10,803
Views
9
CrossRef citations to date
0
Altmetric
Review

Mustard Seeds as a Bioactive Component of Food

ORCID Icon

References

  • Davis, G.; Serrano, E. Food and Nutrition Economics Fundamentals for Health Sciences Food and Nutrition Economics: Fundamentals for Health Sciences, 1st; Davis, G., Serrano, E. Eds.; Oxford University Press: New York, 2016.
  • Dejnaka, A. Ways of Nutrition by Consumers - New Trends. Nowak, W., Szalonka, K. Eds. Uniwersytet Wrocławski:Wrocław. 2019. 10.34616/23.19.114
  • Sawicka, B.; Kotiuk, E.; Bienia, B.; Krochmal-marczak, B.; Wójcik, S. The Importance of Mustard (Sinapis Alba) Indian Mustard (Brassica Juncea Var. Sareptana) and Black Mustard (Brassica Nigra) in Nutrition and Phytotherapy. Acta Sci. Pol. Agric. 2007, 2(6), 17–27.
  • Brassica Nigra (Black Mustard) https://www.cabi.org/isc/datasheet/10097#tosummaryOfInvasiveness (accessed Sep 9, 2021).
  • Sang, S.; Cheng, H.; Mei, D.; Fu, L.; Wang, H.; Liu, J.; Wang, W.; Zaman, Q. U.; Liu, K.; Hu, Q. Complete Organelle Genomes of Sinapis Arvensis and Their Evolutionary Implications. Crop J. 2020, 8(4), 505–514. DOI: 10.1016/J.CJ.2019.12.001.
  • Piętka, T.; Krzymański, J.; Krótka, K. Pierwsza Podwójnie Ulepszona Odmiana Gorczycy Białej (Sinapis Alba L.). Rosliny Oleiste - Oilseed Crop. 2010, 31, 177–200.
  • Piętka, T.; Krzymański, J.; Krótka, K. Pierwsza Podwójnie Ulepszona Odmiana Gorczycy Białej (Sinapis Alba L.). Rosliny Oleiste - Oilseed Crop. 2004, 25, 403–413.
  • Gunasekera, C. P.; Martin, L. D.; Siddique, K. H. M.; Walton, G. H. Genotype by Environment Interactions of Indian Mustard (Brassica Juncea L.) And Canola (B. Napus L.) In Mediterranean-Type Environments: 1. Crop Growth and Seed Yield. Eur. J. Agron. 2006, 25(1), 1–12. DOI: 10.1016/J.EJA.2005.08.002.
  • ; ; , Mulligan, G. A., Bailey, L. G. 1975 The Biology of Canadian Weeds. 8. Sinapsis Arvensis L. . Can. J. Plant Sci., 55, 171–183.
  • Thakur, A. K.; Singh, K. H.; Sharma, D. Parmar, N.; Nanjundan, J. Breeding and Genomics Interventions in Ethiopian Mustard (Brassica Carinata A. Braun) Improvement-A Mini Review. 2019. 10.1016/j.sajb.2019.08.002.
  • Lee, Y. H.; Choo, C.; Waisundara, V. Y. Determination of the Total Antioxidant Capacity and Quantification of Phenolic Compounds of Different Solvent Extracts of Black Mustard Seeds (Brassica Nigra). Int. J. Food Prop. 2015, 18(11), 2500–2507. DOI: 10.1080/10942912.2014.986331.
  • Knutsen, H. K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl‐Kraupp, B.; Hogstrand, C., et al. Erucic Acid in Feed and Food. EFSA J. 2016, 14(11). DOI: 10.2903/j.efsa.2016.4593.
  • Fernandez‐Escobar, J.; Dominguez, J.; Martin, A.; Fernandez‐Martinez, J. M. Genetics of the Erucic Acid Content in Interspecific Hybrids of Ethiopian Mustard (Brassies Carinata Braun) and Rapeseed (B. Napus L.). Plant Breed. 1988, 100(4), 310–315. DOI: 10.1111/J.1439-0523.1988.TB00257.X.
  • Getinet, A.; Rakow, G.; Raney, J. P.; Downey, R. K. Development of Zero Erucic Acid Ethiopian Mustard through an Interspecific Cross with Zero Erucic Acid Oriental Mustard. Can. J. Plant Sci. 1994, 74(4), 793–795. DOI: 10.4141/cjps94-141.
  • Getinet, A.; Rakow, G.; Raney, J. P.; Downey, R. K. The Inheritance of Erucic Acid Content in Ethiopian Mustard. Can. J. Plant Sci. 1997, 77(1), 33–41. DOI: 10.4141/P96-074.
  • Vemuri, A. K.; Acharya, V.; Ponday, L. R.; Jeyakumar, S. M.; Vajreswari, A. Transgenic Zero-Erucic and High-Oleic Mustard Oil Improves Glucose Clearance Rate, Erythrocyte Membrane Docosahexaenoic Acid Content and Reduces Osmotic Fragility of Erythrocytes in Male Syrian Golden Hamsters. J. Nutr. Intermed. Metab. 2018, 12, 28–35. DOI: 10.1016/j.jnim.2018.06.002.
  • Chauhan, J. S.; Singh, K. H.; Singh, V. V.; Kumar, S. Hundred Years of Rapeseed-Mustard Breeding in India: Accomplishments and Future Strategies. Indian J. Agric. Sci. 2011, 81(12), 1093–1109.
  • Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-Pressed Edible Oils. J. Food Nutr. Res. 2018, 6(7), 476–485. DOI: 10.12691/JFNR-6-7-9.
  • Raczyk, M.; Popis, E.; Kruszewski, B.; Ratusz, K.; Rudzińska, M. Physicochemical Quality and Oxidative Stability of Linseed (Linum Usitatissimum) and Camelina (Camelina Sativa) Cold-Pressed Oils from Retail Outlets. Eur. J. Lipid Sci. Technol. 2016, 118(5), 834–839. DOI: 10.1002/EJLT.201500064.
  • Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty Acids and Sterols Composition, and Antioxidant Activity of Oils Extracted from Plant Seeds. Food Chem. 2016, 213, 450–456. DOI: 10.1016/J.FOODCHEM.2016.06.102.
  • Pieszka, M.; Migdał, W.; Gąsior, R.; Rudzińska, M.; Bederska-łojewska, D.; Pieszka, M.; Szczurek, P. Native Oils from Apple, Blackcurrant, Raspberry, and Strawberry Seeds as A Source of Polyenoic Fatty Acids, Tocochromanols, and Phytosterols: A Health Implication. J. Chem. 2015, 2015. DOI: 10.1155/2015/659541.
  • Ciftci, O. N.; Przybylski, R.; Rudzińska, M. Lipid Components of Flax, Perilla, and Chia Seeds. Eur. J. Lipid Sci. Technol. 2012, 114(7), 794–800. DOI: 10.1002/EJLT.201100207.
  • Chugh, B.; Dhawan, K. Storage Studies on Mustard Oil Blends. J. Food Sci. Technol. 2014, 51(4), 762–767. DOI: 10.1007/s13197-011-0540-8.
  • Murawa, D.; Pykało, I.; Warmiński, K. Olej I Jego Skład Kwasowy Oraz Zawartość Białka W Nasionach Dwóch Odmian Gorczycy Białej Nakielska I Borowska Ze Zbioru 1999 R. Traktowanej Herbicydami. Rosliny Oleiste - Oilseed Crop. 2001, 22, 259–264.
  • Beniwal, V.; Nehra, K. S.; Chhokar, V. Cadmium Induced Alteration in Lipid Profile of Developing Mustard (Brassica Juncea L.) Seed. Biocatal. Agric. Biotechnol. 2015, 4(3), 416–422. DOI: 10.1016/j.bcab.2015.06.003.
  • Kovács, A. B.; Kincses, I.; Vágó, I.; Loch, J.; Filep, T. Effect of Application of Nitrogen and Different Nitrogen-Sulfur Ratios on the Quality and Quantity of Mustard Seed. Commun. Soil Sci. Plant Anal. 2009, 40(1–6), 453–461. DOI: 10.1080/00103620802694399.
  • Niu, Y.; Rogiewicz, A.; Wan, C.; Guo, M.; Huang, F.; Slominski, B. A. Effect of Microwave Treatment on the Efficacy of Expeller Pressing of Brassica Napus Rapeseed and Brassica Juncea Mustard Seeds. J. Agric. Food Chem. 2015, 63(12), 3078–3084. DOI: 10.1021/jf504872x.
