1,212
Views
3
CrossRef citations to date
0
Altmetric
Review

An insight into the physicochemical characterisation of starch-lipid complex and its importance in food industry

, , & ORCID Icon

References

  • Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–lipid and Starch–lipid–protein Complexes: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19(3), 1056–1079. DOI: 10.1111/1541-4337.12550.
  • Bertoft, E. Analyzing Starch Molecular Structure; Woodhead publishing: Elsevier Ltd, 2018.
  • Błaszczak, W.; Fornal, J.; Amarowicz, R.; Pegg, R. B. Lipids of Wheat, Corn and Potato Starch. J. Food Lipids. 2003, 10(4), 301–312. DOI: 10.1111/j.1745-4522.2003.tb00023.x.
  • González-Thuillier, I.; Salt, L.; Chope, G.; Penson, S.; Skeggs, P.; Tosi, P.; Powers, S. J.; Ward, J. L.; Wilde, P.; Shewry, P. R., et al. Distribution of Lipids in the Grain of Wheat (Cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions. J. Agric. Food Chem. 2015, 63(49), 10705–10716. DOI: 10.1021/acs.jafc.5b05289.
  • Tan, L.; Kong, L. Starch-guest Inclusion Complexes: Formation, Structure, and Enzymatic Digestion. Crit. Rev. Food Sci. Nutr. 2020, 60(5), 780–790. DOI: 10.1080/10408398.2018.1550739.
  • Chao, C.; Huang, S.; Yu, J.; Copeland, L.; Wang, S.; Wang, S. Molecular Mechanisms Underlying the Formation of Starch-lipid Complexes during Simulated Food Processing: A Dynamic Structural Analysis. Carbohydr. Polym. 2020, 244(29), 116464. DOI: 10.1016/j.carbpol.2020.116464.
  • Li, H.; Yan, S.; Yang, L.; Xu, M.; Ji, J.; Mao, H.; Song, Y.; Wang, J.; Sun, B. Starch Gelatinization in the Surface Layer of Rice Grains Is Crucial in Reducing the Stickiness of Parboiled Rice. Food Chem. 2021, 341, 128202. DOI: 10.1016/j.foodchem.2020.128202.
  • Niu, B.; Chao, C.; Cai, J.; Yan, Y.; Copeland, L.; Wang, S.; Wang, S. The Effect of NaCl on the Formation of Starch-lipid Complexes. Food Chem. 2019, 299(29), 125133. DOI: 10.1016/j.foodchem.2019.125133.
  • Iuga, M.; Mironeasa, S. A Review of the Hydrothermal Treatments Impact on Starch Based Systems Properties. Crit. Rev. Food Sci. Nutr. 2020, 60(22), 3890–3915. DOI: 10.1080/10408398.2019.1664978.
  • Zheng, M., Xiao, Y, Yang, S, Liu, H, Liu, M, Yaqoob, S, Xu, X, Liu, J . Effects of Heat – Moisture, Autoclaving, and Microwave Treatments on Physicochemical Properties of Proso Millet Starch Food Sci. Nutr. 8 . 2020, (), 735–743. DOI: 10.1002/fsn3.1295.
  • Chen, X.; He, X.; Fu, X.; Zhang, B.; Huang, Q. Complexation of Rice Starch/flour and Maize Oil through Heat Moisture Treatment: Structural, in Vitro Digestion and Physicochemical Properties. Int. J. Biol. Macromol. 2017, 98, 557–564. DOI: 10.1016/j.ijbiomac.2017.01.105.
  • Zheng, Y.; Guo, Z.; Zheng, B.; Zeng, S.; Zeng, H. Insight into the Formation Mechanism of Lotus Seed Starch-lecithin Complexes by Dynamic High-pressure Homogenization. Food Chem. 2020, 315(), 126245. DOI: 10.1016/j.foodchem.2020.126245.
  • Kaur, K.; Singh, N. Amylose-lipid Complex Formation during Cooking of Rice Flour. Food Chem. 2000, 71(4), 511–517. DOI: 10.1016/S0308-8146(00)00202-8.
  • Winger, M.; Christen, M.; van Gunsteren, W. F. On the Conformational Properties of Amylose and Cellulose Oligomers in Solution. Int. J. Carbohydr. Chem. 2009, 2009, 307695. DOI: 10.1155/2009/307695.
  • Yan, Y.; Zhou, Y.; Shi, M.; Liu, H.; Liu, Y. Influence of Atmospheric Pressure Plasma Jet on the Structure of Microcrystalline Starch with Different Relative Crystallinity. Int. J. Food Sci. Technol. 2019, 54(2), 567–575. DOI: 10.1111/ijfs.13973.
  • Shi, L.; Zhong, L.; Zhang, B.; Fu, X.; Huang, Q. Encapsulation and Release Characteristics of Ethylene Gas from V6- and V7-type Crystalline Starches. Int. J. Biol. Macromol. 2020, 156, 10–17. DOI: 10.1016/j.ijbiomac.2020.03.240.
  • Kang, X.; Liu, P.; Gao, W.; Wu, Z.; Yu, B.; Wang, R.; Cui, B.; Qiu, L.; Sun, C. Preparation of Starch-lipid Complex by Ultrasonication and Its Film Forming Capacity. Food Hydrocoll. 2020, 99, 105340. DOI: 10.1016/j.foodhyd.2019.105340.
  • Li, Q.; Dong, Y.; Gao, Y.; Du, S. K.; Li, W.; Yu, X. Functional Properties and Structural Characteristics of Starch-Fatty Acid Complexes Prepared at High Temperature. J. Agric. Food Chem. 2021, 69(32), 9076–9085. DOI: 10.1021/acs.jafc.1c00110.
  • Zheng, M.; Chao, C.; Yu, J.; Copeland, L.; Wang, S.; Wang, S. Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro Digestibility of Starch-Protein-Fatty Acid Complexes. J. Agric. Food Chem. 2018, 66(8), 1872–1880. DOI: 10.1021/acs.jafc.7b04779.
  • Putseys, J. A.; Lamberts, L.; Delcour, J. A. Amylose-inclusion Complexes: Formation, Identity and Physico-chemical Properties. J. Cereal Sci. 2010, 51(3), 238–247. DOI: 10.1016/j.jcs.2010.01.011.
  • Chao, C.; Yu, J.; Wang, S.; Copeland, L.; Wang, S. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids. J. Agric. Food Chem. 2018, 66(1), 272–278. DOI: 10.1021/acs.jafc.7b05025.
  • Rodriguez-Saona, L. E.; Allendorf, M. E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2(1), 467–483. DOI: 10.1146/annurev-food-022510-133750.
  • Dankar, I.; Haddarah, A.; Omar, F. E. L.; Pujolà, M.; Sepulcre, F. Characterization of Food Additive-potato Starch Complexes by FTIR and X-ray Diffraction. Food Chem. 2018, 260, 7–12. DOI: 10.1016/j.foodchem.2018.03.138.
  • Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Sol, V.; Saavedra-Leos, M. Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning. Polymers (Basel). 2019, 12(5), 1–21. DOI: 10.3390/polym12010005.
  • Chen, X.; Luo, J.; Liang, Z.; Zhu, J.; Li, L.; Wang, Q. Structural and Physicochemical/digestion Characteristics of Potato Starch-amino Acid Complexes Prepared under Hydrothermal Conditions. Int. J. Biol. Macromol. 2020, 145, 1091–1098. DOI: 10.1016/j.ijbiomac.2019.09.202.
  • Mapengo, C. R.; Ray, S. S.; Emmambux, M. N. Pasting Properties of Hydrothermally Treated Maize Starch with Added Stearic Acid. Food Chem. 2019, 289, 396–403. DOI: 10.1016/j.foodchem.2019.02.130.
  • Chen, B.; Zeng, S.; Zeng, H.; Guo, Z.; Zhang, Y.; Zheng, B. Properties of Lotus Seed Starch–glycerin Monostearin Complexes Formed by High Pressure Homogenization. Food Chem. 2017, 226, 119–127. DOI: 10.1016/j.foodchem.2017.01.018.
  • Liu, P.; Gao, W.; Zhang, X.; Wu, Z.; Yu, B.; Cui, B. Physicochemical Properties of Pea Starch-lauric Acid Complex Modified by Maltogenic Amylase and Pullulanase. Carbohydr. Polym. 2020, 242, 116332. DOI: 10.1016/j.carbpol.2020.116332.
  • Wang, L.; Wang, W.; Wang, Y.; Xiong, G.; Mei, X.; Wu, W.; Ding, A.; Li, X.; Qiao, Y.; Liao, L., et al. Effects of Fatty Acid Chain Length on Properties of Potato Starch–fatty Acid Complexes under Partially Gelatinization. Int. J. Food Prop. 2018, 21(1), 2121–2134. DOI: 10.1080/10942912.2018.1489842.
  • Kong, L.; Ziegler, G. R. Formation of Starch-guest Inclusion Complexes in Electrospun Starch Fibers. Food Hydrocoll. 2014, 38, 211–219. DOI: 10.1016/j.foodhyd.2013.12.018.
