1,453
Views
5
CrossRef citations to date
0
Altmetric
Review

Recent Trends in the Management of Mango By-products

, , &

References

  • Jahurul, M. H. A.; Zaidul, I. S. M.; Ghafoor, K.; Al-Juhaimi, F. Y.; Nyam, K.; Norulaini, N. A. N.; Sahena, F.; Omar, A. K. M. Mango (Mangifera Indica L.) By-products and Their Valuable Components: A Review. Food Chem. 2015, 183, 173–180. DOI: 10.1016/j.foodchem.2015.03.046.
  • Julio, A.; Durán-de-bazúa, M. D. C. Mango (Mangifera Indica L.) Seed and Its Fats. In Nuts and Seeds in Health and Disease Prevention; 1st ed, Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: London, Burlington, San Diego, 2011; pp 741–748.
  • FAO. Major Tropical Fruits Market Review 2018; Food and Agriculture Organization of the United States: Rome, 2019.
  • Ajila, C. M.; Bhat, S. G.; Prasada Rao, U. J. S. Valuable Components of Raw and Ripe Peels from Two Indian Mango Varieties. Food Chem. 2007, 102(4), 1006–1011. DOI: 10.1016/j.foodchem.2006.06.036.
  • Ajila, C. M.; Aalami, M.; Leelavathi, K.; Rao, U. J. S. P. Mango Peel Powder: A Potential Source of Antioxidant and Dietary Fiber in Macaroni Preparations. Innov. Food Sci. Emerg. Technol. 2010, 11(1), 219–224. DOI: 10.1016/j.ifset.2009.10.004.
  • Kim, H. J. Y.; Moon, H.; Kim, D.; Lee, M.; Cho, H.; Choi, Y. S.; Kim, A.; Cho, S. K. Antioxidant and Antiproliferative Activities of Mango (Mangifera Indica L.) Flesh and Peel. Food Chem. 2010, 121, 429–436. DOI:10.1016/j.foodchem.2009.12.060.
  • Aziz, N. A. A.; Wong, L. M.; Bhat, R.; Cheng, L. H. Evaluation of Processed Green and Ripe Mango Peel and Pulp Flours (Mangifera Indica Var. Chokanan) in Terms of Chemical Composition, Antioxidant Compounds and Functional Properties. J. Sci. Food Agric. 2012, 92(3), 557–563. DOI: 10.1002/jsfa.4606.
  • Tesfaye, T. Valorisation of Mango Fruit By-products: Physicochemical Characterisation and Future Prospect. Chem. and Process Engg. Res. 2017, 50, 22–34.
  • Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41. DOI: 10.1016/j.jclepro.2013.10.051.
  • Puligundla, P.; Obulam, V. S. R.; Sang-Eun, O.; Mok, C. Biotechnological Potentialities and Valorization of Mango Peel Waste: A Review. Sains Malays. 2014, 43(12), 1901–1906. DOI: 10.17576/jsm-2014-4312-12.
  • Ajila, C. M.; Rao, U. J. S. P. Mango Peel Dietary Fibre: Composition and Associated Bound Phenolics. J. Funct. Foods 2013, (1). DOI: 10.1016/j.jff.2012.11.017.
  • Baddi, J.; Vijayalakshmi, D.; Durgannavar, N. A.; Chandru, R. Mango Peel: A Potential Source of Natural Bioactive Phyto-nutrients in Functional Food. Asian J. Dairy Food Res 2015, 34(1), 75–77. DOI:10.5958/0976-0563.2015.00016.0.
  • Romelle, F. D.; P, A. R.; Manohar, R. S. Chemical Composition of Some Selected Fruit Peels. Eur. J. of Food Sci. & Technol. 2016, 4, 12–21.
  • Ashoush, I. S.; Gadallah, M. Utilization of Mango Peels and Seed Kernels Powders as Sources of Phytochemicals in Biscuit. World J. Dairy Food Sci. 2011, 6(1), 35–42.
  • Imran, M.; Butt, M. S.; Anjum, F. M.; Sultan, J. I. Chemical Profiling of Different Mango Peel Varieties. Pak. J. Nutr. 2013, 12(10), 934–942. DOI: 10.3923/pjn.2013.934.942.
  • Ajila, C. M.; Leelavathi, K.; Rao, U. J. S. P. Improvement of Dietary Fiber Content and Antioxidant Properties in Soft Dough Biscuits with the Incorporation of Mango Peel Powder. J. Cereal Sci. 2008, 48(2), 319–326. DOI: 10.1016/j.jcs.2007.10.001.
  • Nisha,; Bhatnagar, V. Mango Peels: A Potential Source of Nutrients and a Preservative in Emerging Technologies in Food Sci.; Thakur, M., Modi, V.K., Eds.; Springer Nature Singapore Pte Ltd, 2020; pp 141.
  • Ojha, P.; Raut, S.; Subedi, U.; Upadhaya, N. Study of Nutritional, Phytochemicals and Functional Properties of Mango Kernel Powder. J. Food Sci. and Technol. 2019, 11, 32–38. DOI: 10.3126/jfstn.v11i0.29708.
  • Ashifat, A. A.; Omotubga, S. K.; Kehinde, A. S.; Olayinka, O. O.; Edugbola, G. O. Proximate Evaluation of Nutritional Value of Mango (Mangifera Indica). Int. J. Res. in Chem. and Env. 2012, 2, 244–245.
  • Kittiphoom, S. Utilization of Mango Seed. Int. Food Res. J. 2012, 19(4), 1325–1335.
  • Reutter, B.; Lant, P.; Reynolds, C.; Lane, J. Food Waste Consequences: Environmentally Extended Input-output as a Framework for Analysis. J. Clean. Prod. 2017, 153, 506–514. DOI: 10.1016/j.wasman.2018.03.032.
  • Aranguren, D. D.; Barrera, D. M.; Carreno, L.; Rios, J. C.; Saavedra, D.; Morantes, G.; Sierra, R. Mango Fruit Waste: An Amazing Biorefinery Opportunity. In 27th European Biomass Conference and Exhibition, Lisbon, Portugal, May 2019. 1 0.5071/27thEUBCE2019-3CV.3.25.
  • Khoddami, A.; Wilkes, M. A.; Roberts, T. H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18(2), 2328–2375. DOI: 10.3390/molecules18022328.
  • Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K. M.; Latha, L. Y. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit Complement Altern Med. 2011, 8(1), 1–10.
  • Baiano, A. Recovery of Biomolecules from Food Wastes- a Review. Molecules 2014, 19(9), 14821–14842. DOI: 10.3390/molecules190914821.
  • Freitas de Oliveira, C.; Giordani, D.; Lutckemier, R.; Gurak, P. D.; Cladera-Olivera, F.; Ferreira Marczak, L. D. Extraction of Pectin from Passion Fruit Peel Assisted by Ultrasound. LWT – Food Sci. Technol. 2016, 71, 110–115. DOI: 10.1016/j.lwt.2016.03.027.
  • Corbin, C.; Fidel, T.; Leclerc, E. A.; Barakzoy, E.; Sagot, N.; Falguiéres, A.; Renouard, S.; Blondeau, J. P.; Ferroud, C.; Doussot, J.; et al. Development and Validation of an Efficient Ultrasound Assisted Extraction of Phenolic Compounds from Flax (Linum Usitatissimum L.) Seeds. Ultrason. Sonochem. 2015, 26, 176–185. DOI: 10.1016/j.ultsonch.2015.02.008.
  • Martinez-Ramos, T.; Benedito-Fort, J.; Watson, N. J.; Ruiz-Lopez, I. I.; Che-Galicia, G.; Corona-Jimenez, E. Effect of Solvent Composition and Its Interaction with Ultrasonic Energy on the Ultrasound-assisted Extraction of Phenolic Compounds from Mango Peels (Mangifera Indica L.). Food Bioprod. Process. 2020, 122, 41–54. DOI: 10.1016/j.fbp.2020.03.011.
  • Kulkarni, V. M.; Rathod, V. K. Mapping of an Ultrasonic Bath for Ultrasound Assisted Extraction of Mangiferin from Mangifera Indica Leaves. Ultrason. Sonochem. 2014, 21(2), 606–611. DOI: 10.1016/j.ultsonch.2013.08.021.
  • Kaur, B.; Panesar, P. S.; Anal, A. K. Standardization of Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Mango Peels. J. Food Sci. Technol. 2021. DOI: 10.1007/s13197-021-05304-0.
  • Mercado-Mercado, G.; Montalvo-Gonzalez, E.; Gonzalez- Aguilar, G. A.; Alvarez- Parrilla, E.; Sayago- Ayerdi, S. G. Ultrasound-assisted Extraction of Carotenoids from Mango (Mangifera Indica L. ‘Ataulfo’) By-products on in Vitro Bioaccessibility. Food Biosci. 2018, 21(21), 125–131. DOI: 10.1016/j.fbio.2017.12.012.
  • Guandalini, B. B. V.; Rodrigues, N. P.; Marczak, L. D. F. Sequential Extraction of Phenolics and Pectin from Mango Peel Assisted by Ultrasound. Food Res. Inter. 2019, 119, 455–461. DOI: 10.1016/j.foodres.2018.12.011.
  • Nour, A. H.; Alara, R. O.; Nour, A. H.; Omer, M. S.; Ahmad, N. Microwave-Assisted Extraction of Bioactive Compounds (Review). In Microwave Heating: Electromagnetic Fields Causing Thermal and Non-thermal Effects; Churyumov, G.I., Ed.; IntechOpen Ltd: London, United Kingdom, 2021; pp 2021.
  • Sanchez-Camargo, A. D. P.; Ballesteros-Vivas, D.; Buelvas-Puello, L. M.; Martinez-Correa, H. A.; Parada-Alfonso, F.; Cifuentes, A.; Ferreira, S. R. S.; Gutierrez, L. Microwave-assisted Extraction of Phenolic Compounds with Antioxidant and Anti-proliferative Activities from Supercritical CO2 Pre-extracted Mango Peel as Valorization Strategy. LWT 2021, 137, 110414. DOI: 10.1016/j.lwt.2020.110414.
  • Chaiwarit, T.; Masavang, S.; Mahe, J.; Sommano, S.; Ruksiriwanich, W.; Brachais, C. H.; Chambin, O.; Jantrawut, P. Mango (Cv. Nam Dokmai) Peel as a Source of Pectin and Its Potential Use as a Film-forming Polymer. Food Hydrocoll. 2020, 102, 0268–005X. DOI: 10.1016/j.foodhyd.2019.105611.
  • Shilpi, A.; ShivhareU, S.; Zhang, S. Supercritical CO2 Extraction of Compounds with Antioxidant Activity from Fruits and Vegetables Waste -A Review. Focus. modern food ind, 2013, 2(1).
  • Garcia-Mendoza, M. P.; Paula, J. T.; Paviani, L. C.; Cabral, F. A.; Martinez-Correa, H. A. Extracts from Mango Peel By-product Obtained by Supercritical CO2 and Pressurized Solvent Processes. LWT 2015, 62. DOI: 10.1016/j.lwt.2015.01.026.
  • Garcia, M. M. D. P.; Cabral, F. A.; Martinez-Correa, H. A. Supercritical CO2 and Pressurized Solvents Extraction Processes for Bioactive Compounds from Mango Peel Waste (Mangifera Indica L.). In III Iberoamerican Conference on Supercritical Fluids, Colombia, 2013.
