482
Views
1
CrossRef citations to date
0
Altmetric
Review

The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Gallier, S.; Vocking, K.; Post, J. A.; Van De Heijning, B.; Acton, D.; Van Der Beek, E. M.; Van Baalen, T. A Novel Infant Milk Formula Concept: Mimicking the Human Milk Fat Globule Structure. Colloids Surf. B. 2015, 136, 329–339. DOI: 10.1016/j.colsurfb.2015.09.024.
  • Conway, V.; Couture, P.; Richard, C.; Gauthier, S. F.; Pouliot, Y.; Lamarche, B. Impact of Buttermilk Consumption on Plasma Lipids and Surrogate Markers of Cholesterol Homeostasis in Men and Women. Nutr. Metab. Cardiovasc. Dis. 2013, 23(12), 1255–1262. DOI: 10.1016/j.numecd.2013.03.003.
  • Somaratne, G.; Ferrua, M. J.; Ye, A.; Nau, F.; Floury, J.; Dupont, D.; Singh, J. Food Material Properties as Determining Factors in Nutrient Release during Human Gastric Digestion: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60(22), 3753–3769. DOI: 10.1080/10408398.2019.1707770.
  • Heid, H. W.; Keenan, T. W. Intracellular Origin and Secretion of Milk Fat Globules. Eur. J. Cell Biol. 2005, 84(2–3), 245–258. DOI: 10.1016/j.ejcb.2004.12.002.
  • Thum, C.; Roy, N. C.; Everett, D. W.; McNabb, W. C. Variation in Milk Fat Globule Size and Composition: A Source of Bioactives for Human Health. Crit. Rev. Food Sci. Nutr. 2021, 1–27. DOI: 10.1080/10408398.2021.1944049.
  • Mather, I. H. Milk Lipids | Milk Fat Globule Membrane. In Encyclopedia of Dairy Sciences; 2nd Fuquay, J.W., Fox, P.F., and McSweeny, P.L.H., Eds.; London, UK: Elsevier, 2011; pp 680–690. DOI:10.1016/B978-0-12-374407-4.00337-X.
  • Masedunskas, A.; Chen, Y.; Stussman, R.; Weigert, R.; Mather, I. H. Kinetics of Milk Lipid Droplet (LD) Transport, Growth and Secretion Revealed by Intravital Imaging: LD Release Is Intermittently Stimulated by Oxytocin. Mol. Biol. Cell. 2017, 28(7), 935–946. DOI: 10.1091/mbc.e16-11-0776.
  • Jeong, J.; Lisinski, I.; Kadegowda, A. K. G.; Shin, H.; Wooding, F. B. P.; Daniels, B. R.; Schaack, J.; Mather, I. H. A Test of Current Models for the Mechanism of Milk-Lipid Droplet Secretion: Mechanism of Milk-Lipid Secretion. Traffic. 2013, 14(9), 974–986. DOI: 10.1111/tra.12087.
  • Monks, J.; Dzieciatkowska, M.; Bales, E. S.; Orlicky, D. J.; Wright, R. M.; McManaman, J. L. Xanthine Oxidoreductase Mediates Membrane Docking of Milk-Fat Droplets but Is Not Essential for Apocrine Lipid Secretion: Xanthine Oxidoreductase and Milk Fat Secretion. J. Physiol. 2016, 594(20), 5899–5921. DOI: 10.1113/JP272390.
  • Gimpl, G.; Fahrenholz, F. The Oxytocin Receptor System: Structure, Function, and Regulation. Physiol. Rev. 2001, 81(2), 629–683. DOI: 10.1152/physrev.2001.81.2.629.
  • Lopez, C.; Cauty, C.; Guyomarc’h, F. Unravelling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. Eur. J. Lipid Sci. Technol. 2018a, 1800201. DOI: 10.1002/ejlt.201800201.
  • Walstra, P.; Wouters, J. T. M.; Geurts, T. J. Colloidal Particles of Milk. In Dairy Science and Technology. 2nd.; Taylor & Francis Group:Boca Raton, FL, 2006; 129.
  • Gallier, S.; Gragson, D.; Cabral, C.; Jiménez-Flores, R.; Everett, D. W. Composition and Fatty Acid Distribution of Bovine Milk Phospholipids from Processed Milk Products. J. Agric. Food Chem. 2010a, 58(19), 10503–10511. DOI: 10.1021/jf101878d.
  • Huppertz, T.; Kelly, A. L. Physical Chemistry of Milk Fat Globule. In Advanced Dairy Chemistry, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: New York, 2006; Vol. 2, pp 173–212.
  • Wiking, L.; Stagsted, J.; Björck, L.; Nielsen, J. H. Milk Fat Globule Size Is Affected by Fat Production in Dairy Cows. Int. Dairy J. 2004, 14(10), 909–913. DOI: 10.1016/j.idairyj.2004.03.005.
  • Carroll, S. M.; DePeters, E. J.; Taylor, S. J.; Rosenberg, M.; Perez-Monti, H.; Capps, V. A. Milk Composition of Holstein, Jersey, and Brown Swiss Cows in Response to Increasing Levels of Dietary Fat. Anim. Feed Sci. Technol. 2006, 131(3–4), 451–473. DOI: 10.1016/j.anifeedsci.2006.06.019.
  • Couvreur, S.; Hurtaud, C.; Marnet, P. G.; Faverdin, P.; Peyraud, J. L. Composition of Milk Fat from Cows Selected for Milk Fat Globule Size and Offered either Fresh Pasture or a Corn Silage-Based Diet. J. Dairy Sci. 2007, 90(1), 392–403. DOI: 10.3168/jds.S0022-0302(07)72640-1.
  • Barłowska, J.; Grodzicki, T.; Topyła, B.; Litwińczuk, Z. Physicochemical Properties of Milk Fat from Three Breeds of Cows during Summer and Winter Feeding. Arch Anim Breed. 2009, 52(4), 356–363. DOI: 10.5194/aab-52-356-2009.
  • Lopez, C.; Briard-Bion, V.; Ménard, O.; Beaucher, E.; Rousseau, F.; Fauquant, J.; Leconte, N.; Robert, B. Fat Globules Selected from Whole Milk according to Their Size: Different Compositions and Structure of the Biomembrane, Revealing Sphingomyelin-Rich Domains. Food Chem. 2011a, 125(2), 355–368. DOI: 10.1016/j.foodchem.2010.09.005.
  • Lu, J.; Argov-Argaman, N.; Anggrek, J.; Boeren, S.; van Hooijdonk, T.; Vervoort, J.; Hettinga, K. A. The Protein and Lipid Composition of the Membrane of Milk Fat Globules Depends on Their Size. J. Dairy Sci. 2016, 99(6), 4726–4738. DOI: 10.3168/jds.2015-10375.
  • Logan, A.; Auldist, M.; Greenwood, J.; Day, L. Natural Variation of Bovine Milk Fat Globule Size within a Herd. J. Dairy Sci. 2014, 97(7), 4072–4082. DOI: 10.3168/jds.2014-8010.
  • Mesilati-Stahy, R.; Argov-Argaman, N. The Relationship between Size and Lipid Composition of the Bovine Milk Fat Globule Is Modulated by Lactation Stage. Food Chem. 2014, 145, 562–570. DOI: 10.1016/j.foodchem.2013.08.077.
  • Bitman, J.; Wood, D. L. Changes in Milk Fat Phospholipids during Lactation. J. Dairy Sci. 1990, 73(5), 1208–1216. DOI: 10.3168/jds.S0022-0302(90)78784-X.
  • Hadaya, O.; Bransi-Nicola, R.; Shalev, Y.; Azaizeh, H.; Roth, Z.; Muklada, H.; Deutch, T.; Landau, S. Y.; Argov-Argaman, N. Pistacia Lentiscus Extract Enhances Mammary Epithelial Cells’ Productivity by Modulating Their Oxidative Status. Sci. Rep. 2020, 10(1), 20985. DOI: 10.1038/s41598-020-78065-z.
  • Reinhardt, T. A.; Lippolis, J. D. Bovine Milk Fat Globule Membrane Proteome. J. Dairy Res. 2006, 73(4), 406. DOI: 10.1017/S0022029906001889.
  • Mather, I. H. A Review and Proposed Nomenclature for Major Proteins of the Milk-Fat Globule Membrane. J. Dairy Sci. 2000, 83(2), 203–247. DOI: 10.3168/jds.S0022-0302(00)74870-3.
  • Douëllou, T.; Montel, M. C.; Thevenot Sergentet, D. Invited Review: Anti-Adhesive Properties of Bovine Oligosaccharides and Bovine Milk Fat Globule Membrane-Associated Glycoconjugates against Bacterial Food Enteropathogens. J. Dairy Sci. 2017, 100(5), 3348–3359. DOI: 10.3168/jds.2016-11611.
  • Ye, A.; Singh, H.; Taylor, M. W.; Anema, S. Characterization of Protein Components of Natural and Heat-Treated Milk Fat Globule Membranes. Int. Dairy J. 2002, 12(4), 393–402. DOI: 10.1016/S0958-6946(02)00034-1.
  • Jiménez-Flores, R.; Brisson, G. The Milk Fat Globule Membrane as an Ingredient: Why, How, When? Dairy Sci. Technol. 2008, 88(1), 5–18. DOI: 10.1051/dst:2007005.
  • Yao, Y.; Zhao, G.; Xiang, J.; Zou, X.; Jin, Q.; Wang, X. Lipid Composition and Structural Characteristics of Bovine, Caprine and Human Milk Fat Globules. Int. Dairy J. 2016, 56, 64–73. DOI: 10.1016/j.idairyj.2015.12.013.
  • Zheng, H.; Jiménez-Flores, R.; Everett, D. W. Lateral Lipid Organization of the Bovine Milk Fat Globule Membrane Is Revealed by Washing Processes. J. Dairy Sci. 2014, 97(10), 5964–5974. DOI: 10.3168/jds.2014-7951.
  • Lopez, C. Intracellular Origin of Milk Fat Globules, Composition and Structure of the Milk Fat Globule Membrane Highlighting the Specific Role of Sphingomyelin. In Advanced Dairy Chemistry; McSweeney, P.L.H., Fox, P.F., O’Mahony, J.A., Eds.; Springer International Publishing: Cham, 2020; Vol. 2. 107–131. DOI:10.1007/978-3-030-48686-0_4.
  • Noh, S. K.; Koo, S. I. Milk Sphingomyelin Is More Effective than Egg Sphingomyelin in Inhibiting Intestinal Absorption of Cholesterol and Fat in Rats. J. Nutr. 2004, 134(10), 2611–2616. DOI: 10.1093/jn/134.10.2611.
  • Et-Thakafy, O.; Guyomarc’h, F.; Lopez, C. Lipid Domains in the Milk Fat Globule Membrane: Dynamics Investigated in Situ in Milk in Relation to Temperature and Time. Food Chem. 2017, 220, 352–361. DOI: 10.1016/j.foodchem.2016.10.017.
  • Gallier, S.; Shaw, E. ; Jiménez-Flores R. The Milk Fat Globule Membrane: Structure, Methodology for its Study and Functionality. In Food Structures, Digestion and Health, 1st ed.; Boland, M., Golding, M., Singh, S., Eds,; Elsevier:London. 2014 , 107–142 .
  • Dewettinck, K.; Rombaut, R.; Thienpont, N.; Le, T. T.; Messens, K.; Van Camp, J. Nutritional and Technological Aspects of Milk Fat Globule Membrane Material. Int. Dairy J. 2008, 18(5), 436–457. DOI: 10.1016/j.idairyj.2007.10.014.
  • Rosqvist, F.; Smedman, A.; Lindmark-Månsson, H.; Paulsson, M.; Petrus, P.; Straniero, S.; Rudling, M.; Dahlman, I.; Risérus, U. Potential Role of Milk Fat Globule Membrane in Modulating Plasma Lipoproteins, Gene Expression, and Cholesterol Metabolism in Humans: A Randomized Study. Am. J. Clin. Nutr. 2015, 102(1), 20–30. DOI: 10.3945/ajcn.115.107045.
  • Lovegrove, J. A.; Givens, D. I. Dairy Food Products: Good or Bad for Cardiometabolic Disease? Nutr. Res. Rev. 2016, 29(2), 249–267. DOI: 10.1017/S0954422416000160.
  • Cohn, J.; Kamili, A.; Wat, E.; Chung, R. W.; Tandy, S. Dietary Phospholipids and Intestinal Cholesterol Absorption. Nutrients. 2010, 2(2), 116–127. DOI: 10.3390/nu2020116.
  • Howards, A.; Marks, J. Effect of Milk Products on Serum-Cholesterol. Lancet. 1979, 314(8149), 957. DOI: 10.1016/s0140-6736(79)92650-3.
  • Ros, E. Intestinal Absorption of Triglyceride and Cholesterol. Dietary and Pharmacological Inhibition to Reduce Cardiovascular Risk. Atherosclerosis. 2000, 151(2), 357–379. DOI: 10.1016/S0021-9150(00)00456-1.
  • Ros, E.; Wang, D. Q. –. H.; Donovan, J. M.; Carey, M. C. Dietary Sphingomyelin Suppresses Intestinal Cholesterol Absorption by Decreasing Thermodynamic Activity of Cholesterol Monomers. Gastroenterology. 2002, 122(4), 948–956. DOI: 10.1053/gast.2002.32539.
  • Cohen, D. E.; Carey’, M. C. Acyl Chain Unsaturation Modulates Distribution of Lecithin Molecular Species between Mixed Micelles and Vesicles in Model Bile. Implications for Particle Structure and Metastable Cholesterol Solubilities. J. Lipid Res. 1991, 32(8), 1291–1302. DOI: 10.1016/S0022-2275(20)41959-5.
  • Thurnhofer, H.; Hauser, H. Uptake of Cholesterol by Small Intestinal Brush Border Membrane Is Protein-Mediated. Biochemistry. 1990, 29(8), 2142–2148. DOI: 10.1021/bi00460a026.
  • Homan, R.; Hamelehle, K. L. Phospholipase A2 Relieves Phosphatidylcholine Inhibition of Micellar Cholesterol Absorption and Transport by Human Intestinal Cell Line Caco-2. J. Lipid Res. 1998, 39(6), 1197–1209. DOI: 10.1016/S0022-2275(20)32544-X.
  • Chung, R. W. S.; Kamili, A.; Tandy, S.; Weir, J. M.; Gaire, R.; Wong, G.; Meikle, P. J.; Cohn, J. S.; Rye, K.-A.; Brennan, L. Dietary Sphingomyelin Lowers Hepatic Lipid Levels and Inhibits Intestinal Cholesterol Absorption in High-Fat-Fed Mice. PLoS ONE. 2013, 8(2), e55949. DOI: 10.1371/journal.pone.0055949.
  • Dowhan, W.; Bogdanov, M. Lipid-Dependent Membrane Protein Topogenesis. Annu. Rev. Biochem. 2009, 78(1), 515–540. DOI: 10.1146/annurev.biochem.77.060806.091251.
  • Kobayashi, T.; Shimizugawa, T.; Osakabe, T.; Watanabe, S.; Okuyama, H. A Long-term Feeding of Sphingolipids Affected the Levels of Plasma Cholesterol and Hepatic Triacylgycerol but Not Tissue Phospholipids and Sphingolipids. Nutr. Res. 1997, 17(1), 111–114. DOI: 10.1016/S0271-5317(96)00237-0.
  • Imaizumi, K.; Tominaga, A.; Sato, M.; Sugano, M. Effects of Dietary Sphingolipids on Levels of Serum and Liver Lipids in Rats. Nutr. Res. 1992, 12(4–5), 543–548. DOI: 10.1016/S0271-5317(05)80024-7.
  • Norris, G. H.; Jiang, C.; Ryan, J.; Porter, C. M.; Blesso, C. N. Milk Sphingomyelin Improves Lipid Metabolism and Alters Gut Microbiota in High Fat Diet-Fed Mice. J. Nutr. Biochem. 2016, 30, 93–101. DOI: 10.1016/j.jnutbio.2015.12.003.
  • Noh, S. K.; Koo, S. I. Egg Sphingomyelin Lowers the Lymphatic Absorption of Cholesterol and α-Tocopherol in Rats. J. Nutr. 2003, 133(11), 3571–3576. DOI: 10.1093/jn/133.11.3571.
  • Ramprasath, V. R.; Jones, P. J.; Buckley, D. D.; Woollett, L. A.; Heubi, J. E. Effect of Dietary Sphingomyelin on Absorption and Fractional Synthetic Rate of Cholesterol and Serum Lipid Profile in Humans. Lipids Health Dis. 2013, 12(1), 125. DOI: 10.1186/1476-511X-12-125.
  • Duan, R.-D.; Hertervig, E.; Nyberg, L.; Hauge, T.; Sternby, B.; Lillienau, J.; Farooqi, A.; Nilsson, Å. Distribution of Alkaline Sphingomyelinase Activity in Human Beings and Animals: Tissue and Species Differences. Digestive Diseases Sci. 1996, 41(9), 1801–1806. DOI: 10.1007/BF02088748.
  • Duan, R.-D.; Nyberg, L.; Nilsson, Å. Alkaline Sphingomyelinase Activity in Rat Gastrointestinal Tract: Distribution and Characteristics. Biochimica Et Biophysica Acta (BBA) - Lipids Lipid Metabol. 1995, 1259(1), 49–55. DOI: 10.1016/0005-2760(95)00137-2.
  • Duan, R. Alkaline Sphingomyelinase: An Old Enzyme with Novel Implications. Biochimica Et Biophysica Acta (BBA) - Mol. Cell Biol. Lipids. 2006, 1761(3), 281–291. DOI: 10.1016/j.bbalip.2006.03.007.
  • Duan, R.-D. Sphingomyelinase and Ceramidase in the Intestinal Tract. Eur. J. Lipid Sci. Technol. 2007, 109(10), 987–993. DOI: 10.1002/ejlt.200700074.
  • Ohlsson, L.; Burling, H.; Nilsson, Å. Long Term Effects on Human Plasma Lipoproteins of a Formulation Enriched in Butter Milk Polar Lipid. Lipids Health Dis. 2009, 8(1), 44. DOI: 10.1186/1476-511X-8-44.
  • Baumgartner, S.; Kelly, E. R.; van der Made, S.; Berendschot, T. T. J. M.; Husche, C.; Lütjohann, D.; Plat, J. The Influence of Consuming an Egg or an Egg-Yolk Buttermilk Drink for 12 Wk on Serum Lipids, Inflammation, and Liver Function Markers in Human Volunteers. Nutrition. 2013, 29(10), 1237–1244. DOI: 10.1016/j.nut.2013.03.020.
  • Vors, C.; Joumard-Cubizolles, L.; Lecomte, M.; Combe, E.; Ouchchane, L.; Drai, J.; Raynal, K.; Joffre, F.; Meiller, L.; Le Barz, M., et al. Milk Polar Lipids Reduce Lipid Cardiovascular Risk Factors in Overweight Postmenopausal Women: Towards a Gut Sphingomyelin-Cholesterol Interplay. Gut. 2019, 69(3), 487–501. DOI: 10.1136/gutjnl-2018-318155. gutjnl-2018-318155.
  • Lopez, C. Milk Fat Globules Enveloped by Their Biological Membrane: Unique Colloidal Assemblies with a Specific Composition and Structure. Curr. Opin. Colloid Interface Sci. 2011b, 16(5), 391–404. DOI: 10.1016/j.cocis.2011.05.007.
  • Danthine, S.; Blecker, C.; Paquot, M.; Innocente, N.; Deroanne, C. Évolution Des Connaissances Sur La Membrane Du Globule Gras Du Lait : Synthèse Bibliographique. Le Lait. 2000, 80(2), 209–222. DOI: 10.1051/lait:2000120.
  • Lopez, C.; Cauty, C.; Guyomarc’h, F. Organization of Lipids in Milks, Infant Milk Formulas and Various Dairy Products: Role of Technological Processes and Potential Impacts. Dairy Sci. Technol. 2015, 95(6), 863–893. DOI: 10.1007/s13594-015-0263-0.
  • Deeth, H. The Role of Phospholipids in the Stability of Milk Fat Globules. Aust.J. Dairy Technol. 1997, 52, 44–46.
  • Mather, I. H.; Keenan, T. W. Origin and Secretion of Milk Lipids. J. Mammary Gland Biol. Neoplasia. 1998, 3(3), 259–273. DOI: 10.1023/A:1018711410270.
  • Gallier, S.; Gragson, D.; Jiménez-Flores, R.; Everett, D. Using Confocal Laser Scanning Microscopy to Probe the Milk Fat Globule Membrane and Associated Proteins. J. Agric. Food Chem. 2010b, 58(7), 4250–4257. DOI: 10.1021/jf9032409.
  • Cohen, B.-C.; Raz, C.; Shamay, A.; Argov-Argaman, N. Lipid Droplet Fusion in Mammary Epithelial Cells Is Regulated by Phosphatidylethanolamine Metabolism. J. Mammary Gland Biol. Neoplas. 2017, 22(4), 235–249. DOI: 10.1007/s10911-017-9386-7.
  • Israelachvili, J. N. Soft and Biological Structures. In Intermolecular and Surface Forces. 3rd.; Elsevier:Burlington, 2010; 535–576.
  • Simons, K.; Ikonen, E. Functional Rafts in Cell Membranes. Nature. 1997, 387(6633), 569–572. DOI: 10.1038/42408.
  • Pike, L. J. Lipid Rafts: Heterogeneity on the High Seas. Biochem. J. 2004, 378(2), 281–292. DOI: 10.1042/bj20031672.
  • Hope, H. R.; Pike, L. J. Phosphoinositides and Phosphoinositide-Utilizing Enzymes in Detergent-Insoluble Lipid Domains. Mol. Biol. Cell. 1996, 7(6), 843–851. DOI: 10.1091/mbc.7.6.843.
  • Pike, L. J. Rafts Defined: A Report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 2006, 47(7), 1597–1598. DOI: 10.1194/jlr.E600002-JLR200.
  • Quinn, P. J.; Wolf, C. Thermotropic and Structural Evaluation of the Interaction of Natural Sphingomyelins with Cholesterol. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2009, 1788(9), 1877–1889. DOI: 10.1016/j.bbamem.2009.07.005.
  • McIntosh, T. J.; Simon, S. A.; Needham, D.; Huang, C. H. Structure and Cohesive Properties of Sphingomyelin/Cholesterol Bilayers. Biochemistry. 1992, 31(7), 2012–2020. DOI: 10.1021/bi00122a017.
  • Collado, M. I.; Goñi, F. M.; Alonso, A.; Marsh, D. Domain Formation in Sphingomyelin/Cholesterol Mixed Membranes Studied by Spin-Label Electron Spin Resonance Spectroscopy. Biochemistry. 2005, 44(12), 4911–4918. DOI: 10.1021/bi0474970.
  • Chachaty, C.; Rainteau, D.; Tessier, C.; Quinn, P. J.; Wolf, C. Building up of the Liquid-Ordered Phase Formed by Sphingomyelin and Cholesterol. Biophys. J. 2005, 88(6), 4032–4044. DOI: 10.1529/biophysj.104.054155.
  • Lopez, C.; Cheng, K.; Perez, J. Thermotropic Phase Behavior of Milk Sphingomyelin and Role of Cholesterol in the Formation of the Liquid Ordered Phase Examined Using SR-XRD and DSC. Chem. Phys. Lipids. 2018b, 215, 46–55. DOI: 10.1016/j.chemphyslip.2018.07.008.
  • Huang, J.-B.; Zhao, G.-X. Formation and Coexistence of the Micelles and Vesicles in Mixed Solution of Cationic and Anionic Surfactant. Colloid Polym. Sci. 1995, 273(2), 156–164. DOI: 10.1007/BF00654013.
  • Smith, P.; Quinn, P. J.; Lorenz, C. D. Two Coexisting Membrane Structures are Defined by Lateral and Transbilayer Interactions between Sphingomyelin and Cholesterol. Langmuir. 2020, 36(33), 9786–9799. DOI: 10.1021/acs.langmuir.0c01237.
  • Smondyrev, A. M.; Berkowitz, M. L. Structure of Dipalmitoylphosphatidylcholine/Cholesterol Bilayer at Low and High Cholesterol Concentrations: Molecular Dynamics Simulation. Biophys. J. 1999, 77(4), 2075–2089. DOI: 10.1016/S0006-3495(99)77049-9.
  • Pandit, S. A.; Bostick, D.; Berkowitz, M. L. Complexation of Phosphatidylcholine Lipids with Cholesterol. Biophys. J. 2004, 86(3), 1345–1356. DOI: 10.1016/S0006-3495(04)74206-X.
  • Jaikishan, S.; Slotte, J. P. Effect of Hydrophobic Mismatch and Interdigitation on Sterol/Sphingomyelin Interaction in Ternary Bilayer Membranes. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2011, 1808(7), 1940–1945. DOI: 10.1016/j.bbamem.2011.04.004.
  • Simons, K.; Vaz, W. L. C. Model Systems, Lipid Rafts, and Cell Membranes. Ann. Rev. Biophys. Biomol. Struct. 2004, 33(1), 269–295. DOI: 10.1146/annurev.biophys.32.110601.141803.