  • Verma, A. Effect of Microwave Pre-Treatment on Quality Parameters in Indian Mustard. J. Food Sci. Technol. 2019, 56(11), 4956–4965. DOI: 10.1007/s13197-019-03967-4.
  • Choubdar, N.; Li, S.; Holley, R. A. Supercritical Fluid Chromatography of Myrosinase Reaction Products in Ground Yellow Mustard Seed Oil. J. Food Sci. 2010, 75(4), 341–345. DOI: 10.1111/j.1750-3841.2010.01584.x.
  • Frank, N.; Dubois, M.; Goldmann, T.; Tarres, A.; Schuster, E.; Robert, F. Semiquantitative Analysis of 3-Butenyl Isothiocyanate to Monitor an off-Flavor in Mustard Seeds and Glycosylates Screening for Origin Identification. J. Agric. Food Chem. 2010, 58(6), 3700–3707. DOI: 10.1021/jf903513k.
  • Okunade, O. A.; Ghawi, S. K.; Methven, L.; Niranjan, K. Thermal and Pressure Stability of Myrosinase Enzymes from Black Mustard (Brassica Nigra L. W.D.J. Koch. Var. Nigra), Brown Mustard (Brassica Juncea L. Czern. Var. Juncea) and Yellow Mustard (Sinapsis Alba L. Subsp. Maire) Seeds. Food Chem. 2015, 187, 485–490. DOI: 10.1016/j.foodchem.2015.04.054.
  • Van Eylen, D.; Indrawati,; Hendrickx, M.; Van Loey, A. Temperature and Pressure Stability of Mustard Seed (Sinapis Alba L.) Myrosinase. Food Chem. 2006, 97(2), 263–271. DOI: 10.1016/j.foodchem.2005.03.046.
  • Ghawi, S. K.; Methven, L.; Niranjan, K. The Potential to Intensify Sulforaphane Formation in Cooked Broccoli (Brassica Oleracea Var. Italica) Using Mustard Seeds (Sinapis Alba). Food Chem. 2013, 138(2–3), 1734–1741. DOI: 10.1016/j.foodchem.2012.10.119.
  • Okunade, O.; Niranjan, K.; Ghawi, S. K.; Kuhnle, G.; Methven, L. Supplementation of the Diet by Exogenous Myrosinase via Mustard Seeds to Increase the Bioavailability of Sulforaphane in Healthy Human Subjects after the Consumption of Cooked Broccoli. Mol. Nutr. Food Res. 2018, 62(18), 1–6. DOI: 10.1002/mnfr.201700980.
  • Dai, R.; Lim, L. T. Release of Allyl Isothiocyanate from Mustard Seed Meal Powder Entrapped in Electrospun PLA-PEO Nonwovens. Food Res. Int. 2015, 77, 467–475. DOI: 10.1016/j.foodres.2015.08.029.
  • Dai, R.; Lim, L. T. Release of Allyl Isothiocyanate from Mustard Seed Meal Powder. J. Food Sci. 2014, 79, 1. DOI: 10.1111/1750-3841.12322.
  • Bahmid, N. A.; Pepping, L.; Dekker, M.; Fogliano, V.; Heising, J. Using Particle Size and Fat Content to Control the Release of Allyl Isothiocyanate from Ground Mustard Seeds for Its Application in Antimicrobial Packaging. Food Chem. 2020, 308(September 2019), 125573. DOI: 10.1016/j.foodchem.2019.125573.
  • Peng, C.; Zhao, S. Q.; Zhang, J.; Huang, G. Y.; Chen, L. Y.; Zhao, F. Y. Chemical Composition, Antimicrobial Property and Microencapsulation of Mustard (Sinapis Alba) Seed Essential Oil by Complex Coacervation. Food Chem. 2014, 165, 560–568. DOI: 10.1016/j.foodchem.2014.05.126.
  • Turgis, M.; Han, J.; Caillet, S.; Lacroix, M. Antimicrobial Activity of Mustard Essential Oil against Escherichia Coli O157:H7 and Salmonella Typhi. Food Control. 2009, 20(12), 1073–1079. DOI: 10.1016/J.FOODCONT.2009.02.001.
