1,951
Views
6
CrossRef citations to date
0
Altmetric
Review

Micro-nano-bubble technology and its applications in food industry: A critical review

, , , , , & ORCID Icon show all

References

  • Chen, Z.; Han, S.; Zhou, S.; Feng, H.; Liu, Y.; Jia, G. Review Article Review of Health Safety Aspects of Titanium Dioxide Nanoparticles in Food Application. Nanoimpact. 2020, 18, 100224. DOI: 10.1016/j.impact.2020.100224.
  • Kumari, S.; Yadav, B. S.; Yadav, R. B. Synthesis and Modification Approaches for Starch Nanoparticles for Their Emerging Food Industrial Applications: A Review. Food Res. Int. 2020, 128, 108765. DOI: 10.1016/j.foodres.2019.108765.
  • Saqib, S.; Munis, M. F. H.; Zaman, W.; Ullah, F.; Shah, S. N.; Ayaz, A.; Farooq, M.; Bahadur, S. Synthesis, Characterization and Use of Iron Oxide Nano Particles for Antibacterial Activity. Microsc Res Techniq. 2019, 824, 415–420. DOI:10.1002/jemt.23182.
  • Jafari, M.; Rezvanpour, A. Upconversion Nano-particles from Synthesis to Cancer Treatment: A Review. Adv. Powder Tech. 2019, 30(9), 1731–1753. DOI: 10.1016/j.apt.2019.05.027.
  • Adhikari, B. M.; Tung, V. P.; Tuyen, T.; Bansal, N.; Bhandari, B. Water Crystallisation of Model Sugar Solutions with Nanobubbles Produced from Dissolved Carbon Dioxide. Food Biophys. 2019, 14(4), 403–414. DOI: 10.1007/s11483-019-09590-2.
  • Zhu, J.; An, H.; Alheshibri, M.; Liu, L.; Terpstra, P. M. J.; Liu, G.; Craig, V. S. J. Cleaning with Bulk Nanobubbles. Langmuir. 2016, 32(43), 11203–11211. DOI: 10.1021/acs.langmuir.6b01004.
  • Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V. S. J. A History of Nanobubbles. Langmuir. 2016, 32(43), 11086–11100. DOI: 10.1021/acs.langmuir.6b02489.
  • Hu, L.; Xia, Z. Application of Ozone Micro-nano-bubbles to Groundwater Remediation. J. Hazard. Mater. 2018, 342, 446–453. DOI: 10.1016/j.jhazmat.2017.08.030.
  • Swart, B.; Zhao, Y.; Khaku, M.; Che, E.; Maltby, R.; Chew, Y. M. J.; Wenk, J. In Situ Characterisation of Size Distribution and Rise Velocity of Microbubbles by High-speed Photography. Chem. Eng. Sci. 2020, 225, 115836. DOI: 10.1016/j.ces.2020.115836.
  • Parmar, R.; Majumder, S. K. Microbubble Generation and Microbubble-aided Transport Process intensification—A State-of-the-art Report. Chem. Eng. Process. 2013, 64, 79–97. DOI: 10.1016/j.cep.2012.12.002.
  • Haris, S.; Qiu, X.; Klammler, H.; Mohamed, M. M. A. The Use of Micro-nano Bubbles in Groundwater Remediation: A Comprehensive Review. Groundwater Sustainable Dev. 2020, 11, 100463. DOI: 10.1016/j.gsd.2020.100463.
  • Dayarathne, H. N. P.; Jeong, S.; Jang, A. Chemical-free Scale Inhibition Method for Seawater Reverse Osmosis Membrane Process: Air Micro-nano Bubbles. Desalination. 2019, 461, 1–9. DOI: 10.1016/j.desal.2019.03.008.
  • Zhu, Z.; Sun, D.-W.; Zhang, Z.; Li, Y.; Cheng, L. Effects of Micro-nano Bubbles on the Nucleation and Crystal Growth of Sucrose and Maltodextrin Solutions during Ultrasound-assisted Freezing Process. LWT- Food Sci. Technol. 2018, 92, 404–411. DOI: 10.1016/j.lwt.2018.02.053.
  • Liu, Y.; Zhou, Y.; Wang, T.; Pan, J.; Zhou, B.; Muhammad, T.; Zhou, C.; Li, Y. Micro-nano Bubble Water Oxygation: Synergistically Improving Irrigation Water Use Efficiency, Crop Yield and Quality. J. Clean. Prod. 2019, 222, 835–843. DOI: 10.1016/j.jclepro.2019.02.208.
  • Takahashi, M.; Chiba, K.; Li, P. Free-radical Generation from Collapsing Microbubbles in the Absence of a Dynamic Stimulus. J. Phys. Chem. B. 2007, 111(6), 1343–1347. DOI: 10.1021/jp0669254.
  • Fan, M.; Tao, D.; Honaker, R.; Luo, Z. Nanobubble Generation and Its Application in Froth Flotation (Part I): Nanobubble Generation and Its Effects on Properties of Microbubble and Millimeter Scale Bubble Solutions. Int J Min Sci Technol. 2010, 20(1), 1–19. DOI:10.1016/S1674-5264(09)60154-X.
  • Ushikubo, F. Y.; Furukawa, T.; Nakagawa, R.; Enari, M.; Makino, Y.; Kawagoe, Y.; Shiina, T.; Oshita, S. Evidence of the Existence and the Stability of Nano-bubbles in Water. Colloid. Surface A. 2010, 361(1–3), 31–37. DOI: 10.1016/j.colsurfa.2010.03.005.
  • Zheng, T.; Wang, J.; Wang, Q.; Nie, C.; Shi, Z.; Wang, X.; Gao, Z. A Bibliometric Analysis of Micro/nano-bubble Related Research: Current Trends, Present Application, and Future Prospects. Scientometrics. 2016, 109(1), 53–71. DOI: 10.1007/s11192-016-2004-4.
  • Matsuoka, H.; Ebina, K.; Tanaka, H.; Hirao, M.; Iwahashi, T.; Noguchi, T.; Suzuki, K.; Nishimoto, S.; Murase, T.; Yoshikawa, H. Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model. Int. J. Mol. Sci. 2018, 19(5), 1395. DOI: 10.3390/ijms19051395.
  • Burfoot, D.; Limburn, R.; Busby, R. Assessing the Effects of Incorporating Bubbles into the Water Used for Cleaning Operations Relevant to the Food Industry. Int. J. Food Sci. Tech. 2017, 52(8), 1894–1903. DOI: 10.1111/ijfs.13465.
  • Ulatowski, K.; Sobieszuk, P. Gas Nanobubble Dispersions as the Important Agent in Environmental Processes - Generation Methods Review. Water Environ. J. 2020, 34(S1), 772–790. DOI: 10.1111/wej.12577.
  • Maroof, M. A.; Mahboubi, A.; Noorzad, A. A New Method to Determine Specific Surface Area and Shape Coefficient of A Cohesionless Granular Medium. Adv. Powder Tech. 2020, 31(7), 3038–3049. DOI: 10.1016/j.apt.2020.05.028.
  • Zeng, G.; Huang, L.; Huang, Q.; Liu, M.; Xu, D.; Huang, H.; Yang, Z.; Deng, F.; Zhang, X.; Wei, Y. Rapid Synthesis of MoS2-PDA-Ag Nanocomposites as Heterogeneous Catalysts and Antimicrobial Agents via Microwave Irradiation. Appl. Surf. Sci. 2018, 459, 588–595. DOI: 10.1016/j.apsusc.2018.07.144.
  • Li, H.; Hu, L.; Xia, Z. Impact of Groundwater Salinity on Bioremediation Enhanced by Micro-Nano Bubbles. Materials. 2013, 6(9), 3676–3687. DOI: 10.3390/ma6093676.
  • Xu, Q.; Nakajima, M.; Ichikawa, S.; Nakamura, N.; Shiina, T. A Comparative Study of Microbubble Generation by Mechanical Agitation and Sonication. Innovative Food Sci. Emerg. Technol. 2008, 9(4), 489–494. DOI: 10.1016/j.ifset.2008.03.003.
  • Ahmed, A. K. A.; Shi, X.; Hua, L.; Manzueta, L.; Qing, W.; Marhaba, T.; Zhang, W. Influences of Air, Oxygen, Nitrogen, and Carbon Dioxide Nanobubbles on Seed Germination and Plant Growth. J. Agr. Food Chem. 2018, 66(20), 5117–5124. DOI: 10.1021/acs.jafc.8b00333.
  • Phan, K. K. T.; Truong, T.; Wang, Y.; Bhandari, B. Nanobubbles: Fundamental Characteristics and Applications in Food Processing. Trends Food Sci. Technol. 2020, 95, 118–130. DOI: 10.1016/j.tifs.2019.11.019.
  • Temesgen, T.; Thi Thuy, B.; Han, M.; Kim, T.-I.; Park, H. Micro and Nanobubble Technologies as A New Horizon for Water-treatment Techniques: A Review. Adv. Colloid Interface Sci. 2017, 246, 40–51. DOI: 10.1016/j.cis.2017.06.011.
  • Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. Aqueous Dispersions of Nanobubbles: Generation, Properties and Features. Miner. Eng. 2016, 94, 29–37. DOI: 10.1016/j.mineng.2016.05.001.
  • Cancelos, S.; Villamizar, G.; Saavedra-Ruiz, A.; Garcia-Rodriguez, W.; Filoni, P. T.; Marin, C. Experiments with Nano-scaled Helium Bubbles in Water Subjected to Standing Acoustic Fields. Nucl. Eng. Des. 2016, 310, 587–591. DOI: 10.1016/j.nucengdes.2016.10.042.
  • Demangeat, J.-L. Gas Nanobubbles and Aqueous Nanostructures: The Crucial Role of Dynamization. Homeopathy. 2015, 104(2), 101–115. DOI: 10.1016/j.homp.2015.02.001.
  • Xu, Q.; Nakajima, M.; Ichikawa, S.; Nakamura, N.; Roy, P.; Okadome, H.; Shiina, T. Effects of Surfactant and Electrolyte Concentrations on Bubble Formation and Stabilization. J Colloid. Interf. Sci. 2009, 332(1), 208–214. DOI: 10.1016/j.jcis.2008.12.044.
  • Hamamoto, S.; Takemura, T.; Suzuki, K.; Nishimura, T. Effects of pH on Nano-bubble Stability and Transport in Saturated Porous Media. J. Contam. Hydrol. 2018, 208, 61–67. DOI: 10.1016/j.jconhyd.2017.12.001.
  • Xu, Q.; Liu, Z.; Nakajima, M.; Ichikawa, S.; Nakamura, N.; Roy, P.; Okadome, H.; Shiina, T. Characterization of a Soybean Oil-based Biosurfactant and Evaluation of Its Ability to Form Microbubbles. Bioresour. Technol. 2010, 101(10), 3711–3717. DOI: 10.1016/j.biortech.2009.12.093.
  • Xu, Q.; Nakajima, M.; Liu, Z.; Shiina, T. Biosurfactants for Microbubble Preparation and Application. Int. J. Mol. Sci. 2011, 12(1), 462–475. DOI: 10.3390/ijms12010462.
  • Xiao, Z.; Li, D.; Wang, F.; Sun, Z.; Lin, Z. Simultaneous Removal of NO and SO2 with a New Recycling Micro-nano Bubble Oxidation-absorption Process Based on HA-Na. Sep. Purif. Technol. 2020, 242, 116788. DOI: 10.1016/j.seppur.2020.116788.
  • Xiao, W.; Xu, G. Mass Transfer of Nanobubble Aeration and Its Effect on Biofilm Growth: Microbial Activity and Structural Properties. Sci. Total Environ. 2020, 703, 134976. DOI: 10.1016/j.scitotenv.2019.134976.
  • Li, H.; Hu, L.; Song, D.; Al-Tabbaa, A. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation. Int J Env Res Pub He. 2014, 111, 473–486. DOI:10.3390/ijerph110100473.
  • Bhattacharjee, S. DLS and Zeta Potential – What They are and What They are Not? J. Control. Release. 2016, 235, 337–351. DOI: 10.1016/j.jconrel.2016.06.017.
  • Patel, V. R.; Agrawal, Y. K. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011, 2(2), 81–87. DOI: 10.4103/2231-4040.82950.
  • Sun, Y.; Xie, G.; Peng, Y.; Xia, W.; Sha, J. Stability Theories of Nanobubbles at Solid-liquid Interface: A Review. Colloid. Surface A. 2016, 495, 176–186. DOI: 10.1016/j.colsurfa.2016.01.050.
  • Calgaroto, S.; Wilberg, K. Q.; Rubio, J. On the Nanobubbles Interfacial Properties and Future Applications in Flotation. Miner. Eng. 2014, 60, 33–40. DOI: 10.1016/j.mineng.2014.02.002.
  • Ushikubo, F. Y.; Enari, M.; Furukawa, T.; Nakagawa, R.; Makino, Y.; Kawagoe, Y.; Oshita, S. Zeta-potential of Micro- And/or Nano-bubbles in Water Produced by Some Kinds of Gases. IFAC Proc Vol. 2010, 4326, 283–288. DOI:10.3182/20101206-3-JP-3009.00050.
  • Wu, C.; Wang, L.; Harbottle, D.; Masliyah, J.; Xu, Z. Studying Bubble–particle Interactions by Zeta Potential Distribution Analysis. J Colloid. Interf. Sci. 2015, 449, 399–408. DOI: 10.1016/j.jcis.2015.01.040.
  • Castro, L.; Freeman, B. A. Reactive Oxygen Species in Human Health and Disease. Nutrition. 2001, 17(2), 161–165. DOI: 10.1016/S0899-9007(00)00570-0.
  • Cheng, J.-H.; Lv, X.; Pan, Y.; Sun, D.-W. Foodborne Bacterial Stress Responses to Exogenous Reactive Oxygen Species (ROS) Induced by Cold Plasma Treatments. Trends Food Sci. Technol. 2020, 103, 239–247. DOI: 10.1016/j.tifs.2020.07.022.
  • Nicodemus, T. J.; DiRusso, C. C.; Wilson, M.; Black, P. N. Reactive Oxygen Species (ROS) Mediated Degradation of Organophosphate Pesticides by the Green Microalgae Coccomyxa Subellipsoidea. Bioresour. Technol. Rep. 2020, 11, 100461. DOI: 10.1016/j.biteb.2020.100461.
  • Gavahian, M.; Pallares, N.; Al Khawli, F.; Ferrer, E.; Barba, F. J. Recent Advances in the Application of Innovative Food Processing Technologies for Mycotoxins and Pesticide Reduction in Foods. Trends Food Sci. Technol. 2020, 106, 209–218. DOI: 10.1016/j.tifs.2020.09.018.
  • Liu, S.; Oshita, S.; Kawabata, S.; Makino, Y.; Yoshimoto, T. Identification of ROS Produced by Nanobubbles and Their Positive and Negative Effects on Vegetable Seed Germination. Langmuir. 2016, 32(43), 11295–11302. DOI: 10.1021/acs.langmuir.6b01621.
  • Takahashi, M.; Ishikawa, H.; Asano, T.; Horibe, H. Effect of Microbubbles on Ozonized Water for Photoresist Removal. J. Phys. Chem. C. 2012, 116(23), 12578–12583. DOI: 10.1021/jp301746g.
  • Fan, W.; An, W.-G.; Huo, M.-X.; Yang, W.; Zhu, S.-Y.; Lin, S.-S. Solubilization and Stabilization for Prolonged Reactivity of Ozone Using Micro-nano Bubbles and Ozone-saturated Solvent: A Promising Enhancement for Ozonation. Sep. Purif. Technol. 2020, 238, 116484. DOI: 10.1016/j.seppur.2019.116484.
  • Yasui, K.; Tuziuti, T.; Kanematsu, W. Mysteries of Bulk Nanobubbles (Ultrafine Bubbles); Stability and Radical Formation. Ultrason. Sonochem. 2018, 48, 259–266. DOI: 10.1016/j.ultsonch.2018.05.038.
  • Brujan, E.-A.; Noda, T.; Ishigami, A.; Ogasawara, T.; Takahira, H. Dynamics of Laser-induced Cavitation Bubbles near Two Perpendicular Rigid Walls. J. Fluid Mechan. 2018, 841, 28–49. DOI: 10.1017/jfm.2018.82.
  • Ye, L.; Zhu, X.; Liu, Y. Numerical Study on Dual-frequency Ultrasonic Enhancing Cavitation Effect Based on Bubble Dynamic Evolution. Ultrason. Sonochem. 2019, 59, 104744. DOI: 10.1016/j.ultsonch.2019.104744.
  • Milo, S.; Gutfinger, C.; Chu, G. Y. C.; Gharib, M. Bubble Formation on St. Jude Medical Mechanical Heart Valves: An In-vitro Study. J. Heart Valve Dis. 2003, 12(3), 406–410.
  • Ha, J. H.; Mazumdar, H.; Kim, T. H.; Lee, J. M.; Na, J.-G.; Chung, B. G. Algorithm Analysis of Gas Bubble Generation in a Microfluidic Device. BioChip J. 2019, 13(2), 133–141. DOI: 10.1007/s13206-018-3203-2.
  • Terasaka, K.; Hirabayashi, A.; Nishino, T.; Fujioka, S.; Kobayashi, D. Development of Microbubble Aerator for Waste Water Treatment Using Aerobic Activated Sludge. Chem. Eng. Sci. 2011, 66(14), 3172–3179. DOI: 10.1016/j.ces.2011.02.043.
  • Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (Cos2) Micro- and Nanostructures. J. Am. Chem. Soc. 2014, 136(28), 10053–10061. DOI: 10.1021/ja504099w.
  • Yu, C.; Cao, M.; Dong, Z.; Li, K.; Yu, C.; Wang, J.; Jiang, L. Aerophilic Electrode with Cone Shape for Continuous Generation and Efficient Collection of H2 Bubbles. Adv. Funct. Mater. 2016, 26(37), 6830–6835. DOI: 10.1002/adfm.201601960.
  • Kikuchi, K.; Ioka, A.; Oku, T.; Tanaka, Y.; Saihara, Y.; Ogumi, Z. Concentration Determination of Oxygen Nanobubbles in Electrolyzed Water. J Colloid. Interf. Sci. 2009, 329(2), 306–309. DOI: 10.1016/j.jcis.2008.10.009.
  • Yang, S.; Tsai, P.; Kooij, E. S.; Prosperetti, A.; Zandvliet, H. J. W.; Lohse, D. Electrolytically Generated Nanobubbles on Highly Orientated Pyrolytic Graphite Surfaces. Langmuir. 2009, 25(3), 1466–1474. DOI: 10.1021/la8027513.
  • Wang, W.; Fan, W.; Huo, M.; Zhao, H.; Lu, Y. Hydroxyl Radical Generation and Contaminant Removal from Water by the Collapse of Microbubbles under Different Hydrochemical Conditions. Water Air Soil Poll. 2018, 229(3), 1–11. DOI: 10.1007/s11270-018-3745-x.
  • Postnikov, A. V.; Uvarov, I. V.; Penkov, N. V.; Svetovoy, V. B. Collective Behavior of Bulk Nanobubbles Produced by Alternating Polarity Electrolysis. Nanoscale. 2018, 10(1), 428–435. DOI: 10.1039/c7nr07126d.
  • Gungoren, C.; Ozdemir, O.; Wang, X.; Ozkan, S. G.; Miller, J. D. Effect of Ultrasound on Bubble-particle Interaction in Quartz-amine Flotation System. Ultrason. Sonochem. 2019, 52, 446–454. DOI: 10.1016/j.ultsonch.2018.12.023.
  • Yamashita, T.; Ando, K. Low-intensity Ultrasound Induced Cavitation and Streaming in Oxygen-supersaturated Water: Role of Cavitation Bubbles as Physical Cleaning Agents. Ultrason. Sonochem. 2019, 52, 268–279. DOI: 10.1016/j.ultsonch.2018.11.025.
  • Liu, Y.; Li, M.; Bai, F.; Bian, K. Effects of Pulsed Ultrasound at 20 kHz on the Sonochemical Degradation of Mycotoxins. World Mycotoxin J. 2019, 12(4), 357–366. DOI: 10.3920/wmj2018.2431.
  • Liu, Y. F.; Li, M. M.; Liu, Y. X.; Bian, K. Structures of Reaction Products and Degradation Pathways of Aflatoxin B-1 by Ultrasound Treatment. Toxins. 2019, 11(9), 526. DOI: 10.3390/toxins11090526.
  • Tasca, A. L.; Clematis, D.; Panizza, M.; Vitolo, S.; Puccini, M. Chlorpyrifos Removal: Nb/boron-doped Diamond Anode Coupled with Solid Polymer Electrolyte and Ultrasound Irradiation. J. Environ. Health Sci. Eng. 2020, 18(2), 1391–1399. DOI: 10.1007/s40201-020-00555-z.
  • Yuan, S.; Li, C.; Zhang, Y.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Degradation of Parathion Methyl in Bovine Milk by High-intensity Ultrasound: Degradation Kinetics, Products and Their Corresponding Toxicity. Food Chem. 2020, 327, 127103. DOI: 10.1016/j.foodchem.2020.127103.
  • Wang, W.; Chen, W.; Zou, M.; Lv, R.; Wang, D.; Hou, F.; Feng, H.; Ma, X.; Zhong, J.; Ding, T., et al. Applications of Power Ultrasound in Oriented Modification and Degradation of Pectin: A Review. J. Food Eng. 2018, 234, 98–107. DOI: 10.1016/j.jfoodeng.2018.04.016.
  • Iida, Y.; Ashokkumar, M.; Tuziuti, T.; Kozuka, T.; Yasui, K.; Towata, A.; Lee, J. Bubble Population Phenomena in Sonochernical Reactor: I Estimation of Bubble Size Distribution and Its Number Density with Pulsed Sonication - Laser Diffraction Method. Ultrason. Sonochem. 2010, 17(2), 473–479. DOI: 10.1016/j.ultsonch.2009.08.018.
  • Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S. Evaluation and Interpretation of Bubble Size Distributions in Pulsed Megasonic Fields. J. Appl. Phys. 2013, 113(18), 184902. DOI: 10.1063/1.4803858.
  • Iida, Y.; Ashokkumar, M.; Tuziuti, T.; Kozuka, T.; Yasui, K.; Towata, A.; Lee, J. Bubble Population Phenomena in Sonochernical Reactor: II. Estimation of Bubble Size Distribution and Its Number Density by Simple Coalescence Model Calculation. Ultrason. Sonochem. 2010, 17(2), 480–486. DOI: 10.1016/j.ultsonch.2009.08.017.
  • Wang, Q.; Chen, W.-Z.; Wang, X.; Zhao, T.-Y. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble. Chin. Phys. Lett. 2018, 35(8), 084302. DOI: 10.1088/0256-307x/35/8/084302.
  • Khan, M. S.; Hwang, J.; Lee, K.; Choi, Y.; Jang, J.; Kwon, Y.; Hong, J. W.; Choi, J. Surface Composition and Preparation Method for Oxygen Nanobubbles for Drug Delivery and Ultrasound Imaging Applications. Nanomaterials. 2019, 9(1), 48. DOI: 10.3390/nano9010048.
  • Ahmed, A. K. A.; Sun, C.; Hua, L.; Zhang, Z.; Zhang, Y.; Zhang, W.; Marhaba, T. Generation of Nanobubbles by Ceramic Membrane Filters: The Dependence of Bubble Size and Zeta Potential on Surface Coating, Pore Size and Injected Gas Pressure. Chemosphere. 2018, 203, 327–335. DOI: 10.1016/j.chemosphere.2018.03.157.
  • Nakatake, Y.; Kisu, S.; Shigyo, K.; Eguchi, T.; Watanabe, T. Effect of Nano Air-bubbles Mixed into Gas Oil on Common-rail Diesel Engine. Energy. 2013, 59, 233–239. DOI: 10.1016/j.energy.2013.06.065.
  • Ferraro, G.; Jadhav, A. J.; Barigou, M.; Henry’s, A. Law Method for Generating Bulk Nanobubbles. Nanoscale. 2020, 12(29), 15869–15879. DOI: 10.1039/d0nr03332d.
  • Ikeura, H.; Kobayashi, F.; Tamaki, M. Removal of Residual Pesticide, Fenitrothion, in Vegetables by Using Ozone Microbubbles Generated by Different Methods. J. Food Eng. 2011, 103(3), 345–349. DOI: 10.1016/j.jfoodeng.2010.11.002.
  • Kyzas, G. Z.; Bomis, G.; Kosheleva, R. I.; Efthimiadou, E. K.; Favvasa, E. P.; Kostoglou, M.; Mitropoulos, A. C. Nanobubbles Effect on Heavy Metal Ions Adsorption by Activated Carbon. Chem. Eng. J. 2019, 356, 91–97. DOI: 10.1016/j.cej.2018.09.019.
  • Zhou, Y.; Zhou, B.; Xu, F.; Muhammad, T.; Li, Y. Appropriate Dissolved Oxygen Concentration and Application Stage of Micro-nano Bubble Water Oxygation in Greenhouse Crop Plantation. Agric. Water Manage. 2019, 223, 105713. DOI: 10.1016/j.agwat.2019.105713.
  • Pongprasert, N.; Srilaong, V.; Sugaya, S. An Alternative Technique Using Ethylene Micro-bubble Technology to Accelerate the Ripening of Banana Fruit. Sci. Hortic-Amsterdam. 2020, 272, 109566. DOI: 10.1016/j.scienta.2020.109566.
  • