736
Views
6
CrossRef citations to date
0
Altmetric
Review

Mechanical-based and Optical-based Methods for Nondestructive Evaluation of Fruit Firmness

ORCID Icon & ORCID Icon

References

  • Suphamitmongkol, W.; Nie, G.; Liu, R.; Kasemsumran, S.; Shi, Y. An Alternative Approach for the Classification of Orange Varieties Based on near Infrared Spectroscopy. Comput. Electron. Agric. 2013, 91, 87–93. DOI: 10.1016/j.compag.2012.11.014.
  • Moreda, G. P.; Ortiz-Canavate, J.; Garcia-Ramos, F. J.; Ruiz-Altisent, M. Non-destructive Technologies for Fruit and Vegetable Size Determination - A Review. J. Food Eng. 2009, 92(2), 119–136. DOI: 10.1016/j.jfoodeng.2008.11.004.
  • Mireei, S. A.; Sadeghi, M.; Heidari, A.; Hemmat, A. On-line Firmness Sensing of Dates Using a Non-destructive Impact Testing Device. Biosyst. Eng. 2015, 129, 288–297. DOI: 10.1016/j.biosystemseng.2014.10.012.
  • Aboonajmi, M.; Jahangiri, M.; Hassan-Beygi, S. R. A Review on Application of Acoustic Analysis in Quality Evaluation of Agro-food Products. J. Food Process Preserv. 2015, 39(6), 3175–3188. DOI: 10.1111/jfpp.12444.
  • Lu, R.; Van Beers, R.; Saeys, W.; Li, C.; Cen, H. . Measurement of Optical Properties of Fruits and Vegetables: A Review. Postharvest Biol. Technol. 2020,159, 111003. DOI:10.1016/j.postharvbio.2019.111003.
  • Taniwaki, M.; Tohro, M.; Sakurai, N. Measurement of Ripening Speed and Determination of the Optimum Ripeness of Melons by a Nondestructive Acoustic Vibration Method. Postharvest Biol. Technol. 2010, 56(1), 101–103. DOI: 10.1016/j.postharvbio.2009.11.007.
  • Zhang, W.; Lv, Z.; Xiong, S. Nondestructive Quality Evaluation of Agro-products Using Acoustic Vibration Methods - A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(14), 2386–2397. DOI: 10.1080/10408398.2017.1324830.
  • Wang, D.; Ding, C.; Feng, Z.; Ji, S.; Cui, D. Recent Advances in Portable Devices for Fruit Firmness Assessment. Crit. Rev. Food Sci. Nutr. 2021. DOI: 10.1080/10408398.2021.1960477.
  • Ma, C.; Feng, L.; Pan, L.; Wei, K.; Liu, Q.; Tu, K.; Zhao, L.; Peng, J. Relationships between Optical Properties of Peach Flesh with Firmness and Tissue Structure during Storage. Postharvest Biol. Technol. 2020, 163. DOI: 10.1016/j.postharvbio.2020.111134.
  • Ali, A.; Maqbool, M.; Ramachandran, S.; Alderson, P. G. Gum Arabic as a Novel Edible Coating for Enhancing Shelf-life and Improving Postharvest Quality of Tomato (Solanum Lycopersicum L.) Fruit. Postharvest Biol. Technol. 2010, 58(1), 42–47. DOI: 10.1016/j.postharvbio.2010.05.005.
  • Pinheiro, J.; Alegria, C.; Abreu, M.; Goncalves, E. M.; Silva, C. L. M. Kinetics of Changes in the Physical Quality Parameters of Fresh Tomato Fruits (Solanum Lycopersicum, Cv. ‘Zinac’) during Storage. J. Food Eng. 2013, 114(3), 338–345. DOI: 10.1016/j.jfoodeng.2012.08.024.
  • Sirisomboon, P.; Tanaka, M.; Kojima, T. Evaluation of Tomato Textural Mechanical Properties. J. Food Eng. 2012, 111(4), 618–624. DOI: 10.1016/j.jfoodeng.2012.03.007.
  • Garcia-Ramos, F. J.; Valero, C.; Homer, I.; Ortiz-Canavate, J.; Ruiz-Altisent, M. Non-destructive Fruit Firmness Sensors: A Review. Span. J. Agric. Res. 2005, 3(1), 61–73. DOI: 10.5424/sjar/2005031-125.
  • Howarth, M.S.; Ioannides, Y. Sinclair IQ Firmness Tester Proceeding of the International Conference on Agricultural Engineering Budapest, Hungary. . 2002.
  • Blanke, M. M. Non-invasive Assessment of Firmness and NIR Sugar (TSS) Measurement in Apple, Pear and Kiwi Fruit. Erwerbs-Obstbau. 2013, 55(1), 19–24. DOI: 10.1007/s10341-013-0181-3.
  • Timoshenko, S.; Goodier, J.N. Theory of Elasticity; McGrawhill Book Company, Inc 108 : New York, USA, 1951.
  • Chen, P. Application of Elastic Theory to High-speed Impact Sensing of Fruits. IFAC Proceedings Volumes Tokyo, Japan, 2001, 34, 21–26. 1 0.1 016/S1474-6670(17)32819-7.
  • Chen, P.; RuizAltisent, M.; Barreiro, P. Effect of Impacting Mass on Firmness Sensing of Fruits. Trans. ASAE. 1996, 39(3), 1019–1023. DOI: 10.13031/2013.27591.