  • McConnell, H. M.; Radhakrishnan, A. Condensed Complexes of Cholesterol and Phospholipids. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2003, 1610(2), 159–173. DOI: 10.1016/S0005-2736(03)00015-4.
  • Radhakrishnan, A.; McConnell, H. M. Condensed Complexes of Cholesterol and Phospholipids. Biophys. J. 1999, 77(3), 1507–1517. DOI: 10.1016/S0006-3495(99)76998-5.
  • Radhakrishnan, A.; Li, X.-M.; Brown, R. E.; McConnell, H. M. Stoichiometry of Cholesterol–Sphingomyelin Condensed Complexes in Monolayers. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2001, 1511(1), 1–6. DOI: 10.1016/S0005-2736(01)00274-7.
  • Radhakrishnan, A.; McConnell, H. Condensed Complexes in Vesicles Containing Cholesterol and Phospholipids. Proc. National Academy Sci. 2005, 102(36), 12662–12666. DOI: 10.1073/pnas.0506043102.
  • Somerharju, P.; Virtanen, J. A.; Cheng, K. H. Lateral Organisation of Membrane Lipids the Superlattice View. Biochim. Biophys. Acta. 1999, 1440(1), 32–48. DOI: 10.1016/S1388-1981(99)00106-7.
  • Somerharju, P.; Virtanen, J. A.; Cheng, K. H.; Hermansson, M. The Superlattice Model of Lateral Organization of Membranes and Its Implications on Membrane Lipid Homeostasis. Biochimica Et Biophysica Acta (BBA) – Biomembranes. 2009, 1788(1), 12–23. DOI: 10.1016/j.bbamem.2008.10.004.
  • Fenske, D. B.; Jarrell, H. C.; Guo, Y.; Hui, S. W. Effect of Unsaturated Phosphatidylethanolamine on the Chain Order Profile of Bilayers at the Onset of the Hexagonal Phase Transition. A Deuterium NMR Study. Biochemistry. 1990, 29(51), 11222–11229. DOI: 10.1021/bi00503a010.
  • Virtanen, J.; Ruonala, M.; Vauhkonen, M.; Somerharju, P. Lateral Organization of Liquid-Crystalline Cholesterol-Dimyristoylphosphatidylcholine Bilayers. Evidence for Domains with Hexagonal and Centered Rectangular Cholesterol Superlattices. Biochemistry. 1995, 34(36), 11568–11581. DOI: 10.1021/bi00036a033.
  • Chong, P. L.-G.; Liu, F.; Wang, M. M.; Truong, K.; Sugar, I. P.; Brown, R. E. Fluorescence Evidence for Cholesterol Regular Distribution in Phosphatidylcholine and in Sphingomyelin Lipid Bilayers. J. Fluoresc. 1996, 6(4), 221–230. DOI: 10.1007/BF00732825.
  • Björkbom, A.; Róg, T.; Kaszuba, K.; Kurita, M.; Yamaguchi, S.; Lönnfors, M.; Nyholm, T. K. M.; Vattulainen, I.; Katsumura, S.; Slotte, J. P. Effect of Sphingomyelin Headgroup Size on Molecular Properties and Interactions with Cholesterol. Biophys. J. 2010, 99(10), 3300–3308. DOI: 10.1016/j.bpj.2010.09.049.
  • Boggs, J. M. Lipid Intermolecular Hydrogen Bonding: Influence on Structural Organization and Membrane Function. Biochimica Et Biophysica Acta (BBA) - Rev. Biomemb. 1987, 906(3), 353–404. DOI: 10.1016/0304-4157(87)90017-7.
  • Arsov, Z.; Quaroni, L. Detection of Lipid Phase Coexistence and Lipid Interactions in Sphingomyelin/Cholesterol Membranes by ATR-FTIR Spectroscopy. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2008, 1778(4), 880–889. DOI: 10.1016/j.bbamem.2007.12.012.
  • Lamba, O. P.; Borchman, D.; Sinha, S. K.; Lal, S.; Yappert, M. C.; Lou, M. F. Structure and Molecular Conformation of Anhydrous and of Aqueous Sphingomyelin Bilayers Determined by Infrared and Raman Spectroscopy. J. Mol. Struct. 1991, 248(1–2), 1–24. DOI: 10.1016/0022-2860(91)85001-J.
  • Shirota, K.; Yagi, K.; Inaba, T.; Li, P.-C.; Murata, M.; Sugita, Y.; Kobayashi, T. Detection of Sphingomyelin Clusters by Raman Spectroscopy. Biophys. J. 2016, 111(5), 999–1007. DOI: 10.1016/j.bpj.2016.07.035.
  • Yagi, K.; Li, P.-C.; Shirota, K.; Kobayashi, T.; Sugita, Y. A Weight Averaged Approach for Predicting Amide Vibrational Bands of A Sphingomyelin Bilayer. Phys. Chem. Chem. Phys. 2015, 17(43), 29113–29123. DOI: 10.1039/C5CP04131G.
  • Lönnfors, M.; Doux, J. P. F.; Killian, J. A.; Nyholm, T. K. M.; Slotte, J. P. Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers Even at Equal Acyl-Chain Order. Biophys. J. 2011, 100(11), 2633–2641. DOI: 10.1016/j.bpj.2011.03.066.
  • Lala, A. K. Cholesterol and Phospholipids in Membranes: The Hydrogen Bonding Problem. Int. J. Quantum Chem. 1981, 20(1), 93–97. DOI: 10.1002/qua.560200110.
  • Guo, W.; Kurze, V.; Huber, T.; Afdhal, N. H.; Beyer, K.; Hamilton, J. A. A Solid-State NMR Study of Phospholipid-Cholesterol Interactions: Sphingomyelin-Cholesterol Binary Systems. Biophys. J. 2002, 83(3), 1465–1478. DOI: 10.1016/S0006-3495(02)73917-9.
  • Slotte, J. P. The Importance of Hydrogen Bonding in Sphingomyelin’s Membrane Interactions with Co-Lipids. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2016, 1858(2), 304–310. DOI: 10.1016/j.bbamem.2015.12.008.
  • Veiga, M. P.; Arrondo, J. L. R.; Goñi, F. M.; Alonso, A.; Marsh, D. Interaction of Cholesterol with Sphingomyelin in Mixed Membranes Containing Phosphatidylcholine, Studied by Spin-Label ESR and IR Spectroscopies. A Possible Stabilization of Gel-Phase Sphingolipid Domains by Cholesterol. Biochemistry. 2001, 40(8), 2614–2622. DOI: 10.1021/bi0019803.
  • Zidar, J.; Merzel, F.; Hodošček, M.; Rebolj, K.; Sepčić, K.; Maček, P.; Janežič, D. Liquid-Ordered Phase Formation in Cholesterol/Sphingomyelin Bilayers: All-Atom Molecular Dynamics Simulations. J. Phys. Chem. B. 2009, 113(48), 15795–15802. DOI: 10.1021/jp907138h.
  • Yasuda, T.; Kinoshita, M.; Murata, M.; Matsumori, N. Detailed Comparison of Deuterium Quadrupole Profiles between Sphingomyelin and Phosphatidylcholine Bilayers. Biophys. J. 2014, 106(3), 631–638. DOI: 10.1016/j.bpj.2013.12.034.
  • Sodt, A. J.; Pastor, R. W.; Lyman, E. Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin. Biophys. J. 2015, 109(5), 948–955. DOI: 10.1016/j.bpj.2015.07.036.
  • Rowlands, L. J.; Marks, A.; Sanderson, J. M.; Law, R. V. 17 O NMR Spectroscopy as a Tool to Study Hydrogen Bonding of Cholesterol in Lipid Bilayers. Chem. Commun. 2020, 56(92), 14499–14502. DOI: 10.1039/D0CC05466F.
  • Aittoniemi, J.; Niemelä, P. S.; Hyvönen, M. T.; Karttunen, M.; Vattulainen, I. Insight into the Putative Specific Interactions between Cholesterol, Sphingomyelin, and Palmitoyl-Oleoyl Phosphatidylcholine. Biophys. J. 2007, 92(4), 1125–1137. DOI: 10.1529/biophysj.106.088427.
  • Bittman, R.; Kasireddy, C. R.; Mattjus, P.; Slotte, J. P. Interaction of Cholesterol with Sphingomyelin in Monolayers and Vesicles. Biochemistry. 1994, 33(39), 11776–11781. DOI: 10.1021/bi00205a013.
  • Lopez, C.; Briard-Bion, V.; Beaucher, E.; Ollivon, M. Multiscale Characterization of the Organization of Triglycerides and Phospholipids in Emmental Cheese: From the Microscopic to the Molecular Level. J. Agric. Food Chem. 2008, 56(7), 2406–2414. DOI: 10.1021/jf0720382.
  • Evers, J. M.; Haverkamp, R. G.; Holroyd, S. E.; Jameson, G. B.; Mackenzie, D. D. S.; McCarthy, O. J. Heterogeneity of Milk Fat Globule Membrane Structure and Composition as Observed Using Fluorescence Microscopy Techniques. Int. Dairy J. 2008, 18(12), 1081–1089. DOI: 10.1016/j.idairyj.2008.06.001.
  • Lopez, C.; Madec, M.-N.; Jimenez-Flores, R. Lipid Rafts in the Bovine Milk Fat Globule Membrane Revealed by the Lateral Segregation of Phospholipids and Heterogeneous Distribution of Glycoproteins. Food Chem. 2010, 120(1), 22–33. DOI: 10.1016/j.foodchem.2009.09.065.
  • Engberg, O.; Lin, K.-L.; Hautala, V.; Slotte, J. P.; Nyholm, T. K. M. Sphingomyelin Acyl Chains Influence the Formation of Sphingomyelin- and Cholesterol-Enriched Domains. Biophys. J. 2020, 119(5), 913–923. DOI: 10.1016/j.bpj.2020.07.014.
  • Codini, M.; Garcia-Gil, M.; Albi, E. Cholesterol and Sphingolipid Enriched Lipid Rafts as Therapeutic Targets in Cancer. IJMS. 2021, 22(2), 726. DOI: 10.3390/ijms22020726.
  • Zheng, H.; Jiménez-Flores, R.; Gragson, D.; Everett, D. W. Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model. J. Agric. Food Chem. 2014, 62(14), 3236–3243. DOI: 10.1021/jf500093p.
  • Gallier, S.; Gragson, D.; Jiménez-Flores, R.; Everett, D. W. Surface Characterization of Bovine Milk Phospholipid Monolayers by Langmuir Isotherms and Microscopic Techniques. J. Agric. Food Chem. 2010c, 58(23), 12275–12285. DOI: 10.1021/jf102185a.
  • Guyomarc’h, F.; Zou, S.; Chen, M.; Milhiet, P.-E.; Godefroy, C.; Vié, V.; Lopez, C. Milk Sphingomyelin Domains in Biomimetic Membranes and the Role of Cholesterol: Morphology and Nanomechanical Properties Investigated Using AFM and Force Spectroscopy. Langmuir. 2014, 30(22), 6516–6524. DOI: 10.1021/la501640y.
  • Guyomarc’h, F.; Chen, M.; Et-Thakafy, O.; Zou, S.; Lopez, C. Gel-Gel Phase Separation within Milk Sphingomyelin Domains Revealed at the Nanoscale Using Atomic Force Microscopy. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2017, 1859(5), 949–958. DOI: 10.1016/j.bbamem.2017.02.010.
  • Murthy, A. V. R.; Guyomarc’h, F.; Lopez, C. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane. Langmuir. 2016, 32(26), 6757–6765. DOI: 10.1021/acs.langmuir.6b01040.
  • Murthy, A. V. R.; Guyomarc’h, F.; Lopez, C. The Temperature-Dependent Physical State of Polar Lipids and Their Miscibility Impact the Topography and Mechanical Properties of Bilayer Models of the Milk Fat Globule Membrane. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2016, 1858(9), 2181–2190. DOI: 10.1016/j.bbamem.2016.06.020.
  • Nyberg, L.; Duan, R.-D.; Nilsson, Å. A Mutual Inhibitory Effect on Absorption of Sphingomyelin and Cholesterol. J. Nutr. Biochem. 2000, 11(5), 244–249. DOI: 10.1016/S0955-2863(00)00069-3.
  • Keller, S. L.; Radhakrishnan, A.; McConnell, H. M. Saturated Phospholipids with High Melting Temperatures Form Complexes with Cholesterol in Monolayers. J. Phys. Chem. B. 2000, 104(31), 7522–7527. DOI: 10.1021/jp000958g.
  • Alegria, A.; Garcia-Llatas, G.; Cilla, A. Static Digestion Models: General Introduction. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Swiatecka, D., Mackie, A., Eds.; Springer: London, 2015; pp 3–13.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D., et al. A Standardised Static in Vitro Digestion Method Suitable for Food – An International Consensus. Food Funct. 2014, 5(6), 1113–1124. DOI: 10.1039/C3FO60702J.