  • Cervantes-Ramírez, J. E.; Cabrera-Ramirez, A. H.; Morales-Sánchez, E.; Rodriguez-García, M. E.; Reyes-Vega, M. D. L. L.; Ramírez-Jiménez, A. K.; Contreras-Jiménez, B. L.; Gaytán-Martínez, M. Amylose-lipid Complex Formation from Extruded Maize Starch Mixed with Fatty Acids. Carbohydr. Polym. 2020, 246, 116555. DOI: 10.1016/j.carbpol.2020.116555.
  • Alvarez-Ramirez, J.; Vernon-Carter, E. J.; Carrillo-Navas, H.; Meraz, M. Effects of Cooking Temperature and Time on the Color, Morphology, Crystallinity, Thermal Properties, Starch-lipid Complexes Formation and Rheological Properties of Roux. LWT - Food Sci. Technol. 2018, 91, 203–212. DOI: 10.1016/j.lwt.2018.01.038.
  • Su, C.; Saleh, A. S. M.; Zhang, B.; Zhao, K.; Ge, X.; Zhang, Q.; Li, W. Changes in Structural, Physicochemical, and Digestive Properties of Normal and Waxy Wheat Starch during Repeated and Continuous Annealing. Carbohydr. Polym. 2020, 247, 116675. DOI: 10.1016/j.carbpol.2020.116675.
  • Sun, Y.; Ye, H.; Hu, B.; Wang, W.; Lei, S.; Wang, X.; Zhou, L.; Zeng, X. Changes in Crystal Structure of Chickpea Starch Samples during Processing Treatments: An X-ray Diffraction and Starch Moisture Analysis Study. Carbohydr. Polym. 2015, 121, 169–174. DOI: 10.1016/j.carbpol.2014.12.048.
  • Blazek, J. Role of Amylose in Structure-function Relationship in Starches from Australian Wheat Varieties. Dissertation. 2008, 239.
  • Chen, X.; He, X.; Fu, X.; Huang, Q. In Vitro Digestion and Physicochemical Properties of Wheat Starch/flour Modified by Heat-moisture Treatment. J. Cereal Sci. 2015, 63, 109–115. DOI: 10.1016/j.jcs.2015.03.003.
  • Shi, S.; Dong, Y.; Li, Q.; Liu, T.; Yu, X. Morphology, Structural, Thermal and Rheological Properties of Wheat Starch-palmitic Acid Complexes Prepared during Steam Cooking. RSC Adv. 2020, 10(50), 30087–30093. DOI: 10.1039/d0ra05954d.
  • Puncha-arnon, S.; Pathipanawat, W.; Puttanlek, C.; Rungsardthong, V.; Uttapap, D. Effects of Relative Granule Size and Gelatinization Temperature on Paste and Gel Properties of Starch Blends. Food Res. Int. 2008, 41(5), 552–561. DOI: 10.1016/j.foodres.2008.03.012.
  • Wang, R.; Liu, P.; Cui, B.; Kang, X.; Yu, B.; Qiu, L.; Sun, C. Effects of Pullulanase Debranching on the Properties of Potato Starch-lauric Acid Complex and Potato Starch-based Film. Int. J. Biol. Macromol. 2020, 156, 1330–1336. DOI: 10.1016/j.ijbiomac.2019.11.173.
  • Lay Ma, U. V.; Floros, J. D.; Ziegler, G. R. Formation of Inclusion Complexes of Starch with Fatty Acid Esters of Bioactive Compounds. Carbohydr. Polym. 2011, 83(4), 1869–1878. DOI: 10.1016/j.carbpol.2010.10.055.
  • Wang, S.; Zheng, M.; Yu, J.; Wang, S.; Copeland, L. Insights into the Formation and Structures of Starch-Protein-Lipid Complexes. J. Agric. Food Chem. 2017, 65(9), 1960–1966. DOI: 10.1021/acs.jafc.6b05772.
  • Tozuka, Y.; Takeshita, A.; Nagae, A.; Wongmekiat, A.; Moribe, K.; Oguchi, T.; Yamamoto, K. Specific Inclusion Mode of Guest Compounds in the Amylose Complex Analyzed by Solid State NMR Spectroscopy. Chem. Pharm. Bull 2006, 54(8), 1097–1101. DOI: 10.1248/cpb.54.1097.
  • Partini, M.; Pantani, R. Determination of Crystallinity of an Aliphatic Polyester by FTIR Spectroscopy. Polym. Bull. 2007, 59(3), 403–412. DOI: 10.1007/s00289-007-0782-9.