  • Sun, T.; Huang, K.; Xu, H.; Ying, Y. Research Advances in Nondestructive Determination of Internal Quality in Watermelon/melon: A Review. J. Food Eng. 2010, 100(4), 569–577. DOI: 10.1016/j.jfoodeng.2010.05.019.
  • Kataoka, H.; Ijiri, T.; White, J.; Hirabayashi, A. Acoustic Probing to Estimate Freshness of Tomato. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference Jeju, Korea (South), 2016, 1–5. 1 0.1 109/APSIPA.2016.7820777.
  • Khoshnam, F.; Namjoo, M.; Golbakhshi, H. Acoustic Testing for Melon Fruit Ripeness Evaluation during Different Stages of Ripening. Agric. Conspectus Scientificus 2015, 80(4), 197–204.
  • Mao, J.; Yu, Y.; Rao, X.; Wang, J. Firmness Prediction and Modeling by Optimizing Acoustic Device for Watermelons. J. Food Eng. 2016, 168, 1–6. DOI: 10.1016/j.jfoodeng.2015.07.009.
  • Taniwaki, M.; Sakurai, N. Evaluation of the Internal Quality of Agricultural Products Using Acoustic Vibration Techniques. J. Jpn. Soc. Hortic. Sci. 2010, 79(2), 113–128. DOI:10.2503/jjshs1.79.113.
  • Takahashi, M.; Taniwaki, M.; Sakurai, N.; Ueno, T.; Yakushiji, H. Changes in Berry Firmness of Various Grape Cultivars on Vines Measured by Nondestructive Method before and after Veraison. J. Jpn. Soc. Hortic. Sci. 2010, 79(4), 377–383. DOI:10.2503/jjshs1.79.377.
  • Abbott, J. A.; Bachman, G. S.; Childers, R. F.; Fitzgerald, J. V.; Matusik, F. J. Sonic Techniques for Measuring Texture of Fruits and Vegetables. Food Technol. 1968, 22(5), 101-+.
  • Cooke, J. R. Interpretation of Resonant Behavior of Intact Fruits and Vegetables. Trans. ASAE. 1972, 15(6), 1075–1080. DOI: 10.13031/2013.38074.
  • Cooke, J. R.; Rand, R. H. Mathematical Study of Resonance in Intact Fruits and Vegetables Using a 3-media Elastic Sphere Model. J. Agr. Eng. Res. 1973, 18(2), 141–157. DOI: 10.1016/0021-8634(73)90023-1.
  • Fathizadeh, Z.; Aboonajmi, M.; Beygi, S. R. H. Nondestructive Firmness Prediction of Apple Fruit Using Acoustic Vibration Response. Sci. Hortic. 2020, 262, 8. DOI: 10.1016/j.scienta.2019.109073.
  • Zhang, W.; Cui, D.; Ying, Y. The Impulse Response Method for Pear Quality Evaluation Using a Laser Doppler Vibrometer. J. Food Eng. 2015, 159, 9–15. DOI: 10.1016/j.jfoodeng.2015.03.013.
  • Zhang, W.; Wang, A.; Lv, Z.; Gao, Z. Nondestructive Measurement of Kiwifruit Firmness, Soluble Solid Content (SSC), Titratable Acidity (TA), and Sensory Quality by Vibration Spectrum. Food Sci. Nutr. 2020, 8(2), 1058–1066. DOI: 10.1002/fsn3.1390.
  • Ding, C.; Wu, H.; Feng, Z.; Wang, D.; Li, W.; Cui, D. Online Assessment of Pear Firmness by Acoustic Vibration Analysis. Postharvest Biol. Technol. 2020, 160. DOI: 10.1016/j.postharvbio.2019.111042.
  • Zhang, W.; Cui, D.; Ying, Y. Nondestructive Measurement of Texture of Three Pear Varieties and Variety Discrimination by the Laser Doppler Vibrometer Method. Food Bioprocess Technol. 2015, 8(9), 1974–1981. DOI: 10.1007/s11947-015-1547-3.
  • Zhang, W.; Cui, D.; Ying, Y. Orthogonal Test Design to Optimize the Acoustic Vibration Method for Pear Texture Measurement. Postharvest Biol. Technol. 2015, 107, 33–42. DOI: 10.1016/j.postharvbio.2015.04.002.
  • Arai, N.; Miyake, M.; Yamamoto, K.; Kajiwara, I.; Hosoya, N. Soft Mango Firmness Assessment Based on Rayleigh Waves Generated by a Laser-induced Plasma Shock Wave Technique. Foods 2021, 10(2), 323. DOI: 10.3390/foods10020323.
  • Fumuro, M.; Sakurai, N.; Utsunomiya, N. Improved Accuracy in Determining Optimal Harvest Time for Pitaya (Hylocereus Undatus) Using the Elasticity Index. J. Jpn. Soc. Hortic. Sci. 2013, 82(4), 354–361. DOI:10.2503/jjshs1.82.354.
  • Armstrong, P. R.; Stone, M. L.; Brusewitz, G. H. Peach Firmness Determination Using Two Different Nondestructive Vibrational Sensing Instruments. Trans. ASAE. 1997, 40(3), 699–703. DOI: 10.13031/2013.21289.
  • De Belie, N.; Schotte, S.; Coucke, P.; De Baerdemaeker, J. Development of an Automated Monitoring Device to Quantify Changes in Firmness of Apples during Storage. Postharvest Biol. Technol. 2000, 18(1), 1–8. DOI: 10.1016/s0925-5214(99)00063-0.
  • Duprat, F.; Grotte, M.; Pietri, E.; Loonis, D. The Acoustic Impulse Response Method for Measuring the Overall Firmness of Fruit. J. Agr. Eng. Res. 1997, 66(4), 251–259. DOI: 10.1006/jaer.1996.0143.
  • Hou, J.; Zhang, Y.; Sun, Y.; Xu, N.; Leng, Y. Prediction of Firmness and Ph for “Golden Delicious” Apple Based on Elasticity Index from Modal Analysis. J. Food Sci. 2018, 83(3), 661–669. DOI: 10.1111/1750-3841.14071.
  • Gomez, A. H.; Wang, J.; Pereira, A. G. Impulse Response of Pear Fruit and Its Relation to Magness-Taylor Firmness during Storage. Postharvest Biol. Technol. 2005, 35(2), 209–215. DOI: 10.1016/j.postharvbio.2004.07.006.
  • Lu, Q.; Wang, J.; Gomez, A. H.; Pereira, A. G. Evaluation of Tomato Quality during Storage by Acoustic Impulse Response. J. Food Process Preserv. 2009, 33, 356–370. DOI: 10.1111/j.1745-4549.2008.00346.x.
  • Wang, J.; Gomez, A. H.; Pereira, A. G. Acoustic Impulse Response for Measuring the Firmness of Mandarin during Storage. J. Food Qual. 2006, 29(4), 392–404. DOI: 10.1111/j.1745-4557.2006.00081.x.
  • Vursavus, K. K.; Yurtlu, Y. B.; Diezma-Iglesias, B.; Lleo-Garcia, L.; Ruiz-Altisent, M. Classification of the Firmness of Peaches by Sensor Fusion. Int. J. Agric. Biol. Eng. 2015, 8(6), 104–115. DOI: 10.3965/j.ijabe.20150806.1691.
  • Pourkhak, B.; Mireei, S. A.; Sadeghi, M.; Hemmat, A. Multi-sensor Data Fusion in the Nondestructive Measurement of Kiwifruit Texture. Measurement 2017, 101, 157–165. DOI: 10.1016/j.measurement.2017.01.024.
  • Ortiz, C.; Blanes, C.; Mellado, M. An Ultra-low Pressure Pneumatic Jamming Impact Device to Non-destructively Assess Cherimoya Firmness. Biosyst. Eng. 2019, 180, 161–167. DOI: 10.1016/j.biosystemseng.2019.02.003.
  • Cui, D.; Gao, Z.; Zhang, W.; Ying, Y. The Use of a Laser Doppler Vibrometer to Assess Watermelon Firmness. Comput. Electron. Agric. 2015, 112, 116–120. DOI: 10.1016/j.compag.2014.11.012.
  • Mayorga-Martinez, A. A.; Olvera-Trejo, D.; Elias-Zuniga, A.; Parra-Saldivar, R.; Chuck-Hernandez, C. Non-destructive Assessment of Guava (Psidium Guajava L.) Maturity and Firmness Based on Mechanical Vibration Response. Food Bioprocess Technol. 2016, 9(9), 1471–1480. DOI: 10.1007/s11947-016-1736-8.
  • Ki-Bok, K.; Sangdae, L.; Man-Soo, K.; Byoung-Kwan, C. Determination of Apple Firmness by Nondestructive Ultrasonic Measurement. Postharvest Biol. Technol. 2009, 52(1), 44–48. DOI: 10.1016/j.postharvbio.2008.04.006.
  • Vasighi-Shojae, H.; Gholami-Parashkouhi, M.; Mohammadzamani, D.; Soheili, A. Ultrasonic Based Determination of Apple Quality as a Nondestructive Technology. Sensing and Bio-Sensing Research 2018, 21, 22–26. DOI: 10.1016/j.sbsr.2018.09.002.
  • Khalifa, S.; Komarizadeh, M. H.; Tousi, B. Usage of Fruit Response to Both Force and Forced Vibration Applied to Assess Fruit firmness-A Review. Aust. J. Crop Sci. 2011, 5(5), 516–522.
  • Macrelli, E.; Romani, A.; Paganelli, R. P.; Sangiorgi, E.; Tartagni, M. Piezoelectric Transducers for Real-time Evaluation of Fruit Firmness. Part I: Theory and Development of Acoustic Techniques. Sens. Actuator A-Phys. 2013, 201, 487–496. DOI: 10.1016/j.sna.2013.07.033.
  • Macrelli, E.; Romani, A.; Paganelli, R. P.; Sangiorgi, E.; Tartagni, M. Piezoelectric Transducers for Real-time Evaluation of Fruit Firmness. Part II: Statistical and Sorting Analysis. Sens. Actuator A-Phys. 2013, 201, 497–503. DOI: 10.1016/j.sna.2013.07.037.
  • Tiplica, T.; Vandewalle, P.; Verron, S.; Grémy-Gros, C.; Mehinagic, E. Identification of Apple Varieties Using Acoustic Measurements. Conférence Internationale en Métrologie (CAFMET’10) Le Caire, Egypt, 2010.
  • Hosoya, N.; Mishima, M.; Kajiwara, I.; Maeda, S. Non-destructive Firmness Assessment of Apples Using a Non-contact Laser Excitation System Based on a Laser-induced Plasma Shock Wave. Postharvest Biol. Technol. 2017, 128, 11–17. DOI: 10.1016/j.postharvbio.2017.01.014.
  • Mendoza, F.; Lu, R.; Cen, H. Comparison and Fusion of Four Nondestructive Sensors for Predicting Apple Fruit Firmness and Soluble Solids Content. Postharvest Biol. Technol. 2012, 73, 89–98. DOI: 10.1016/j.postharvbio.2012.05.012.
  • Valente, M.; Leardi, R.; Self, G.; Luciano, G.; Pain, J. P. Multivariate Calibration of Mango Firmness Using Vis/NIR Spectroscopy and Acoustic Impulse Method. J. Food Eng. 2009, 94(1), 7–13. DOI: 10.1016/j.jfoodeng.2009.02.020.
  • Zude, M.; Herold, B.; Roger, J. M.; Bellon-Maurel, V.; Landahl, S. Non-destructive Tests on the Prediction of Apple Fruit Flesh Firmness and Soluble Solids Content on Tree and in Shelf Life. J. Food Eng. 2006, 77(2), 254–260. DOI: 10.1016/j.jfoodeng.2005.06.027.
  • Molina-Delgado, D.; Alegre, S.; Puy, J.; Recasens, I. Relationship between Acoustic Firmness and Magness Taylor Firmness in Royal Gala and Golden Smoothee Apples. Food Sci. Technol. Int. 2009, 15(1), 31–40. DOI: 10.1177/1082013208100507.
  • Landahl, S.; Terry, L. A. Avocado Firmness Monitoring with Values Obtained by Means of Laser Doppler Vibrometry Acta Horticulturae (ISHS) 2012; 945, 239–245. DOI:10.17660/ActaHortic.2012.945.32.
  • Murayama, H.; Konno, I.; Terasaki, S.; Yamamoto, R.; Sakurai, N. Nondestructive Method for Measuring Fruit Ripening of “La France’ Pears Using a Laser Doppler Vibrometer. J. Jpn. Soc. Hortic. Sci. 2006, 75(1), 79–84. DOI:10.2503/jjshs.75.79.
  • Terasaki, S.; Sakurai, N.; Zebrowski, J.; Murayama, H.; Yamamoto, R.; Nevins, D. J. Laser Doppler Vibrometer Analysis of Changes in Elastic Properties of Ripening ‘La France’ Pears after Postharvest Storage. Postharvest Biol. Technol. 2006, 42(2), 198–207. DOI: 10.1016/j.postharvbio.2006.06.007.
  • Terasaki, S.; Wada, N.; Sakurai, N.; Muramatsu, N.; Yamamoto, R.; Nevins, D. J. Nondestructive Measurement of Kiwifruit Ripeness Using a Laser Doppler Vibrometer. Trans. ASAE. 2001, 44(1), 81–87. DOI: 10.13031/2013.2291.
  • Zhang, W.; Cui, D.; Ying, Y. Nondestructive Measurement of Pear Texture by Acoustic Vibration Method. Postharvest Biol. Technol. 2014, 96, 99–105. DOI: 10.1016/j.postharvbio.2014.05.006.
  • Abbaszadeh, R.; Rajabipour, A.; Delshad, M.; Mahjub, M.; Ahmadi, H.; Lague, C. Application of Vibration Response for the Nondestructive Ripeness Evaluation of Watermelons. Aust. J. Crop Sci. 2011, 5(7), 920–925.
  • Abbaszadeh, R.; Rajabipour, A.; Mahjoob, M.; Delshad, M.; Ahmadi, H. Evaluation of Watermelons Texture Using Their Vibration Responses. Biosyst. Eng. 2013, 115(1), 102–105. DOI: 10.1016/j.biosystemseng.2013.01.001.
  • Abbaszadeh, R.; Rajabipour, A.; Sadrnia, H.; Mahjoob, M. J.; Delshad, M.; Ahmadi, H. Application of Modal Analysis to the Watermelon through Finite Element Modeling for Use in Ripeness Assessment. J. Food Eng. 2014, 127, 80–84. DOI: 10.1016/j.jfoodeng.2013.11.020.
  • Abbaszadeh, R.; Rajabipour, A.; Ying, Y.; Delshad, M.; Mahjoob, M. J.; Ahmadi, H. Nondestructive Determination of Watermelon Flesh Firmness by Frequency Response. LWT-Food Sci. Technol. 2015, 60(1), 637–640. DOI: 10.1016/j.lwt.2014.08.029.
  • Hosainpour, A.; Komarizade, M. H.; Mahmoudi, A.; Shayesteh, M. G. High Speed Detection of Potato and Clod Using an Acoustic Based Intelligent System. Expert Syst. Appl. 2011, 38(10), 12101–12106. DOI: 10.1016/j.eswa.2011.02.164.
  • Welch, A.; Gemert, M. Overview of Optical and Thermal Laser-tissue Interaction and Nomenclature. In Optical-Thermal Response of Laser-Irradiated Tissue; 2nd ed.; Springer 3–12 : Berlin, 2011. 1 0.1 007/978-90-481-8831-4.
  • Lu, R. Light Scattering Technology for Food Property, Quality and Safety Assessment; CRC Press: Boca Raton, FL, USA, 2016.
  • Nicolai, B. M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K. I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46(2), 99–118. DOI: 10.1016/j.postharvbio.2007.06.024.
  • He, X.; Fu, X.; Rao, X.; Fang, Z. Assessing Firmness and SSC of Pears Based on Absorption and Scattering Properties Using an Automatic Integrating Sphere System from 400 to 1150 Nm. Postharvest Biol. Technol. 2016, 121, 62–70. DOI: 10.1016/j.postharvbio.2016.07.013.
  • Huang, Y.; Lu, R.; Chen, K. Development of a Multichannel Hyperspectral Imaging Probe for Property and Quality Assessment of Horticultural Products. Postharvest Biol. Technol. 2017, 133, 88–97. DOI: 10.1016/j.postharvbio.2017.07.009.
  • Huang, Y.; Lu, R.; Hu, D.; Chen, K. Quality Assessment of Tomato Fruit by Optical Absorption and Scattering Properties. Postharvest Biol. Technol. 2018, 143, 78–85. DOI: 10.1016/j.postharvbio.2018.04.016.
  • Huang, Y.; Lu, R.; Xu, Y.; Chen, K. Prediction of Tomato Firmness Using Spatially-resolved Spectroscopy. Postharvest Biol. Technol. 2018, 140, 18–26. DOI: 10.1016/j.postharvbio.2018.02.008.
  • Peng, Y.; Lu, R. Analysis of Spatially Resolved Hyperspectral Scattering Images for Assessing Apple Fruit Firmness and Soluble Solids Content. Postharvest Biol. Technol. 2008, 48(1), 52–62. DOI: 10.1016/j.postharvbio.2007.09.019.
  • Wang, A.; Lu, R.; Xie, L. Improved Algorithm for Estimating the Optical Properties of Food Products Using Spatially-resolved Diffuse Reflectance. J. Food Eng. 2017, 212, 1–11. DOI: 10.1016/j.jfoodeng.2017.05.005.
  • Zhang, M.; Li, C.; Yang, F. Optical Properties of Blueberry Flesh and Skin and Monte Carlo Multi-layered Simulation of Light Interaction with Fruit Tissues. Postharvest Biol. Technol. 2019, 150, 28–41. DOI: 10.1016/j.postharvbio.2018.12.006.
  • Farrell, T. J.; Patterson, M. S.; Wilson, B. A Diffusion-theory Model of Spatially Resolved, Steady-state Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-properties Invivo. Med. Phys. 1992, 19(4), 879–888. DOI:10.1118/1.596777.
  • Kienle, A.; Patterson, M. S. Improved Solutions of the Steady-state and the Time-resolved Diffusion Equations for Reflectance from a Semi-infinite Turbid Medium. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1997, 14(1), 246–254. DOI:10.1364/josaa.14.000246.
  • Haskell, R. C.; Svaasand, L. O.; Tsay, -T.-T.; Feng, T.-C.; McAdams, M. S.; Tromberg, B. J. Boundary Conditions for the Diffusion Equation in Radiative Transfer. J. Opt. Soc. Am. A 1994, 11(10), 2727–2741. DOI:10.1364/JOSAA.11.002727.
  • Mourant, J. R.; Fuselier, T.; Boyer, J.; Johnson, T. M.; Bigio, I. J. Predictions and Measurements of Scattering and Absorption over Broad Wavelength Ranges in Tissue Phantoms. Appl. Opt. 1997, 36(4), 949–957. DOI: 10.1364/ao.36.000949.
  • Mollazade, K.; Omid, M.; Tab, F. A.; Mohtasebi, S. S. Principles and Applications of Light Backscattering Imaging in Quality Evaluation of Agro-food Products: A Review. Food Bioprocess Technol. 2012, 5(5), 1465–1485. DOI: 10.1007/s11947-012-0821-x.
  • Rowe, P. I.; Kuennemeyer, R.; McGlone, A.; Talele, S.; Martinsen, P.; Seelye, R. Relationship between Tissue Firmness and Optical Properties of ‘Royal Gala’ Apples from 400 to 1050 Nm. Postharvest Biol. Technol. 2014, 94, 89–96. DOI: 10.1016/j.postharvbio.2014.03.007.
  • Tomer, N.; McGlone, A.; Kunnemeyer, R. Validated Simulations of Diffuse Optical Transmission Measurements on Produce. Comput. Electron. Agric. 2017, 134, 94–101. DOI: 10.1016/j.compag.2017.01.006.
  • Fabbri, F.; Franceschini, M. A.; Fantini, S. Characterization of Spatial and Temporal Variations in the Optical Properties of Tissuelike Media with Diffuse Reflectance Imaging. Appl. Opt. 2003, 42(16), 3063–3072. DOI: 10.1364/ao.42.003063.
  • Malsan, J.; Gurjar, R.; Wolf, D.; Vishwanath, K ; Extracting optical properties of turbid media using radially and spectrally resolved diffuse reflectance Proc. SPIE 8936, Design and Quality for Biomedical Technologies VI. 2014. San Francisco, California, United States; Vol. 893615.DOI: 10.1117/12.2039964.
  • Pilz, M.; Honold, S.; Kienle, A. Determination of the Optical Properties of Turbid Media by Measurements of the Spatially Resolved Reflectance considering the Point-spread Function of the Camera System. J. Biomed. Opt. 2008, 13(5). DOI: 10.1117/1.2983675.
  • Adebayo, S. E.; Hashim, N.; Hass, R.; Reich, O.; Regen, C.; Muenzberg, M.; Abdan, K.; Hanafi, M.; Zude-Sasse, M. Using Absorption and Reduced Scattering Coefficients for Non-destructive Analyses of Fruit Flesh Firmness and Soluble Solids Content in Pear (Pyrus Communis ‘Conference’)-an Update When Using Diffusion Theory. Postharvest Biol. Technol. 2017, 130, 56–63. DOI: 10.1016/j.postharvbio.2017.04.004.
  • Cen, H.; Lu, R.; Mendoza, F. A. Analysis of Absorption and Scattering Spectra for Assessing the Internal Quality of Apple Fruit. In Iv International Conference Postharvest Unlimited 2011 Leavenworth, WA, USA; Toivonen, P.M.A., Mattheis, J.P., and Rudell, D.R., Eds.; 2012; 945, 181–188.
  • Lorente, D.; Aleixos, N.; Gomez-Sanchis, J.; Cubero, S.; Blasco, J. Selection of Optimal Wavelength Features for Decay Detection in Citrus Fruit Using the Roc Curve and Neural Networks. Food Bioprocess Technol. 2013, 6(2), 530–541. DOI: 10.1007/s11947-011-0737-x.
  • Mollazade, K.; Arefi, A. Optical Analysis Using Monochromatic Imaging-based Spatially-resolved Technique Capable of Detecting Mealiness in Apple Fruit. Sci. Hortic. 2017, 225, 589–598. DOI: 10.1016/j.scienta.2017.08.005.
  • Qin, J.; Lu, R.; Peng, Y. Prediction of Apple Internal Quality Using Spectral Absorption and Scattering Properties. Trans. ASABE. 2009, 52(2), 499–507. DOI: 10.13031/2013.26807.
  • Van Beers, R.; Aernouts, B.; Leon Gutierrez, L.; Erkinbaev, C.; Rutten, K.; Schenk, A.; Nicolai, B.; Saeys, W. Optimal Illumination-detection Distance and Detector Size for Predicting Braeburn Apple Maturity from Vis/NIR Laser Reflectance Measurements. Food Bioprocess Technol. 2015, 8(10), 2123–2136. DOI: 10.1007/s11947-015-1562-4.
  • Zhu, Q.; He, C.; Lu, R.; Mendoza, F.; Cen, H. Ripeness Evaluation of ‘Sun Bright’ Tomato Using Optical Absorption and Scattering Properties. Postharvest Biol. Technol. 2015, 103, 27–34. DOI: 10.1016/j.postharvbio.2015.02.007.
  • Sun, J.; Kunnemeyer, R.; McGlone, A.; Rowe, P. Multispectral Scattering Imaging and NIR Interactance for Apple Firmness Predictions. Postharvest Biol. Technol. 2016, 119, 58–68. DOI: 10.1016/j.postharvbio.2016.04.019.
  • Peng, Y.; Lu, R. Improving Apple Fruit Firmness Predictions by Effective Correction of Multispectral Scattering Images. Postharvest Biol. Technol. 2006, 41(3), 266–274. DOI: 10.1016/j.postharvbio.2006.04.005.
  • Peng, Y.; Lu, R. Prediction of Apple Fruit Firmness and Soluble Solids Content Using Characteristics of Multispectral Scattering Images. J. Food Eng. 2007, 82(2), 142–152. DOI: 10.1016/j.jfoodeng.2006.12.027.
  • Lu, R. F. Multispectral Imaging for Predicting Firmness and Soluble Solids Content of Apple Fruit. Postharvest Biol. Technol. 2004, 31(2), 147–157. DOI: 10.1016/j.postharvbio.2003.08.006.
  • Mollazade, K.; Omid, M.; Tab, F. A.; Kalaj, Y. R.; Mohtasebi, S. S.; Zude, M. Analysis of Texture-based Features for Predicting Mechanical Properties of Horticultural Products by Laser Light Backscattering Imaging. Comput. Electron. Agric. 2013, 98, 34–45. DOI: 10.1016/j.compag.2013.07.011.
  • Qing, Z.; Ji, B.; Zude, M. Non-destructive Analyses of Apple Quality Parameters by Means of Laser-induced Light Backscattering Imaging. Postharvest Biol. Technol. 2008, 48(2), 215–222. DOI: 10.1016/j.postharvbio.2007.10.004.
  • Romano, G.; Nagle, M.; Argyropoulos, D.; Mueller, J. Laser Light Backscattering to Monitor Moisture Content, Soluble Solid Content and Hardness of Apple Tissue during Drying. J. Food Eng. 2011, 104(4), 657–662. DOI: 10.1016/j.jfoodeng.2011.01.026.
  • McGlone, V. A.; Jordan, R. B.; Martinsen, P. J. Vis/NIR Estimation at Harvest of Pre- and Post-storage Quality Indices for ‘Royal Gala’ Apple. Postharvest Biol. Technol. 2002, 25(2), 135–144. DOI: 10.1016/s0925-5214(01)00180-6.
  • Park, B.; Abbott, J. A.; Lee, K. J.; Choi, C. H.; Choi, K. H. Near-infrared Diffuse Reflectance for Quantitative and Qualitative Measurement of Soluble Solids and Firmness of Delicious and Gala Apples. Trans. ASAE. 2003, 46(6), 1721–1731. DOI: 10.13031/2013.15628.
  • Zhu, G.; Tian, C. Determining Sugar Content and Firmness of “Fuji’ Apples by Using Portable Near-infrared Spectrometer and Diffuse Transmittance Spectroscopy. J. Food Process Eng. 2018, 41(6). DOI: 10.1111/jfpe.12810.
  • Nicolai, B. M.; Verlinden, B. E.; Desmet, M.; Saevels, S.; Saeys, W.; Theron, K.; Cubeddu, R.; Pifferi, A.; Torricelli, A. Time-resolved and Continuous Wave NIR Reflectance Spectroscopy to Predict Soluble Solids Content and Firmness of Pear. Postharvest Biol. Technol. 2008, 47(1), 68–74. DOI: 10.1016/j.postharvbio.2007.06.001.
  • Li, J.; Zhang, H.; Zhan, B.; Zhang, Y.; Li, R.; Li, J. Nondestructive Firmness Measurement of the Multiple Cultivars of Pears by Vis-NIR Spectroscopy Coupled with Multivariate Calibration Analysis and MC-UVE-SPA Method. Infrared Phys. Technol. 2020, 104. DOI: 10.1016/j.infrared.2019.103154.
  • Huang, Y.; Lu, R.; Chen, K. Prediction of Firmness Parameters of Tomatoes by Portable Visible and Near-infrared Spectroscopy. J. Food Eng. 2018, 222, 185–198. DOI: 10.1016/j.jfoodeng.2017.11.030.
  • Paz, P.; Sanchez, M.-T.; Perez-Marin, D.; Guerrero, J.-E.; Garrido-Varo, A. Nondestructive Determination of Total Soluble Solid Content and Firmness in Plums Using Near-infrared Reflectance Spectroscopy. J. Agr. Food Chem. 2008, 56(8), 2565–2570. DOI: 10.1021/jf073369h.
  • Antihus Hernandez, G.; Yong, H.; Annia Garcia, P. Non-destructive Measurement of Acidity, Soluble Solids and Firmness of Satsuma Mandarin Using Vis/NIR-spectroscopy Techniques. J. Food Eng. 2006, 77(2), 313–319. DOI: 10.1016/j.jfoodeng.2005.06.036.
  • Penchaiya, P.; Bobelyn, E.; Verlinden, B. E.; Nicolai, B. M.; Saeys, W. Non-destructive Measurement of Firmness and Soluble Solids Content in Bell Pepper Using NIR Spectroscopy. J. Food Eng. 2009, 94(3–4), 267–273. DOI: 10.1016/j.jfoodeng.2009.03.018.
  • Lu, R. Predicting Firmness and Sugar Content of Sweet Cherries Using Near-infrared Diffuse Reflectance Spectroscopy. Trans. ASAE. 2001, 44(5), 1265–1271. DOI: 10.13031/2013.6421.
  • Pullanagari, R. R.; Li, M. Uncertainty Assessment for Firmness and Total Soluble Solids of Sweet Cherries Using Hyperspectral Imaging and Multivariate Statistics. J. Food Eng. 2021, 289. DOI: 10.1016/j.jfoodeng.2020.110177.
  • Mishra, P.; Woltering, E.; El Harchioui, N. Improved Prediction of ‘Kent’ Mango Firmness during Ripening by Near-infrared Spectroscopy Supported by Interval Partial Least Square Regression. Infrared Phys. Technol. 2020, 110. DOI: 10.1016/j.infrared.2020.103459.
  • Wei, X.; He, J.; Zheng, S.; Ye, D. Modeling for SSC and Firmness Detection of Persimmon Based on NIR Hyperspectral Imaging by Sample Partitioning and Variables Selection. Infrared Phys. Technol. 2020, 105. DOI: 10.1016/j.infrared.2019.103099.
  • Cen, H.; Lu, R.; Mendoza, F.; Beaudry, R. M. Relationship of the Optical Absorption and Scattering Properties with Mechanical and Structural Properties of Apple Tissue. Postharvest Biol. Technol. 2013, 85, 30–38. DOI: 10.1016/j.postharvbio.2013.04.014.
  • Ma, T.; Xia, Y.; Inagaki, T.; Tsuchikawa, S. Rapid and Nondestructive Evaluation of Soluble Solids Content (SSC) and Firmness in Apple Using Vis-NIR Spatially Resolved Spectroscopy. Postharvest Biol. Technol. 2021, 173. DOI: 10.1016/jpostharvbio.2020.111417.
  • Nghia Nguyen Do, T.; Erkinbaev, C.; Tsuta, M.; De Baerdemaeker, J.; Nicolai, B.; Saeys, W. Spatially Resolved Diffuse Reflectance in the Visible and Near-infrared Wavelength Range for Non-destructive Quality Assessment of ‘Braeburn’ Apples. Postharvest Biol. Technol. 2014, 91, 39–48. DOI: 10.1016/j.postharvbio.2013.12.004.
  • Lu, R.; Peng, Y. Development of a Multispectral Imaging Prototype for Real-time Detection of Apple Fruit Firmness. Opt. Eng. 2007, 46(12). DOI: 10.1117/1.2818812.
  • Mendoza, F.; Lu, R.; Ariana, D.; Cen, H.; Bailey, B. Integrated Spectral and Image Analysis of Hyperspectral Scattering Data for Prediction of Apple Fruit Firmness and Soluble Solids Content. Postharvest Biol. Technol. 2011, 62(2), 149–160. DOI: 10.1016/j.postharvbio.2011.05.009.
  • Wang, S.; Huang, M.; Zhu, Q. Model Fusion for Prediction of Apple Firmness Using Hyperspectral Scattering Image. Comput. Electron. Agric. 2012, 80, 1–7. DOI: 10.1016/j.compag.2011.10.008.
  • Lu, R. F.; Peng, Y. K. Hyperspectral Scattering for Assessing Peach Fruit Firmness. Biosyst. Eng. 2006, 93(2), 161–171. DOI: 10.1016/j.biosystemseng.2005.11.004.
  • Zhu, N.; Lin, M.; Nie, Y.; Wu, D.; Chen, K. Study on the Quantitative Measurement of Firmness Distribution Maps at the Pixel Level inside Peach Pulp. Comput. Electron. Agric. 2016, 130, 48–56. DOI: 10.1016/j.compag.2016.09.018.
  • Leiva-Valenzuela, G. A.; Lu, R.; Miguel Aguilera, J. Prediction of Firmness and Soluble Solids Content of Blueberries Using Hyperspectral Reflectance Imaging. J. Food Eng. 2013, 115(1), 91–98. DOI: 10.1016/j.jfoodeng.2012.10.001.
  • Peleg, K. Development of a Commercial Fruit Firmness Sorter. J. Agr. Eng. Res. 1999, 72(3), 231–238. DOI: 10.1006/jaer.1998.0367.
  • Garcia-Ramos, F. J.; Ortiz-Canavate, J.; Ruiz-Altisent, M.; Diez, J.; Flores, L.; Homer, I.; Chavez, J. M. Development and Implementation of an On-line Impact Sensor for Firmness Sensing of Fruits. J. Food Eng. 2003, 58(1), 53–57. DOI: 10.1016/S0260-8774(02)00333-3.
  • Ragni, L.; Berardinelli, A.; Guarnieri, A. Impact Device for Measuring the Flesh Firmness of Kiwifruits. J. Food Eng. 2010, 96(4), 591–597. DOI: 10.1016/j.jfoodeng.2009.09.006.
  • Berardinelli, A.; Benelli, A.; Tartagni, M.; Ragni, L. Kiwifruit Flesh Firmness Determination by a NIR Sensitive Device and Image Multivariate Data Analyses. Sens. Actuator A-Phys. 2019, 296, 265–271. DOI: 10.1016/j.sna.2019.07.027.
  • Hertog, M.; Ben-Arie, R.; Roth, E.; Nicolai, B. M. Humidity and Temperature Effects on Invasive and Non-invasive Firmness Measures. Postharvest Biol. Technol. 2004, 33(1), 79–91. DOI: 10.1016/j.postharvbio.2004.01.005.
  • Lu, R.; Srivastava, A. K.; Beaudry, R. M. A Newbioyield Tester for Measuring Apple Fruit Firmness. Appl. Eng. Agric. 2005, 21(5), 893–900. DOI: 10.13031/2013.19693.
  • Taniwaki, M.; Hanada, T.; Sakurai, N. Postharvest Quality Evaluation of “Fuyu” and “Taishuu” Persimmons Using a Nondestructive Vibrational Method and an Acoustic Vibration Technique. Postharvest Biol. Technol. 2009, 51(1), 80–85. DOI: 10.1016/j.postharvbio.2008.05.014.
  • Shmulevich, I.; Galili, N.; Howarth, M. S. Nondestructive Dynamic Testing of Apples for Firmness Evaluation. Postharvest Biol. Technol. 2003, 29(3), 287–299. DOI: 10.1016/s0925-5214(03)00039-5.
  • Yurtlu, Y. B. Comparison of Nondestructive Impact and Acoustic Techniques for Measuring Firmness in Peaches. J. Food Agric. Environ. 2012, 10(2), 180–185.
  • McGlone, V. A.; Kawano, S. Firmness, Dry-matter and Soluble-solids Assessment of Postharvest Kiwifruit by NIR Spectroscopy. Postharvest Biol. Technol. 1998, 13(2), 131–141. DOI: 10.1016/s0925-5214(98)00007-6.
  • Osinenko, P.; Biegert, K.; McCormick, R. J.; Goehrt, T.; Devadze, G.; Streif, J.; Streif, S. Application of Non-destructive Sensors and Big Data Analysis to Predict Physiological Storage Disorders and Fruit Firmness in ‘Braeburn’ Apples. Comput. Electron. Agric. 2021, 183. DOI: 10.1016/j.compag.2021.106015.
  • Yu, X.; Lu, H.; Wu, D. Development of Deep Learning Method for Predicting Firmness and Soluble Solid Content of Postharvest Korla Fragrant Pear Using Vis/NIR Hyperspectral Reflectance Imaging. Postharvest Biol. Technol. 2018, 141, 39–49. DOI: 10.1016/j.postharvbio.2018.02.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.