  • Smoczyński, M.; Staniewski, B. Saliva-Induced Flocculation of Milk Fat Globules Studied by Image Analysis. Agric. Food. 2014, 2, 542–548.
  • Gallier, S.; Ye, A.; Singh, H. Structural Changes of Bovine Milk Fat Globules during in Vitro Digestion. J. Dairy Sci. 2012a, 95(7), 3579–3592. DOI: 10.3168/jds.2011-5223.
  • Singh, H.; Gallier, S. Nature’s Complex Emulsion: The Fat Globules of Milk. Food Hydrocolloids. 2017, 68, 81–89. DOI: 10.1016/j.foodhyd.2016.10.011.
  • Gallier, S.; Cui, J.; Olson, T. D.; Rutherfurd, S. M.; Ye, A.; Moughan, P. J.; Singh, H. In Vivo Digestion of Bovine Milk Fat Globules: Effect of Processing and Interfacial Structural Changes. I. Gastric Digestion. Food Chem. 2013, 141(3), 3273–3281. DOI: 10.1016/j.foodchem.2013.06.020.
  • Michalski, M.-C. Specific Molecular and Colloidal Structures of Milk Fat Affecting Lipolysis, Absorption and Postprandial Lipemia. Eur. J. Lipid Sci. Technol. 2009, 111(5), 413–431. DOI: 10.1002/ejlt.200800254.
  • Gallier, S.; Singh, H. The Physical and Chemical Structure of Lipids in Relation to Digestion and Absorption. Lipid Technol. 2012, 24(12), 271–273. DOI: 10.1002/lite.201200240.
  • Pafumi, Y.; Lairon, D.; de La Porte, P. L.; Juhel, C.; Storch, J.; Hamosh, M.; Armand, M. Mechanisms of Inhibition of Triacylglycerol Hydrolysis by Human Gastric Lipase. J. Biol. Chem. 2002, 277(31), 28070–28079. DOI: 10.1074/jbc.M202839200.
  • Ye, A.; Cui, J.; Singh, H. Proteolysis of Milk Fat Globule Membrane Proteins during in Vitro Gastric Digestion of Milk. J. Dairy Sci. 2011, 94(6), 2762–2770. DOI: 10.3168/jds.2010-4099.
  • Hamosh, M.; Peterson, J. A.; Henderson, T. R.; Scallan, C. D.; Kiwan, R.; Ceriani, R. L.; Armand, M.; Mehta, N. R.; Hamosh, P. Protective Function of Human Milk: The Milk Fat Globule. Semin. Perinatol. 1999, 23(3), 242–249. DOI: 10.1016/S0146-0005(99)80069-X.
  • Ye, A.; Cui, J.; Dalgleish, D.; Singh, H. The Formation and Breakdown of Structured Clots from Whole Milk during Gastric Digestion. Food Funct. 2016, 7(10), 4259–4266. DOI: 10.1039/C6FO00228E.
  • Roy, D.; Ye, A.; Moughan, P. J.; Singh, H. Impact of Gastric Coagulation on the Kinetics of Release of Fat Globules from Milk of Different Species. Food Funct. 2021, 12(4), 1783–1802. DOI: 10.1039/D0FO02870C.
  • Ye, A.; Cui, J.; Singh, H. Effect of the Fat Globule Membrane on in Vitro Digestion of Milk Fat Globules with Pancreatic Lipase. Int. Dairy J. 2010, 20(12), 822–829. DOI: 10.1016/j.idairyj.2010.06.007.
  • Anderson, M. Factors Affecting the Distribution of Lipoprotein Lipase Activity between Serum and Casein Micelles in Bovine Milk. J. Dairy Res. 1982, 49(1), 51. DOI: 10.1017/S0022029900022123.
  • Corstens, M. N.; Osorio Caltenco, L. A.; de Vries, R.; Schroën, K.; Berton-Carabin, C. C. Interfacial Behaviour of Biopolymer Multilayers: Influence of in Vitro Digestive Conditions. Colloids Surf. B. 2017, 153, 199–207. DOI: 10.1016/j.colsurfb.2017.02.019.
  • Eckhardt, E. R. M.; Moschetta, A.; Renooij, W.; Goerdayal, S. S.; van Berge-henegouwen, G. P.; van Erpecum, K. J. Asymmetric Distribution of Phosphatidylcholine and Sphingomyelin between Micellar and Vesicular Phases: Potential Implications for Canalicular Bile Formation. J. Lipid Res. 1999, 40(11), 2022–2033. DOI: 10.1016/S0022-2275(20)32426-3.
  • Zhou, Y.; Maxwell, K. N.; Sezgin, E.; Lu, M.; Liang, H.; Hancock, J. F.; Dial, E. J.; Lichtenberger, L. M.; Levental, I. Bile Acids Modulate Signaling by Functional Perturbation of Plasma Membrane Domains. J. Biol. Chem. 2013, 288(50), 35660–35670. DOI: 10.1074/jbc.M113.519116.
  • Coreta-Gomes, F. M.; Martins, P. A. T.; Velazquez-Campoy, A.; Vaz, W. L. C.; Geraldes, C. F. G.; Moreno, M. J. Interaction of Bile Salts with Model Membranes Mimicking the Gastrointestinal Epithelium: A Study by Isothermal Titration Calorimetry. Langmuir. 2015, 31(33), 9097–9104. DOI: 10.1021/acs.langmuir.5b01810.
  • Eckstein, J.; Holzhütter, H.-G.; Berndt, N. The Importance of Membrane Microdomains for Bile Salt-Dependent Biliary Lipid Secretion. J. Cell Sci. 2018, 131(5), jcs211524. DOI: 10.1242/jcs.211524.
  • Patton, S.; Borgström, B.; Stemberger, B. H.; Welsch, U. Release of Membrane from Milk Fat Globules by Conjugated Bile Salts. J. Pediatr. Gastroenterol. Nutr. 1986, 5(2), 262–267. DOI: 10.1097/00005176-198605020-00017.
  • Alshehab, M.; Budamagunta, M. S.; Voss, J. C.; Nitin, N. Real-Time Measurements of Milk Fat Globule Membrane Modulation during Simulated Intestinal Digestion Using Electron Paramagnetic Resonance Spectroscopy. Colloids Surf. B. 2019, 184, 110511. DOI: 10.1016/j.colsurfb.2019.110511.
  • Shimizu, M.; Miyaji, H.; Yamauchi, K. Inhibition of Lipolysis by Milk Fat Globule Membrane Materials in Model Milk Fat Emulsion. Agric Biol Chem. 1982, 46(3), 795–799. DOI: 10.1080/00021369.1982.10865129.
  • van Erpecum, K. J.; Carey, M. C. Influence of Bile Salts on Molecular Interactions between Sphingomyelin and Cholesterol: Relevance to Bile Formation and Stability. Biochimica Et Biophysica Acta (BBA) - Lipids Lipid Metabol. 1997, 1345(3), 269–282. DOI: 10.1016/S0005-2760(97)00002-7.
  • Chu, B.-S.; Gunning, A. P.; Rich, G. T.; Ridout, M. J.; Faulks, R. M.; Wickham, M. S. J.; Morris, V. J.; Wilde, P. J. Adsorption of Bile Salts and Pancreatic Colipase and Lipase onto Digalactosyldiacylglycerol and Dipalmitoylphosphatidylcholine Monolayers. Langmuir. 2010, 26(12), 9782–9793. DOI: 10.1021/la1000446.
  • Gallier, S.; Shaw, E.; Laubscher, A.; Gragson, D.; Singh, H., and Jiménez-Flores, R. Adsorption of Bile Salts to Milk Phospholipid and Phospholipid–Protein Monolayers. J. Agric. Food Chem. 2014, 62(6), 1363–1372. DOI: 10.1021/jf404448d.
  • Moschetta, A.; Frederik, P. M.; Portincasa, P.; vanBerge-Henegouwen, G. P.; van Erpecum, K. J. Incorporation of Cholesterol in Sphingomyelin- Phosphatidylcholine Vesicles Has Profound Effects on Detergent-Induced Phase Transitions. J. Lipid Res. 2002, 43(7), 1046–1053. DOI: 10.1194/jlr.M100355-JLR200.
  • Hermida, L. G.; Sabés-Xamaní, M.; Barnadas-Rodríguez, R. Characteristics and Behaviour of Liposomes When Incubated with Natural Bile Salt Extract: Implications for Their Use as Oral Drug Delivery Systems. Soft Matter. 2014, 10(35), 6677–6685. DOI: 10.1039/C4SM00981A.
  • Lammert, F.; Wang, D. Q.-H. New Insights into the Genetic Regulation of Intestinal Cholesterol Absorption. Gastroenterology. 2005, 129(2), 718–734. DOI: 10.1053/j.gastro.2004.11.017.
  • Ohlsson, L.; Hertervig, E.; Jönsson, B. A.; Duan, R.-D.; Nyberg, L.; Svernlöv, R.; Nilsson, Å. Sphingolipids in Human Ileostomy Content after Meals Containing Milk Sphingomyelin. Am. J. Clin. Nutr. 2010, 91(3), 672–678. DOI: 10.3945/ajcn.2009.28311.
  • Gorelik, A.; Liu, F.; Illes, K.; Nagar, B. Crystal Structure of the Human Alkaline Sphingomyelinase Provides Insights into Substrate Recognition. J. Biol. Chem. 2017, 292(17), 7087–7094. DOI: 10.1074/jbc.M116.769273.
  • Nyberg, L.; Duan, R.-D.; Axelson, J.; Nilsson, Å. Identification of an Alkaline Sphingomyelinase Activity in Human Bile. Biochimica Et Biophysica Acta (BBA) - Lipids Lipid Metabol. 1996, 1300(1), 42–48. DOI: 10.1016/0005-2760(95)00245-6.
  • Duan, R.-D.; Bergman, T.; Xu, N.; Wu, J.; Cheng, Y.; Duan, J.; Nelander, S.; Palmberg, C.; Nilsson, Å. Identification of Human Intestinal Alkaline Sphingomyelinase as a Novel Ecto-Enzyme Related to the Nucleotide Phosphodiesterase Family. J. Biol. Chem. 2003, 278(40), 38528–38536. DOI: 10.1074/jbc.M305437200.
  • Wu, J.; Cheng, Y.; Palmberg, C.; Bergman, T.; Nilsson, Å.; Duan, R.-D. Cloning of Alkaline Sphingomyelinase from Rat Intestinal Mucosa and Adjusting of the Hypothetical Protein XP_221184 in GenBank. Biochimica Et Biophysica Acta (BBA) - Mol. Cell Biol. Lipids. 2005, 1687(1–3), 94–102. DOI: 10.1016/j.bbalip.2004.11.006.
  • Nyberg, L.; Nilsson, Å.; Lundgren, P.; Duan, R.-D. Localization and Capacity of Sphingomyelin Digestion in the Rat Intestinal Tract. J. Nutr. Biochem. 1997, 8(3), 112–118. DOI: 10.1016/S0955-2863(97)00010-7.
  • Duan, R.; Nilsson, A. Purification of a Newly Identified Alkaline Sphingomyelinase in Human Bile and Effects of Bile Salts and Phosphatidylcholine on Enzyme Activity. Hepatology. 1997, 26(4), 823–830. DOI: 10.1002/hep.510260403.
  • Wu, J.; Liu, F.; Nilsson, Å.; Duan, R.-D. Pancreatic Trypsin Cleaves Intestinal Alkaline Sphingomyelinase from Mucosa and Enhances the Sphingomyelinase Activity. Am J Physiol-Gastrointestinal Liver Physiol. 2004, 287(5), G967–G973. DOI: 10.1152/ajpgi.00190.2004.
  • Olsson, M.; Duan, R.-D.; Ohlsson, L.; Nilsson, Å. Rat Intestinal Ceramidase: Purification, Properties, and Physiological Relevance. Am J Physiol-Gastrointestinal Liver Physiol. 2004, 287(4), G929–G937. DOI: 10.1152/ajpgi.00155.2004.
  • Garmy, N.; Taïeb, N.; Yahi, N.; Fantini, J. Apical Uptake and Transepithelial Transport of Sphingosine Monomers through Intact Human Intestinal Epithelial Cells: Physicochemical and Molecular Modeling Studies. Arch. Biochem. Biophys. 2005, 440(1), 91–100. DOI: 10.1016/j.abb.2005.06.001.
  • Yang, F.; Chen, G.; Ma, M.; Qiu, N.; Zhu, L.; Li, J. Egg-Yolk Sphingomyelin and Phosphatidylcholine Attenuate Cholesterol Absorption in Caco-2 Cells. Lipids. 2018, 53(2), 217–233. DOI: 10.1002/lipd.12018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.