  • Ildikó, S. G.; Klára, K. A.; Marianna, T. M.; Ágnes, B.; Zsuzsanna, M. B.; Bálint, C. The Effect of Radio Frequency Heat Treatment on Nutritional and Colloid-Chemical Properties of Different White Mustard (Sinapis Alba L.) Varieties. Innov. Food Sci. Emerg. Technol. 2006, 7(1–2), 74–79. DOI: 10.1016/J.IFSET.2005.06.001.
  • Cheng, B. F.; Séguin-Swartz, G.; Somers, D. J.; Rakow, G. Low Glucosinolate Brassica Juncea Breeding Line Revealed to Be Nullisomic. Genome. 2001, 44(4), 738–741. DOI: 10.1139/gen-44-4-738.
  • Keck, A.-S.; Finley, J. W. Cruciferous Vegetables: Cancer Protective Mechanisms of Glucosinolate Hydrolysis Products and Selenium. Intengrative Cancer Ther. 2016, 3(1), 5–12. DOI: 10.1177/1534735403261831.
  • Jeong, Y.-J.; Cho, H.-J.; Chung, F.-L.; Wang, X.; Hoe, H.-S.; Park, -K.-K.; Kim, C.-H.; Chang, H.-W.; Lee, S.-R.; Chang, Y.-C. Isothiocyanates Suppress the Invasion and Metastasis of Tumors by Targeting FAK/MMP-9 Activity. Oncotarget. 2017, 8(38), 63949–63962.
  • Bassan, P.; Sakshi, B.; Kaur, T.; Arora, R.; Arora, S.; Adarsh, V. P. Extraction, Profiling and Bioactivity Analysis of Volatile Glucosinolates Present in Oil Extract of Brassica Juncea Var. Raya. Physiol. Mol. Biol. Plants. 2018, 24(3), 399–409. DOI: 10.1007/s12298-018-0509-4.
  • Boscariol Rasera, G.; Hilkner, M. H.; de Alencar, S. M.; de Castro, R. J. S. Biologically Active Compounds from White and Black Mustard Grains: An Optimization Study for Recovery and Identification of Phenolic Antioxidants. Ind. Crop Prod. 2019, 135(May), 294–300. DOI: 10.1016/j.indcrop.2019.04.059.
  • Dubie, J.; Stancik, A.; Morra, M.; Nindo, C. Antioxidant Extraction from Mustard (Brassica Juncea) Seed Meal Using High-Intensity Ultrasound. J. Food Sci. 2013, 78(4), 542–548. DOI: 10.1111/1750-3841.12085.
  • Szydlowska-Czerniak, A.; Tulodziecka, A.; Karlovits, G.; Szlyk, E. Optimisation of Ultrasound-Assisted Extraction of Natural Antioxidants from Mustard Seed Cultivars. J. Sci. Food Agric. 2015, 95(7), 1445–1453. DOI: 10.1002/jsfa.6840.
  • Rasera, G. B.; Hilkner, M. H.; de Castro, R. J. S. Free and Insoluble-Bound Phenolics: How Does the Variation of These Compounds Affect the Antioxidant Properties of Mustard Grains during Germination? Food Res. Int. 2020, 133(February), 109115. DOI: 10.1016/j.foodres.2020.109115.
  • Koski, A.; Pekkarinen, S.; Hopia, A.; Wähälä, K.; Heinonen, M. Processing of Rapeseed Oil: Effects on Sinapic Acid Derivative Content and Oxidative Stability. Eur. Food Res. Technol. 2003, 217(2), 110–114. DOI: 10.1007/s00217-003-0721-4.
  • Thiyam-Holländer, U.; Aladedunye, F.; Logan, A.; Yang, H.; Diehl, B. W. K. Identification and Quantification of Canolol and Related Sinapate Precursors in Indian Mustard Oils and Canadian Mustard Products. Eur. J. Lipid Sci. Technol. 2014, 116(12), 1664–1674. DOI: 10.1002/ejlt.201400222.
  • Zhu, M.; Yuan, H.; Guo, W.; Li, X.; Jin, L.; Brunk, U. T.; Han, J.; Zhao, M.; Lu, Y. Dietary Mustard Seeds (Sinapis Alba Linn) Suppress 1,2-Dimethylhydrazine- Induced Immuno-Imbalance and Colonic Carcinogenesis in Rats. Nutr. Cancer. 2012, 64(3), 464–472. DOI: 10.1080/01635581.2012.658948.
  • Wijesundera, C.; Ceccato, C.; Fagan, P.; Shen, Z. Seed Roasting Improves the Oxidative Stability of Canola (B. Napus) and Mustard (B. Juncea) Seed Oils. Eur. J. Lipid Sci. Technol. 2008, 110(4), 360–367. DOI: 10.1002/ejlt.200700214.
  • Kuwahara, H.; Kanazawa, A.; Wakamatu, D.; Morimura, S.; Kida, K.; Akaike, T.; Maeda, H. Antioxidative and Antimutagenic Activities of 4-Vinyl-2,6-Dimethoxyphenol (Canolol) Isolated from Canola Oil. J. Agric. Food Chem. 2004, 52(14), 4380–4387.
  • Vuorela, S.; Meyer, A. S.; Heinonen, M. Impact of Isolation Method on the Antioxidant Activity of Rapeseed Meal Phenolics. J. Agric. Food Chem. 2004, 52(26), 8202–8207. DOI: 10.1021/jf0487046.
  • Vuorela, S.; Kreander, K.; Karonen, M.; Nieminen, R.; Hämäläinen, M.; Galkin, A.; Laitinen, L.; Salminen, J. P.; Moilanen, E.; Pihlaja, K., et al. Preclinical Evaluation of Rapeseed, Raspberry, and Pine Bark Phenolics for Health Related Effects. J. Agric. Food Chem. 2005, 53(15), 5922–5931. DOI: 10.1021/jf050554r.
  • Wakamatsu, D.; Morimura, S.; Sawa, T.; Kida, K.; Nakai, C.; Maeda, H. Isolation, Identification, and Structure of a Potent Alkyl-Peroxyl Radical Scavenger in Crude Canola Oil, Canolol. Biosci. Biotechnol. Biochem. 2005, 69(8), 1568–1574. DOI: 10.1271/bbb.69.1568.
  • Gawrysiak-Witulska, M.; Siger, A.; Rudzińska, M.; Bartkowiak-Broda, I. The Effect of Drying on the Native Tocopherol and Phytosterol Content of Sinapis Alba L. Seeds. J. Sci. Food Agric. 2020, 100(1), 354–361. DOI: 10.1002/jsfa.10047.
  • Vaidya, B.; Choe, E. Effects of Seed Roasting on Tocopherols, Carotenoids, and Oxidation in Mustard Seed Oil during Heating. JAOCS, J. Am. Oil Chem. Soc. 2011, 88(1), 83–90. DOI: 10.1007/s11746-010-1656-0.
  • Çağlar, M. Y.; Gök, V.; Tomar, O.; Akarca, G. Determination of the Effect of Different Ground Mustard Seeds on Quality Characteristics of Meatballs. Korean J. Food Sci. Anim. Resour. 2018, 38(3), 530–543. DOI: 10.5851/kosfa.2018.38.3.530.
  • David, J. R. D.; Ekanayake, A.; Singh, I.; Farina, B.; Meyer, M. Effect of White Mustard Essential Oil on Inoculated Salmonella Sp. In a Sauce with Particulates. J. Food Prot. 2012, 76(4), 580–587. DOI: 10.4315/0362-028X.JFP-12-375.
  • Karwowska, M.; Wójciak, K. M.; Dolatowski, Z. J. Comparative Studies on Lipid Oxidation of Organic Model Sausage without Nitrite Produced with the Addition of Native or Autoclaved Mustard Seed and Acid Whey. Int. J. Food Sci. Technol. 2014, 49(12), 2563–2570. DOI: 10.1111/ijfs.12586.
  • Karwowska, M.; Wójciak, K. M.; Dolatowski, Z. J. The Influence of Acid Whey and Mustard Seed on Lipid Oxidation of Organic Fermented Sausage without Nitrite. J. Sci. Food Agric. 2015, 95(3), 628–634. DOI: 10.1002/jsfa.6815.
  • Wójciak, K. M.; Karwowska, M.; Dolatowski, Z. J. Use of Acid Whey and Mustard Seed to Replace Nitrites during Cooked Sausage Production. Meat Sci. 2014, 96(2), 750–756. DOI: 10.1016/j.meatsci.2013.09.002.
  • Papatsaroucha, E.; Pavlidou, S.; Hatzikamari, M.; Lazaridou, A.; Torriani, S.; Gerasopoulos, D.; Tzanetaki, E. L. Preservation of Pears in Water in the Presence of Sinapis Arvensis Seeds: A Greek Tradition. Int. J. Food Microbiol. 2012, 159(3), 254–262. DOI: 10.1016/j.ijfoodmicro.2012.08.015.
  • Lara-Lledó, M.; Olaimat, A.; Holley, R. A. Inhibition of Listeria Monocytogenes on Bologna Sausages by an Antimicrobial Film Containing Mustard Extract or Sinigrin. Int. J. Food Microbiol. 2012, 156(1), 25–31. DOI: 10.1016/j.ijfoodmicro.2012.02.018.
  • Hendrix, K. M.; Morra, M. J.; Lee, H. B.; Min, S. C. Defatted Mustard Seed Meal-Based Biopolymer Film Development. Food Hydrocoll. 2012, 26(1), 118–125. DOI: 10.1016/j.foodhyd.2011.04.013.
  • Quiles, J. M.; Manyes, L.; Luciano, F. B.; Mañes, J.; Meca, G. Effect of the Oriental and Yellow Mustard Flours as Natural Preservative against Aflatoxins B1, B2, G1 and G2 Production in Wheat Tortillas. J. Food Sci. Technol. 2015, 52(12), 8315–8321. DOI: 10.1007/s13197-015-1876-2.
  • Suhr, K. I.; Nielsen, P. V. Antifungal Activity of Essential Oils Evaluated by Two Different Application Techniques against Rye Bread Spoilage Fungi. J. Appl. Microbiol. 2003, 94(4), 665–674. DOI: 10.1046/j.1365-2672.2003.01896.x.
  • Olaimat, A. N.; Holley, R. A. Inhibition of Listeria Monocytogenes and Salmonella by Combinations of Oriental Mustard, Malic Acid, and EDTA. J. Food Sci. 2014, 79(4), M614–M621. DOI: 10.1111/1750-3841.12411.
  • Suhr, K. I.; Nielsen, P. V. Inhibition of Fungal Growth on Wheat and Rye Bread by Modified Atmosphere Packaging and Active Packaging Using Volatile Mustard Essential Oil. J. Food Sci. 2005, 70(1), M37–M44. DOI: 10.1111/J.1365-2621.2005.TB09044.X.
  • Nielsen, P. V.; Rios, R. Inhibition of Fungal Growth on Bread by Volatile Components from Spices and Herbs, and the Possible Application in Active Packaging, with Special Emphasis on Mustard Essential Oil. Int. J. Food Microbiol. 2000, 60(2–3), 219–229. DOI: 10.1016/S0168-1605(00)00343-3.
  • Turck, D.; Bresson, J.; Burlingame, B.; Fairweather‐Tait, S.; Heinonen, M.; Hirsch‐Ernst, K. I.; Mangelsdorf, I.; McArdle, H. J.; Naska, A.; Neuhäuser‐Berthold, M., et al. Scientific Opinion Related to a Notification from DuPont Nutrition Biosciences Aps on Behenic Acid from Mustard Seeds to Be Used in the Manufacturing of Certain Emulsifiers Pursuant to Article 21(2) of Regulation (EU) No 1169/2011 – For Permanent Exemptio. EFSA J. 2016, 14(11). DOI: 10.2903/j.efsa.2016.4631.
  • Marnoch, R.; Diosady, L. L. Production of Mustard Protein Isolates from Oriental Mustard Seed (Brassica Juncea L.). JAOCS, J. Am. Oil Chem. Soc. 2006, 83(1), 65–69. DOI: 10.1007/s11746-006-1177-z.
  • Sehwag, S.; Das, M. A Brief Overview: Present Status on Utilization of Mustard Oil and Cake. Indian J. Tradit. Knowl. 2015, 14(2), 244–250.
  • Sarker, A. K.; Saha, D.; Begum, H.; Zaman, A.; Rahman, M. Comparison of Cake Compositions, Pepsin Digestibility and Amino Acids Concentration of Proteins Isolated from Black Mustard and Yellow Mustard Cakes. AMB Express. 2015, 5(22), 1–6. DOI: 10.1186/s13568-015-0110-y.
  • Donsì, F.; Velikov, K. P. Mechanical Cell Disruption of Mustard Bran Suspensions for Improved Dispersion Properties and Protein Release. Food Funct. 2020, 11(7), 6273–6284. DOI: 10.1039/d0fo00852d.
  • Păucean, A.; Man, S.; Muste, S.; Pop, A.; Chiș, S.; Cotișel, D. Physico-Chemical and Sensory Properties of Wheat Bread Supplemented with Mustard Flour. Bull. UASVM Food Sci. Technol. 2018, 75(1), 82–85. DOI: 10.15835/buasvmcn-fst.
  • Tyagi, S. K.; Manikantan, M. R.; Oberoi, H. S.; Kaur, G. Effect of Mustard Flour Incorporation on Nutritional, Textural and Organoleptic Characteristics of Biscuits. J. Food Eng. 2007, 80(4), 1043–1050.
  • Chakraborty, P.; Bhattacharyya, D. K.; Ghosh, M. Extrusion Treated Meal Concentrates of Brassica Juncea as Functionally Improved Ingredient in Protein and Fiber Rich Breadstick Preparation. LWT. 2021, 142, 111039. DOI: 10.1016/J.LWT.2021.111039.
  • Chakraborty, S.; Paul, K.; Mallick, P.; Pradhan, S.; Das, K.; Chakrabarti, S.; Nandi, D. K.; Bhattacharjee, P. Consortia of Bioactives in Supercritical Carbon Dioxide Extracts of Mustard and Small Cardamom Seeds Lower Serum Cholesterol Levels in Rats: New Leads for Hypocholesterolaemic Supplements from Spices. J. Nutr. Sci. 2019, 1–15. DOI: 10.1017/jns.2019.28.
  • Yuan, H.; Zhu, M.; Guo, W.; Jin, L.; Chen, W.; Brunk, U. T.; Zhao, M. Mustard Seeds (Sinapis Alba Linn) Attenuate Azoxymethane-Induced Colon Carcinogenesis. Redox Rep. 2011, 16(1), 38–44. DOI: 10.1179/174329211X12968219310918.
  • Jaiswal, S. K.; Prakash, R.; Acharya, R.; Reddy, A. V. R.; Prakash, N. T. Selenium Content in Seed, Oil and Oil Cake of Se Hyperaccumulated Brassica Juncea (Indian Mustard) Cultivated in a Seleniferous Region of India. Food Chem. 2012, 134(1), 401–404. DOI: 10.1016/j.foodchem.2012.02.140.
  • Parikh, H.; Pandita, N.; Khanna, A. Phytoextract of Indian Mustard Seeds Acts by Suppressing the Generation of ROS against Acetaminophen-Induced Hepatotoxicity in HepG2 Cells. Pharm. Biol. 2015, 53(7), 975–984. DOI: 10.3109/13880209.2014.950675.
  • Ruan, S. F.; Wang, Z. X.; Xiang, S. J.; Chen, H. J.; Shen, Q.; Liu, L.; Wu, W. F.; Cao, S. W.; Wang, Z. W.; Yang, Z. J., et al. Mechanisms of White Mustard Seed (Sinapis Alba L.) Volatile Oils as Transdermal Penetration Enhancers. Fitoterapia. 2019, 138(June), 104195. DOI: 10.1016/j.fitote.2019.104195.
  • Melrose, J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines. 2019, 7(3), 1–28. DOI: 10.3390/biomedicines7030062.
  • Kay, B. A.; Trigatti, K.; MacNeil, M. B.; Klingel, S. L.; Repin, N.; Douglas Goff, H.; Wright, A. J.; Duncan, A. M. Pudding Products Enriched with Yellow Mustard Mucilage, Fenugreek Gum or Flaxseed Mucilage and Matched for Simulated Intestinal Viscosity Significantly Reduce Postprandial Peak Glucose and Insulin in Adults at Risk for Type 2 Diabetes. J. Funct. Foods. 2017, 37, 603–611. DOI: 10.1016/j.jff.2017.08.017.
  • Summers, A.; Visscher, M. O.; Khatry, S. K.; Sherchand, J. B.; Leclerq, S. C.; Katz, J.; Tielsch, J. M.; Mullany, L. C. Impact of Sunflower Seed Oil versus Mustard Seed Oil on Skin Barrier Function in Newborns: A Community-Based, Cluster-Randomized Trial. BMC Pediatr. 2019, 19(1), 1–12. DOI: 10.1186/s12887-019-1871-2.
  • Nandhakumar, B.; Girish Kumar, C. P.; Prabu, D.; Menon, T. Mustard Seed Agar, a New Medium for Differentiation of Cryptococcus Neoformans [2]. J. Clin. Microbiol. 2006, 44(2), 674. DOI: 10.1128/JCM.44.2.674.2006.
  • Zanetti, F.; Vamerali, T.; Mosca, G. Yield and Oil Variability in Modern Varieties of High-Erucic Winter Oilseed Rape (Brassica Napus L. Var. Oleifera) and Ethiopian Mustard (Brassica Carinata A. Braun) under Reduced Agricultural Inputs. Ind. Crop Prod. 2009, 30(2), 265–270. DOI: 10.1016/j.indcrop.2009.05.002.
  • Paciorek-Sadowska, J.; Borowicz, M.; Czupryński, B.; Tomaszewska, E.; Liszkowska, J. New Bio-Polyol Based on White Mustard Seed Oil for Rigid PUR-PIR Foams. Polish J. Chem. Technol. 2018, 20(2), 24–31. DOI: 10.2478/pjct-2018-0019.
  • González-García, S.; Moreira, M. T.; Feijoo, G. Comparative Environmental Performance of Lignocellulosic Ethanol from Different Feedstocks. Renew. Sustain. Energy Rev. 2010, 14(7), 2077–2085. DOI: 10.1016/j.rser.2010.03.035.
  • Jham, G. N.; Moser, B. R.; Shah, S. N.; Holser, R. A.; Dhingra, O. D.; Vaughn, S. F.; Berhow, M. A.; Winkler-Moser, J. K.; Isbell, T. A.; Holloway, R. K., et al. Wild Brazilian Mustard (Brassica Juncea L.) Seed Oil Methyl Esters as Biodiesel Fuel. JAOCS, J. Am. Oil Chem. Soc. 2009, 86(9), 917–926. DOI: 10.1007/s11746-009-1431-2.
  • Fadhil, A. B.; Saleh, L. A.; Altamer, D. H. Production of Biodiesel from Non-Edible Oil, Wild Mustard (Brassica Juncea L.) Seed Oil through Cleaner Routes. Energy Sources, Part A Recover. Util. Environ. Eff. 2019, 42(15), 1831–1843.
  • Tańska, M.; Rotkiewicz, D.; Ambrosewicz-Walacik, M. Wpływ Warunków Ogrzewania Nasion Rzepaku I Gorczycy Białej Na Cechy Olejów Do Produkcji Biodiesla. Rosliny Oleiste - Oilseed Crop. 2014, 34(1), 103–114. DOI: 10.5604/12338273.1083533.
  • Bodlund, I.; Pavankumar, A. R.; Chelliah, R.; Kasi, S.; Sankaran, K.; Rajarao, G. K. Coagulant Proteins Identified in Mustard: A Potential Water Treatment Agent. Int. J. Environ. Sci. Technol. 2014, 11(4), 873–880. DOI: 10.1007/s13762-013-0282-4.
  • Tie, J.; Zheng, Z.; Li, G.; Geng, N.; Chang, G.; Yu, L.; Ji, Y.; Shi, L.; Chang, Y.; Hu, L. Removal of an Anionic Azo Dye Direct Black 19 from Water Using White Mustard Seed (Semen Sinapis) Protein as a Natural Coagulant. J. Water Reuse Desalin. 2019, 9(4), 442–451. DOI: 10.2166/wrd.2019.018.