2016, 55, 172–178. DOI: 10.1016/j.foodhyd.2015.11.008.
  • Lee, C. J.; Na, J. H.; Park, J. Y.; Chang, P. S. Structural Characteristics and in Vitro Digestibility of Malic Acid-Treated Corn Starch with Different pH Conditions. Molecules. 2019, 24(10). DOI: 10.3390/molecules24101900.
  • Xiao, H. X.; Lin, Q. L.; Liu, G. Q.; Yu, F. X. A. Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches. Molecules. 2012, 17(9), 10946–10957. DOI: 10.3390/molecules170910946.
  • Xiao, H. X.; Lin, Q. L.; Liu, G. Q. Effect of Cross-Linking and Enzymatic Hydrolysis Composite Modification on the Properties of Rice Starches. Molecules. 2012, 17(7), 8136–8146. DOI: 10.3390/molecules17078136.
  • Torres, J. D.; Dueik, V.; Carre, D.; Bouchon, P. Effect of the Addition of Soluble Dietary Fiber and Green Tea Polyphenols on Acrylamide Formation and in Vitro Starch Digestibility in Baked Starchy Matrices. Molecules. 2019, 24(20), 18. DOI: 10.3390/molecules24203674.
  • Zhao, B. B.; Sun, S. W.; Lin, H.; Chen, L. D.; Qin, S.; Wu, W. G.; Zheng, B. D.; Guo, Z. B. Physicochemical Properties and Digestion of the Lotus Seed Starch-green Tea Polyphenol Complex under Ultrasound-microwave Synergistic Interaction. Ultrason. Sonochem. 2019, 52, 50–61. DOI: 10.1016/j.ultsonch.2018.11.001.
  • Guo, Z. B.; Zhao, B. B.; Chen, J.; Chen, L. D.; Zheng, B. D. Insight into the Characterization and Digestion of Lotus Seed Starch-tea Polyphenol Complexes Prepared under High Hydrostatic Pressure. Food Chem. 2019, 297, 8. DOI: 10.1016/j.foodchem.2019.124992.
  • Xie, F.; Huang, Q.; Fang, F.; Chen, S. Q.; Wang, Z. G.; Wang, K.; Fu, X.; Zhang, B. Effects of Tea Polyphenols and Gluten Addition on in Vitro Wheat Starch Digestion Properties. Int. J. Biol. Macromol. 2019, 126, 525–530. DOI: 10.1016/j.ijbiomac.2018.12.224.
  • Zheng, Y.; Tian, J.; Kong, X.; Wu, D.; Chen, S.; Liu, D.; Ye, X. Proanthocyanidins from Chinese Berry Leaves Modified the Physicochemical Properties and Digestive Characteristic of Rice Starch. Food Chem. 2021, 335, 127666. DOI: 10.1016/j.foodchem.2020.127666.
  • Zhang, Z.; Tian, J.; Fang, H.; Zhang, H.; Kong, X.; Wu, D.; Zheng, J.; Liu, D.; Ye, X.; Chen, S. Physicochemical and Digestion Properties of Potato Starch Were Modified by Complexing with Grape Seed Proanthocyanidins. Molecules. 2020, 25(5). DOI: 10.3390/molecules25051123.
  • Lin, L.; Yang, H.; Chi, C.; Ma, X. Effect of Protein Types on Structure and Digestibility of Starch-protein-lipids Complexes. LWT- Food Sci. Technol. 2020, 134, 110175. DOI: 10.1016/j.lwt.2020.110175.
  • Khatun, A.;.; Waters, D. L. E.; Liu, L. The Impact of Rice Protein on in Vitro Rice Starch Digestibility. Food Hydrocolloids. 2020, 109, 106072. DOI: 10.1016/j.foodhyd.2020.106072.
  • Li, H. T.; Sartika, R. S.; Kerr, E. D.; Schulz, B. L.; Gidley, M. J.; Dhital, S. Starch Granular Protein of High-amylose Wheat Gives Innate Resistance to Amylolysis. Food Chem. 2020, 330, 9. DOI: 10.1016/j.foodchem.2020.127328.
  • Zhu, J. F.; Zhang, D. X.; Tang, H. Y.; Zhao, G. H. Structure Relationship of Non-covalent Interactions between Phenolic Acids and Arabinan-rich Pectic Polysaccharides from Rapeseed Meal. Int. J. Biol. Macromol. 2018, 120, 2597–2603. DOI: 10.1016/j.ijbiomac.2018.09.036.
  • Han, X. Q.; Zhang, M. W.; Zhang, R. F.; Huang, L. X.; Jia, X. C.; Huang, F.; Liu, L. Physicochemical Interactions between Rice Starch and Different Polyphenols and Structural Characterization of Their Complexes. LWT- Food Sci. Technol. 2020, 125, 7. DOI: 10.1016/j.lwt.2020.109227.
  • Wu, Y.; Niu, M.; Xu, H. L. Pasting Behaviors, Gel Rheological Properties, and Freeze-thaw Stability of Rice Flour and Starch Modified by Green Tea Polyphenols. LWT-Food Sci. Technol. 2020, 118, 8. DOI: 10.1016/j.lwt.2019.108796.
  • Toutounji, M. R.; Farahnaky, A.; Santhakumar, A. B.; Oli, P.; Butardo, V. M.; Blanchard, C. L. Intrinsic and Extrinsic Factors Affecting Rice Starch Digestibility. Trends Food Sci. Technol. 2019, 88, 10–22. DOI: 10.1016/j.tifs.2019.02.012.
  • Liu, F.; Ma, C.; McClements, D.; Gao, Y. Development of Polyphenol-protein-polysaccharide Ternary Complexes as Emulsifiers for Nutraceutical Emulsions: Impact on Formation, Stability, and Bioaccessibility of β-carotene Emulsions. Food Hydrocolloids. 2016, 61, 578–588. DOI: 10.1016/j.foodhyd.2016.05.031.
  • Sellimi, S.; Benslima, A.; Barragan-Montero, V.; Hajji, M.; Nasri, M. Polyphenolic-protein-polysaccharide Ternary Conjugates from Cystoseira Barbata Tunisian Seaweed as Potential Biopreservatives: Chemical, Antioxidant and Antimicrobial Properties. Int. J. Biol. Macromol. 2017, 105, 1375–1383. DOI: 10.1016/j.ijbiomac.2017.08.007.
  • Rajauria, G.; Foley, B.; Abu-Ghannam, N. Identification and Characterization of Phenolic Antioxidant Compounds from Brown Irish Seaweed Himanthalia Elongata Using LC-DAD-ESI-MS/MS. Innovative Food Sci. Emerg. Technol. 2016, 37, 261–268. DOI: 10.1016/j.ifset.2016.02.005.
  • Yang, J.; Gu, Z. B.; Zhu, L.; Cheng, L.; Li, Z. F.; Li, C. M.; Hong, Y. Buckwheat Digestibility Affected by the Chemical and Structural Features of Its Main Components. Food Hydrocolloids. 2019, 96, 596–603. DOI: 10.1016/j.foodhyd.2019.06.001.
  • Corgneau, M.; Gaiani, C.; Petit, J.; Nikolova, Y.; Banon, S.; Ritie-Pertusa, L.; Scher, J.; Le, D. T. L. Digestibility of Common Native Starches with Reference to Starch Granule Size, Shape and Surface Features Towards Guidelines for Starch-containing Food Products. Int. J. Food Sci. Technol. 2019, 54(6), 2132–2140. DOI: 10.1111/ijfs.14120.
  • Arp, C. G.; Correa, M. J.; Ferrero, C. Production and Characterization of Type III Resistant Starch from Native Wheat Starch Using Thermal and Enzymatic Modifications. Food Bioprocess. Technol. 2020, 13(7), 1181–1192. DOI: 10.1007/s11947-020-02470-5.
  • Tian, S.; Sun, Y. Influencing Factor of Resistant Starch Formation and Application in Cereal Products: A Review. Int. J. Biol. Macromol. 2020, 149, 424–431. DOI: 10.1016/j.ijbiomac.2020.01.264.
  • Roman, L.; Gomez, M.; Hamaker, B. R.; Martinez, M. M. Banana Starch and Molecular Shear Fragmentation Dramatically Increase Structurally Driven Slowly Digestible Starch in Fully Gelatinized Bread Crumb. Food Chem. 2019, 274, 664–671. DOI: 10.1016/j.foodchem.2018.09.023.
  • Sim, S. Y.; Aziah, A. A. N.; Cheng, L. H. Technology, Quality and Functionality of Chinese Steamed Bread and Dough Added with Selected Non-starch Polysaccharides. J. Food Sci. Technol. 2015, 52(1), 1–8. DOI: 10.1007/s13197-013-0967-1.
  • Ashwar, B. A.; Gani, A.; Ashraf, Z. U.; Jhan, F.; Wani, T. A. Prebiotic Potential and Characterization of Resistant Starch Developed from Four Himalayan Rice Cultivars Using β-amylase and Transglucosidase Enzymes. LWT- Food Sci. Technol. 2021, 143(1), 111085. DOI: 10.1016/j.lwt.2021.111085.
  • Chakravarty, A.; Tandon, M.; Attri, S.; Sharma, D.; Goel, G. Structural Characteristics and Prebiotic Activities of Resistant Starch from Solanum Tuberosum: Kufri Bahar, a Popular Indian Tuber Variety. LWT- Food Sci. Technol. 2021, 1, 111445. DOI: 10.1016/j.lwt.2021.111445.
  • Maniglia, B. C.; Lima, D. C.; Junior, M.; Oge, A.; Le-Bail, A. Dry Heating Treatment: A Potential Tool to Improve the Wheat Starch Properties for 3D Food Printing Application. Food Res. Int. 2020, 137. DOI: 10.1016/j.foodres.2020.109731.
  • Wang, Y.; Zhang, G. The Preparation of Modified Nano-starch and Its Application in Food Industry. Food Res. Int. 2020, 140. DOI: 10.1016/j.foodres.2020.110009.
  • Thomas, D.; Mathew, N.; Nath, M. S. Starch Modified Alginate Nanoparticles for Drug Delivery Application - ScienceDirect. Int. J. Biol. Macromol. 2021, 173, 277–284. DOI: 10.1016/j.ijbiomac.2020.12.227.
  • Adg, A.; Kpr, B.; Vb, C.; Hs, A. Recent Trends in the Application of Modified Starch in the Adsorption of Heavy Metals from Water: A Review. Carbohydr. Polym. 2021. DOI: 10.1016/j.carbpol.2021.117763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.