  • Razva, O.; Anufrienkova, A.; Korovkin, M.; Ananieva, L.; Abramova, R. Calculation of Quarzite Crystallinity Index by Infrared Absorption Spectrum. IOP Conf. Ser. Earth Environ. Sci. 2014, 21(1), 012006. DOI: 10.1088/1755-1315/21/1/012006.
  • Tretinnikov, O. N.; Zagorskaya, S. A. Determination of the Degree of Crystallinity of poly(Vinyl Alcohol) by Ftir Spectroscopy. J. Appl. Spectrosc. 2012, 79(4), 521–526. DOI: 10.1007/s10812-012-9634-y.
  • De Pilli, T.; Derossi, A.; Talja, R. A.; Jouppila, K.; Severini, C. Study of Starch-lipid Complexes in Model System and Real Food Produced Using Extrusion-cooking Technology. Innov. Food Sci. Emerg. Technol. 2011, 12(4), 610–616. DOI: 10.1016/j.ifset.2011.07.011.
  • Luo, S.; Zeng, Z.; Mei, Y.; Huang, K.; Wu, J.; Liu, C.; Hu, X. Improving Ordered Arrangement of the Short-chain Amylose-lipid Complex by Narrowing Molecular Weight Distribution of Short-chain Amylose. Carbohydr. Polym. 2020, 240, 116359. DOI: 10.1016/j.carbpol.2020.116359.
  • Lee, H. S.; Kim, K. H.; Park, S. H.; Hur, S. W.; Auh, J. H. Amylose-lipid Complex as a Fat Replacement in the Preparation of Low-fat White Pan Bread. Foods. 2020, 9(2), 1–12. DOI: 10.3390/foods9020194.
  • Wu, T. Y.; Tsai, S.-J.; Sun, -N.-N.; Dai, F.-J.; Yu, P.-H.; Chen, Y.-C.; Chau, C.-F. Enhanced Thermal Stability of Green Banana Starch by Heat-moisture Treatment and Its Ability to Reduce Body Fat Accumulation and Modulate Gut Microbiota. Int. J. Biol. Macromol. 2020, 160, 915–924. DOI: 10.1016/j.ijbiomac.2020.05.271.
  • He, H.; Chi, C.; Xie, F.; Li, X.; Liang, Y.; Chen, L. Improving the in Vitro Digestibility of Rice Starch by Thermomechanically Assisted Complexation with Guar Gum. Food Hydrocoll. 2020, 102, 105637. DOI: 10.1016/j.foodhyd.2019.105637.
  • Zhou, B.; Ma, J.; Chen, F.; Zou, Y.; Wei, Y.; Zhong, H.; Pan, K. Mechanisms Underlying Silicon-dependent Metal Tolerance in the Marine Diatom Phaeodactylum Tricornutum. Environ. Pollut. 2020, 262, 114331. DOI: 10.1016/j.envpol.2020.114331.
  • Khatun, A.; Waters, D. L. E.; Liu, L. A Review of Rice Starch Digestibility: Effect of Composition and Heat-Moisture Processing. Starch/Staerke. 2019, 71(9–10), 1–14. DOI: 10.1002/star.201900090.
  • Zheng, B.; Wang, T.; Wang, H.; Chen, L.; Zhou, Z. Studies on Nutritional Intervention of Rice Starch- Oleic Acid Complex (Resistant Starch Type V) in Rats Fed by High-fat Diet. Carbohydr. Polym. 2020, 246, 116637. DOI: 10.1016/j.carbpol.2020.116637.
  • Srichuwong, S.; Isono, N.; Jiang, H.; Mishima, T.; Hisamatsu, M. Freeze-thaw Stability of Starches from Different Botanical Sources: Correlation with Structural Features. Carbohydr. Polym. 2012, 87(2), 1275–1279. DOI: 10.1016/j.carbpol.2011.09.004.
  • Wu, Y.; Niu, M.; Xu, H. Pasting Behaviors, Gel Rheological Properties, and Freeze-thaw Stability of Rice Flour and Starch Modified by Green Tea Polyphenols. LWT. 2020, 118, 108796. DOI: 10.1016/j.lwt.2019.108796.
  • Wu, B. C.; Degner, B.; McClements, D. J. Creation of Reduced Fat Foods: Influence of Calcium-induced Droplet Aggregation on Microstructure and Rheology of Mixed Food Dispersions. Food Chem. 2013, 141(4), 3393–3401. DOI: 10.1016/j.foodchem.2013.06.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.