  • Arshad, R. N.; Abdul-Malek, Z.; Roobab, U.; Qureshi MI; Khan N; Ahmad MH; Liu ZW; Aadil RM. Effective Valorization of Food Wastes and By-products through Pulsed Electric Field: A Systematic Review. J. Food Process Eng 2021, (3). DOI:10.1111/jfpe.13629.
  • Peiró, S.; Luengo, E.; Segovia, F.; Raso, J.; Almajano, M. P. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste Biomass Valorisation 2019, 10(4), 889–897. DOI:10.1007/s12649-017-0116-6.
  • Takaki, K.; Hayashi, N.; Wang, D.; Ohshima, T. High-voltage Technologies for Agriculture and Food Processing. J. Phys. D: Appl. Phys. 2019, 52(47), 473001. DOI:10.1088/1361-6463/ab2e2d.
  • Pojic, M.; Mišan, A.; Tiwari, B. Eco-innovative Technologies for Extraction of Proteins for Human Consumption from Renewable Protein Sources of Plant Origin. Trends Food Sci. Technol. 2018, 75, 93–104. DOI: 10.1016/j.tifs.2018.03.010.
  • Parniakov, O.; Barba, F. J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Extraction Assisted by Pulsed Electric Energy as a Potential Tool for Green and Sustainable Recovery of Nutritionally Valuable Compounds from Mango Peels. Food Chem. 2016, 192, 842–848. DOI: 10.1016/j.foodchem.2015.07.096.
  • Rifna, E. J.; Misra, N. N.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2021. DOI: 10.1080/10408398.2021.1952923.
  • Blancas-Benitez, F. J.; Mercado-Mercado, G.; Quirós-Sauceda, A. E.; Montalvo-González, E.; González-Aguilar, G. A.; Sáyago-Ayerdi, S. G. Bioaccessibility of Polyphenols Associated with Dietary Fiber and in Vitro Kinetics Release of Polyphenols in Mexican ‘Ataulfo’ Mango (Mangifera Indica L.) By-products. Food Funct. 2015, 6(3), 859–868. DOI: 10.1039/c4fo00982g.
  • Kaur, B.; Panesar, P. S.; Thakur, A. Extraction and Evaluation of Structural and Physicochemical Properties of Dietary Fiber Concentrate from Mango Peels by Using Green Approach. Biomass Conv. Bioref. 2021. DOI: 10.1007/s13399-021-01740-2.
  • Martinez-Ramos, T.; Benedito-Fort, J.; Watson, N. J.; Ruiz-Lopez, I. I.; Che-Galicia, G.; Corona-Jimenez, E. Effect of Solvent Composition and Its Interaction with Ultrasonic Energy on the Ultrasound-assisted Extraction of Phenolic Compounds from Mango Peels (Mangifera Indica L.). Food Bioprod. Process. 2020, 122, 41–54. DOI: 10.1017/j.fbp.2020.03.011.
  • Safdar, M. N.; Kausar, T.; Nadeem, M. Comparison of Ultrasound and Maceration Techniques for the Extraction of Polyphenols from the Mango Peel. J. Food Process. Preserv. 2017, 41. DOI: 10.1111/jfpp.13028.
  • Gao, Y.; Wang, Z.; Luo, L.; Dai, J.; Li, D. Optimization of Ultrasound-assisted Aqueous Two-phase Extraction of Polyphenols from Mango Seed Kernel. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 2012, 28, 255–261. DOI: 10.3969/j.1002-6819.2012.19.034.
  • Garcia-Mendoza, M. P.; Paula, J. T.; Paviani, L. C.; Cabral, F. A.; Martinez-Correa, H. A. Extracts from Mango Peel By-product Obtained by Supercritical CO2 and Pressurized Solvent Processes. LWT-Food Sci. Technol. 2015, 62. DOI: 10.1016/j.lwt.2015.01.026.
  • Tunchaiyaphum, S.; Eshtiaghi, M. N.; Yoswathana, N. Extraction of Bioactive Compounds from Mango Peels Using Green Technology. Int. J. Chem. Eng. 2013, 4(4).
  • Ekorong Akouan Anta, J. F.; Mbougueng, P. D.; Durand, E.; Baréa, B.; Villeneuve, P.; Ndjouenkeu, R. Model Development to Enhance the Solvent Extraction of Polyphenols from Mango Seed Kernel. J Biol Active Prod Nat. 2018, 8(1), 51–63. DOI: 10.1080/22311866.2018.1440252.
  • Maran, J. P.; Swathi, K.; Jeevitha, P.; Jayalakshmi, J.; Ashvini, G. Microwave-assisted Extraction of Pectic Polysaccharide from Waste Mango Peel. Carbohydr. Polym. 2015, 123, 67–71. DOI: 10.1016/j.carbpol.2014.11.072.
  • Kauser, S.; Saeed, A.; Iqbal, M. Comparative Studies on Conventional (Water-hot Acid) and Non-conventional (Ultrasonication) Procedures for Extraction and Chemical Characterization of Pectin from Peel Waste of Mango Cultivar Chaunsa. Pak. J. Bot. 2015, 47, 1527–1533.
  • Said, N. R.; Munawar, N.; Amir, Q. Q.; Abd Hishamuddin, S. N. The Exploitation of Underutilised Mangifera Indica L. Seed as Cocoa Butter Alternative. Malaysian J. Anal. Sci. 2021, 25(1), 62–70.
  • Aboonajmi, M.; Ghorbani, M.; Javid, M. G.; Arabhosseini, A. Optimization of Ultrasound-assisted Extraction of Ascorbic Acid from Fennel (Foeniculum Vulgare) Seeds and Evaluation Its Extracts in Free Radical Scavenging. Agric. Eng. Int. Cigr J. 2017, 19(4), 209–218.
  • Awolu, O. O.; Manohar, B. Quantitative and Qualitative Characterization of Mango Kernel Seed Oil Extracted Using Supercritical CO2 and Solvent Extraction Techniques. Heliyon 2019, 5(12), e03068. DOI: 10.1016/j.heliyon.2019.e03068.
  • Pathak, S.; Kesavan, P.; Banerjee, A. B.; Celep, A.; S., G.; Bissi, L.; Marotta, F. Metabolism of Dietary Polyphenols by Human Gut Microbiota and Their Health benefits. In Polyphenols: Mechanisms of Action in Human Health and Disease; 2nd Ed, Watson, R.R., Preedy, V.R., and Zibadi, S., Eds.; London, U.K.: Academic Press, 2018; pp 347–359. 1 0.1 016/B9780. 1 0.1 016/B9780128130063.000258.128130063.000258.
  • Sanchez-Camargo, A. D. P.; Gutiérrez, L.; Vargas, S. M.; Martinez-Correa, H. A.; Parada-Alfonso, F.; Narváez-Cuenca, C. Valorisation of Mango Peel: Proximate Composition, Supercritical Fluid Extraction of Carotenoids, and Application as an Antioxidant Additive for an Edible Oil. J. Supercrit. Fluids. 2019, 152. DOI: 10.1016/j.supflu.2019.104574.
  • Velderrain-Rodríguez, G. R.; Torres-Moreno, H.; Villegas-Ochoa, M. A.; Ayala-Zavala, J. F.; Robles-Zepeda, R. E.; Wall-Medrano, A.; González-Aguilar, G. A. Gallic Acid Content and an Antioxidant Mechanism are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells. Molecules 2018, 23(3), 695. DOI: 10.3390/molecules23030695.
  • Lauricella, M.; Lo Galbo, V.; Cernigliaro, C.; Maggio, A.; Palumbo Piccionello, A.; Calvaruso, G.; Carlisi, D.; Emanuele, S.; Giuliano, M.; D’Anneo, A.; et al. The Anti-cancer Effect of Mangifera Indica L. Peel Extract Is Associated to γh2ax-mediated Apoptosis in Colon Cancer Cells. Antioxidants 2019, 8(10), 422. DOI: 10.3390/antiox8100422.
  • Mwaurah, P. W.; Kumar, S.; Kumar, N.; Panghal, A.; Attkan, A. K.; Singh, V. K.; Garg, M. K. Physicochemical Characteristics, Bioactive Compounds and Industrial Application of Mango Kernel and Its Products: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19(5), 2421–2446. DOI: 10.1111/1541-4337.12598.
  • Rojas, R.; Alvarez-Perez, O. B.; Contreras-Esquivel, J. C.; Vicente, A.; Flores, A.; Sandoval, J.; Aguilar, C. N. Valorisation of Mango Peels: Extraction of Pectin and Antioxidant and Antifungal Polyphenols. Waste Biomass Valorization 2018. DOI: 10.1007/s12649-018-0433-4.
  • Taing, M.; Pierson, J.; Shaw, P. N.; Dietzgen, R. G.; Roberts-Thomson, S. J.; Gidley, M. J.; Monteith, G. R. Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in Mcf-7 Human Breast Cancer Cells. J. Chem. 2015. DOI: 10.1155/2015/613268.
  • Ediriweera, M. K.; Tennekoon, K. H.; Samarakoon, S. R. A Review on Ethanopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera Indica (Mango). Evidence-Based Complem. Altern. Med. 2017. DOI: 10.1155/2017/6949835.
  • Perino, S.; Chemat, F. Green Process Intensification Techniques for Bio-refinery. Curr. Opin. Food Sci. 2019, 25, 8–13. DOI: 10.1016/j.cofs.2018.12.004.
  • Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J. M.; Gullón, P.; Kousoulaki, K.; Emilia, F.; Houda, B.; Francisco, J. B. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-products. Mar. Drugs. 2019, 12(12), 689. DOI: 10.3390/md17120689.
  • Chemat, F.; Vian, M. A.; Fabiano-Tixie, A.; Nutrizio, M.; Jambrak, A. R.; Munekata, P. E. S.; Lorenzo, J. M.; Barba, F. J.; Binello, A.; Cravotto, G.; et al. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22(8), 2325–2353. DOI:10.1039/C9GC03878G.
  • Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-products, Seaweeds and Microalgae – An Update. Trends Analyt Chem 2019, 116, 198–213. DOI: 10.1016/j.trac.2019.04.030.
  • Kiokias, S.; Proestos, C.; Varzakas, T. A Review of the Structure, Biosynthesis, Absorption of Carotenoids-analysis and Properties of Their Common Natural Extracts. Curr Res Nutr Food Sci 2016, 4. DOI: 10.12944/CRNFSJ.4.Special-Issue1.03.
  • Sanchez-Camargo, A. D. P.; Gutierrez, L.; Vargas, S. M.; Martinez-Correa, H. A.; Parada-Alfonso, F.; Narvaez-Cuenca, C. Valorisation of Mango Peel: Proximate Composition, Supercritical Fluid Extraction of Carotenoids, and Application as an Antioxidant Additive for an Edible Oil. J Supercrit Fluids 2019, 152. DOI: 10.1016/j.supflu.2019.104574.
  • Lima, M. D. A.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24(3), 466. DOI: 10.3390/molecules24030466.
  • Oliver, J.; Palou, A. Chromatographic Determination of Carotenoids in Foods. J. Chromatogr. A. 2000, 881(1–2), 543–555. DOI: 10.1016/S0021-9673(00)00329-0.
  • Jha, R.; Fouhse, J. M.; Tiwari, U. P.; Linge, L.; Willing, B. P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci. 2019, 6, 48. DOI: 10.3389/fvets.2019.00048.
  • Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of Extraction Methods on the Structural Characteristics and Functional Properties of Dietary Fiber Extracted from Kiwifruit (Actinidia Deliciosa). Food Hydrocoll. 2021, 110. DOI: 10.1016/j.foodhyd.2020.106162.
  • Yang, Y.; Zhao, L.; Wu, Q.; Ma, X.; Xiang, Y. Association between Dietary Fiber and Lower Risk of All-cause Mortality: A Meta-analysis of Cohort Studies. Am. J. Epidemiol. 2015, 181(2), 83–91. DOI:10.1093/aje/kwu257.
  • Weiwei, C.; Jing, L.; Boxing, L.; Weishi, L.; Zheng, Z.; Xiao, W.; Chengming, S.; Mingguo, C.; Wei, B.; Bingjun, Y.; et al. Effect of Functional Oligosaccharides and Ordinary Dietary Fiber on Intestinal Microbiota Diversity. Front. Microbiol. 2017, 8, 1750. DOI: 10.3389/fmicb.2017.01750.
  • Vergara-Valencia, N.; Granados-Perez, E.; Agama-Acevedo, E.; Tovar, J.; Ruales, J.; Bello-Perez, L. A. Fibre Concentrate from Mango Fruit: Characterization, Associated Antioxidant Capacity and Application as a Bakery Product Ingredient. LWT. 2007, 40(4), 722–729. DOI: 10.1016/j.lwt.2006.02.028.
  • Navarro-Gonzalez, I.; Garcia-Valverde, V.; Garcia-Alonso, J.; Jesus-Periago, M. Chemical Profile, Functional and Antioxidant Properties of Tomato Peel Fibre. Food Res. Inter. 2011, 44, 1528–1535. DOI: 10.1016/j.foodres.2011.04.005.
  • Geerkens, C. H.; Nagel, A.; Just, K. M.; Miller-Rostek, P.; Kammerer, D. R.; Schweiggert, R. M.; Carle, R. Mango Pectin Quality as Influenced by Cultivar, Ripeness, Peel Particle Size, Blanching, Drying, and Irradiation. Food Hydrocoll. 2015, 51, 241–251. DOI: 10.1016/j.foodhyd.2015.05.022.
  • Banerjee, J.; Vijayaraghavan, R.; Arora, A.; MacFarlane, D. R.; Patti, A. F. Lemon Juice-based Extraction of Pectin from Mango Peels: Waste to Wealth by Sustainable Approaches. ACS Sustain. Chem. Eng. 2016, 4(11), 5915–5920. DOI:10.1021/acssuschemeng.6b01342.
  • Talekar, S.; Patti, A. F.; Vijayraghavan, R.; Arora, A. An Integrated Green Biorefinery Approach Towards Simultaneous Recovery of Pectin and Polyphenols Coupled with Bioethanol Production from Waste Pomegranate Peels. Bioresour. Technol. 2018, 266, 322–334. DOI: 10.1016/j.biortech.2018.06.072.
  • Clark, M. S.; J., M.; Slavin, J. L. The Effect of Fiber on Satiety and Food Intake: A Systematic Review. J Am Coll Nutr 2013, 32(3). DOI:10.1080/07315724.2013.791194.
  • Matharu, A. S.; Houghton, J. A.; Lucas-Torres, C.; Moreno, A. Acid-free Microwave-assisted Hydrothermal Extraction of Pectin and Porous Cellulose from Mango Peel Waste – Towards a Zero Waste Mango Biorefinery. Green Chem. 2016, 18, 5280–5287. DOI: 10.1039/C6GC01178K.
  • Zhu, F.; Cui, R. Comparison of Physicochemical Properties of Oca (Oxalis Tuberosa), Potato, and Maize Starches. Int. J. Biol. Macromol. 2020, 148, 601–607. DOI: 10.1016/j.ijbiomac.2020.01.028.
  • Sandhu, K. S.; Lim, S. Digestibility of Legume Starches as Influenced by Their Physical and Structural Properties. Carbohydr. Polym. 2008, 71(2), 245–252. DOI: 10.1016/j.carbpol.2007.05.036.
  • Patino-Rodríguez, O.; Agama-Acevedo, E.; Ramos-Lopez, G.; Bello-Pérez, L. A. Unripe Mango Kernel Starch: Partial Characterization. Food Hydrocoll. 2020, 101. DOI: 10.1016/j.foodhyd.2019.105512.
  • Castro, D. S. D. M.; S., I. D.; Silva, L. M. D. M.; Lima, J. P.; Silva, W. P. D.; Gomes, J. P.; FigueirEdo, R. M. F. D. Isolation and Characterization of Starch from Pitomba Endocarp. Food Res. Inter. 2019, 124, 181–187. DOI: 10.1016/j.foodres.2018.06.032.
  • Nogueira, G. F.; Fakhouri, F. M.; Oliveira, R. F. D. Extraction and Characterization of Arrowroot (Maranta Arundinaceae L.) Starch and Its Application in Edible Films. Carbohydr. Polym. 2018, 186, 64–72. DOI: 10.1016/j.carbpol.2018.01.024.
  • Schmiele, M.; Sampaio, U. M.; Gomes, P. T. G.; Clerici, M. T. P. S. Physical Modifications of Starch. In Starches for Food Application; Clerici, M.T.P.S., and Schmiele, M., Eds.; London, U.K.: Academic Press, 2019; pp223–269. 1 0.1 016/B9780. 1 0.1016/B9780128094402.00006X.128094402.00006X.
  • El-Bastawesy, A.; M., E. L.-R.; A., A.; Zakaria, M. M. Grape and Mango Seeds as Untraditional Sources of Edible Oils, Antioxidants and Antibacterial Compounds. In Proceedings of the 9th International Mansoura Conf. on Chemistry and its role in development Mansoura, April 2007, 34: 17–36. 2.
  • Jahurul, M. H. A.; Zaidul, I. S. M.; Norulaini, N. A. N.; Sahena, F.; Abedin, M. Z.; Ghafoor, K.; Omar, A. K. M. Characterization of Crystallization and Melting Profiles of Blends of Mango Seed Fat and Palm Oil Mid-fraction as Cocoa Butter Replacers Using Differential Scanning Calorimetry and Pulse Nuclear Magnetic Resonance. Food Res. Inter. 2014, 55, 103–109. DOI: 10.1016/j.foodres.2013.10.050.
  • Diarra, S. S. Potential of Mango (Mangifera Indica L.) Seed Kernel as a Feed Ingredient for Poultry: A Review. World’s Poultr. Sci. J. 2014, 70(2), 279–288. DOI: 10.1017/S0043933914000294.
  • Fahimdanesh, M.; Bahrami, M. E. Evaluation of Physicochemical Properties of Iranian Mango Seed Kernel Oil. In 2nd International Conference on Nutrition and Food Sciences, Singapore, 2013.
  • Ayala-Zavala, J. F.; Vega-Vega, C.; Rosas-Dominguez, H.; Palafox-Carlos, J. A.; Villa-Rodriguez, M.; Siddiqui, W.; Davila-Avina, J. E.; Gonzalez-Aguilar, G. A. Agro-industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44(7), 1866–1874. DOI:10.1016/j.foodres.2011.02.021.
  • Tokas, J.; Punia, H.; Baloda, S.; Sheokand, R. N. Mango Peel: A Potential Source of Bioactive Compounds and Phytochemicals. Austin Food Sci 2020, 5(1).
  • Yatnatti, S.; Vijayalakshmi, D.; Chandru, R. Processing and Nutritive Value of Mango Seed Kernel Flour. Curr. Res. Nutr. Food Sci. 2014, 2(3). DOI: 10.12944/CRNFSJ.2.3.10.
  • Nzikou, J. M.; Kimbonguila, A.; Matos, L.; Loumouamou, B.; Pambou-Tobi, N. P. G.; Ndangui, C. B.; Abena, A. A.; Silou, T.; Scher, J.; Desobry, S.; et al. Extraction and Characteristics of Seed Kernel Oil from Mango (Mangifera Indica). Res. J. of Env. and Earth Sci. 2010, 31–35.
  • Solís-Fuentes, J. A.; Durán-de-bazúa, M. C. Mango Seed Uses: Thermal Behaviour of Mango Seed Almond Fat and Its Mixtures with Cocoa Butter. Bioresour. Technol. 2004, 92, 71–78.
  • Sagiri, S. S.; Sharma, V.; Basak, P.; Pal, K. Mango Butter Emulsion Gels as Cocoa Butter Equivalents: Physical, Thermal, and Mechanical Analyses. J. Agric. Food Chem. 2014, 62(47), 11357–11368. DOI: 10.1021/jf502658y.
  • Ruiz, C.; Ramirez, C.; Pineres, G.; Angulo, D.; Hedreira, M.; J. Obtaining and Characterization of Mango Peel Powder and Its Use as a Source of Fiber and a Functional Ingredient in Natural Yogurt. In Proceedings of the 11th International Congress on Engineering and Food (ICEF11), 2011.
  • Mutua, J. K.; Imathiu, S.; Owino, W. Evaluation of the Proximate Composition, Antioxidant Potential, and Antimicrobial Activity of Mango Seed Kernel Extracts. Food Sci. Nutr. 2017, 5(2), 349–357. DOI: 10.1002/fsn3.399.
  • Joyce, O. O.; Latayo, B. M.; Onyinye, A. C. Chemical Composition and Phytochemical Properties of Mango (Mangifera Indica.) Seed Kernel. Int. J. Adv. Chem. 2014, 2(2), 185–187. DOI:10.14419/ijac.v2i2.3549.
  • Kabuki, T.; Nakajima, H.; Arai, M.; Ueda, S.; Kuwabara, Y.; Dosako, S. I. Characterization of Novel Antimicrobial Compounds from Mango (Mangifera Indica L.) Kernel Seeds. Food Chem. 2000, 71(1), 61–66. DOI: 10.1016/S0308-8146(00)00126-6.
  • Abdallah, A. M.; Gey, N. C.; Champion, P. A.; Cox, J.; Luirink, J.; Vandenbroucke-Grauls, C. M.; Appelmelk, B. J.; Bitter, W. Type VII Secretion - Mycobacteria Show the Way. Nat. Rev. Microbiol. 2007, 5(11), 883–891. DOI: 10.1038/nrmicro1773.
  • Ahmed, J.; Ramaswamy, H. S.; Hiremath, N. The Effect of High-pressure Treatment on Rheological Characteristics and Colour of Mango Pulp. Int. J. Food Sci. Technol. 2005, 40(8), 885–895. DOI: 10.1111/j.1365-2621.2005.01026.x.
  • Melo, P. E. F.; Silva, A. P. M.; Marques, F. P.; Ribeiro, P. R. V.; Souza Filho, M. D. S. M.; Brito, E. S.; Lima JR; Azeredo HM; et al. Antioxidant Films from Mango Kernel Components. Food Hydrocolloids 2019, 95, 487–495. DOI: 10.1016/j.foodhyd.2019.04.061.
  • Chaiwarit, T.; Masavang, S.; Mahe, J.; Sommano, S.; Ruksiriwanich, W.; Brachais, C.-H.; Lima JR; Azeredo HM. Mango (Cv. Nam Dokmai) Peel as a Source of Pectin and Its Potential Use as a Film-forming Polymer. Food Hydrocolloids 2020, 102, 105611. DOI: 10.1016/j.foodhyd.2019.105611.
  • Widsten, P.; Mesic, B. B.; Cruz, C. D.; Fletcher, G. C.; Chycka, M. A. Inhibition of Foodborne Bacteria by Antibacterial Coatings Printed onto Food Packaging Films. J. Food Sci. Technol. 2017, 54(8), 2379–2386. DOI: 10.1007/s13197-017-2678-5.
  • Adilah, Z. M.; Jamilah, B.; Hanani, Z. N. Functional and Antioxidant Properties of Protein-based Films Incorporated with Mango Kernel Extract for Active Packaging. Food Hydrocolloids 2018, 74, 207–218. DOI: 10.1016/j.foodhyd.2017.08.017.
  • Lima, E. M. B.; Middea, A.; Neumann, R.; Thiré, R. M. D. S. M.; Pereira, J. F.; de Freitas, S. C.; Penteado MS; Lima AM; Minguita AP; Mattos MD; Teixeira AD; et al. Biocomposites of PLA and Mango Seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. Starch‐Stärke 2021, 73(5–6), 2000118.
  • Scapini, T.; Dpc., F.; Camargo, A. F.; Czapela, F. F.; Bonatto, C.; Zanivan, J.; Dalastra, C.; Klanovicz, N.; Souza, T.; Muller, C.; et al. Bioethanol from Fruit. In Ethanol as a Green Alternative Fuel: Insight and Perspectives, 1st edn; Treichel, H., Sl, A., Jr, Fongaro, G., Muller, C., Eds.; Nova Science Publishers: New York, 2019; pp 139–176.
  • Nandal, P.; Sharma, S.; Arora, A. Bioprospecting Nonconventional Yeasts for Ethanol Production from Rice Straw Hydrolysate and Their Inhibitor Tolerance. Renew. Energy 2020, 147, 1694–1703. DOI: 10.1016/j.renene.2019.09.067.
  • Manhongo, T. T.; Chimphango, A.; Thornley, P.; Röder, M. Techno-economic and Environmental Evaluation of Integrated Mango Waste Biorefineries. J. Cleaner Prod. 2021, 325, 129335. DOI: 10.1016/j.jclepro.2021.129335.
  • Varakumar, S.; Kumar, Y. S.; Reddy, O.V.S. Carotenoid Composition of Mango (Mangifera Indica L.) Wine and Its Antioxidant Activity. J. Food Biochem. 2011, 35(5), 1538–1547. DOI: 10.1111/j.1745-4514.2010.00476.x.
  • Walia, N. K.; Bedi, S. S.; Kundu, K.; Karmakar, R. Production of Bioethanol from Mango Peel. Int. J. Eng. Res. Technol. 2013, 2, 1–7.
  • Somda, M. K.; Savadogo, A.; Quattara, C. A. T.; Quattara, A. S.; Traore, A. S. Thermotolerant and Alcohol-tolerant Yeasts Targeted to Optimize Hydrolyzation from Mango Peel for High Bioethanol Production. Asian J. Biotechnol. 2011, 3(1), 77–83. DOI: 10.3923/ajbkr.2011.77.83.
  • Zanivan, J.; Bonatto, C.; Scapini, T.; Dalastra, C.; Bazoti, S. F.; Júnior, S. L. A.; Fongaro G; Treichel H. Evaluation of Bioethanol Production from a Mixed Fruit Waste by Wickerhamomyces Sp. UFFS-CE-3.1. 2; United States: BioEnergy Research, 2021; p 1–8.
  • Sarungu, S.; Afrida, S.; Lumbaa, M. Utilization of Mango Waste for Bioethanol Production Using Aspergillus Niger and Saccharomycetes Cerevisae: A Pilot-scale Study. J. Energy Resour. Technol. 2021, 3(1), 27–34.
  • Panesar, P. S.; Kaur, R.; Singla, G.; Sangwan, R. S. Bio-Processing of Agro-industrial Wastes for the Production of Food Grade Enzymes: Progress and Prospects. Appl. Food Biotechnol. 2016, 3(4), 208–227.
  • Srivastava, N.; Srivastava, M.; Alhazmi, A.; Kausar, T.; Haque, S.; Singh R; Ramteke PW; Mishra PK; Tuohy M; Leitgeb M; Gupta VK; et al. Technological Advances for Improving Fungal Cellulase Production from Fruit Wastes for Bioenergy Application: A Review. Environ. Pollut. 2021. DOI: 10.1016/j.envpol.2021.117370.
  • Verma, N.; Kumar, V.; Bansal, M. C. Valorization of Waste Biomass in Fermentative Production of Cellulases: A Review. Waste Biomass Valorization. 2021, 12(2), 613–640. DOI: 10.1007/s12649-020-01048-8.
  • Pereira, A. D. S.; Fontes, G. C.; Finotelli, P. V.; Amaral, P. Mango Agro-industrial Wastes for Lipase Production from Yarrowia Lipolytica and the Potential of the Fermented Solid as a Biocatalyst. Food Bioprod. Process. 2019, 115, 0960–3085. DOI: 10.1016/j.fbp.2019.02.002.
  • Reddy, M. P.; Saritha, K. V. Bio-catalysis of Mango Industrial Waste by Newly Isolated Fusarium Sp. (PSTF1) for Pectinase Production. 3 Biotech 2015, 5(6), 893–900. DOI: 10.1007/s13205-015-0288-3.
  • Nasseri, A. T.; Rasoul-amini, S.; Morowvat, M. H.; Ghasemi, Y. Single Cell Protein: Production and Process. Amer. J. of Food Tech. 2011, 6(2), 103–116. DOI: 10.3923/ajft.2011.103.116.
  • Somda, M. K.; Ouattara, C. A. T.; Mogmenga, I.; Nikiema, M.; Keita, I.; Ouedraogo, N.; Traore, D. T.; S, A. Optimization of Saccharomyces Cerevisiae SKM10 Single Cell Protein Production from Mango (Magnifera Indica L.) Waste Using Response Surface Methodology. Afr. J. of Biotech. 2017, 16(45), 2127–2133. DOI:10.5897/AJB2017.16210.
  • Somda, M. K.; Niliema, M.; Keita, I.; Mogmenga, I.; Kouhounde, S. H. S.; Dabire, Y.; Coulibaly, W. H.; Taale, E.; Traore, A. S. Production of Single Cell Protein by Solid State Fermentation Using Mango Waste Supplemented with Nitrogen Sources. Afr. J. Biotechnol. 2018, 17(23), 716–723. DOI: 10.5897/AJB2017.16361.
  • Thiviya, P.; Kapilan, R.; Madhujith, T. Production of Single Cell Protein Using Pineapple, Sour Orange, and Sour Mango Peel. JSLAAS 2021, 3(1), 35–40.
  • Deressa, L.; Libsu, S.; Chavan, R. B.; Manaye, D.; Dabassa, A. Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes. Env. and Ecology. Res. 2015, 3(3), 65–71. DOI:10.13189/eer.2015.030303.
  • Achinas, S.; Achinas, V.; Euverink, G. J. W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3(3), 299–307. DOI: 10.1016/J.ENG.2017.03.002.
  • Kamusoko, R.; Jingura, R. M.; Parawira, W.; Sanyika, W. T. Comparison of Pretreatment Methods that Enhance Biomethane Production from Crop Residues-a Systematic Review. Biofuel Res. J. 2019, 6(4), 1080. DOI: 10.18331/BRJ2019.6.4.4.
  • Dehhaghi, M.; Tabatabaei, M.; Aghbashlo, M.; Panahi, H. K. S.; Nizami, A. S. A State-of-the-art Review on the Application of Nanomaterials for Enhancing Biogas Production. J. Environ. Manage. 2019, 251, 109597.
  • Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H. K. S.; Nizami, A. S.; Ghanavati H; Sulaiman A. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production, Part 1: Upstream Strategies. Renewable Energy 2020a, 146, 1204–1220. DOI: 10.1016/j.renene.2019.07.037.
  • Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H. K. S.; Nizami, A. S.; Ghanavati H; Sulaiman A; Mirmohamadsadeghi S; Karimi K. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production, Part 2: Mainstream and Downstream Strategies. Renewable Energy 2020b, 146, 1392–1407. DOI: 10.1016/j.renene.2019.07.047.
  • Mirmohamadsadeghi, S.; Karimi, K.; Azarbaijani, R.; Yeganeh, L. P.; Angelidaki, I.; Nizami AS; Bhat R; Dashora K; Vijay VK; Aghbashlo M; Gupta VK; et al. Pretreatment of Lignocelluloses for Enhanced Biogas Production: A Review on Influencing Mechanisms and the Importance of Microbial Diversity. Renewable Sustainable Energy Rev. 2021, 135, 110173. DOI: 10.1016/j.rser.2020.110173.
  • Anhuradha, S.; Mullai, P. Mesophilic Biodigestion of Cowdung and Mango Peel in Relation to Bioenergy-batch Study. J. Environ. Sci. 2010, 5(5), 320–324.
  • Henrique, M. A.; Silvério, H. A.; Flauzino, W. P.; Pasquini, D. Valorization of Anagro-industrial Waste, Mango Seed, by the Extraction and Characterization of Its Cellulose Nanocrystals. J. Environ. Manag. 2013, 121, 202–209. DOI: 10.1016/j.jenvman.2013.02.054.
  • Andrade, L. A.; Barrozo, M. A. S.; Vieira, L. G. M. Thermo-chemical Behavior and Product Formation during Pyrolysis of Mango Seed Shell. Ind. Crops Prod. 2016, 85, 174–180. DOI: 10.1016/j.indcrop.2016.03.004.
  • Sepulchro, A. G. V.; Pellegrini, V. O.; Dias, L. D.; Kadowaki, M. A.; Cannella, D.; Polikarpov, I. Combining Pieces: A Thorough Analysis of Light Activation Boosting Power and Co-substrate Preferences for the Catalytic Efficiency of Lytic Polysaccharide Monooxygenase MtLPMO9A. Biofuel Res. J. 2021, 8(3), 1454. DOI: 10.18331/BRJ2021.8.3.5.
  • Rossi, B. R.; Pellegrini, V. O.; Cortez, A. A.; Chiromito, E. M.; Carvalho, A. J.; Pinto, L. O.; Rezende, C. A.; Mastelaro, V. R.; Polikarpov, I. Cellulose Nanofibers Production Using a Set of Recombinant Enzymes. Carbohydr. Polym. 2021, 256, 117510. DOI: 10.1016/j.carbpol.2020.117510.
  • Al Ramahi, M.; Keszthelyi-Szabó, G.; Beszédes, S. Coupling Hydrothermal Carbonization with Anaerobic Digestion: An Evaluation Based on Energy Recovery and Hydrochar Utilization. Biofuel Res. J. 2021, 8(3), 1444–1453. DOI: 10.18331/BRJ2021.8.3.4.
  • Muruganantham, R.; Wang, F. M.; Yuwono, R. A.; Sabugaa, M.; Liu, W. R. Biomass Feedstock of Waste Mango-Peel-Derived Porous Hard Carbon for Sustainable High-Performance Lithium-Ion Energy Storage Devices. Energy Fuels. 2021, (13). DOI: 10.1021/acs.energyfuels.1c01226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.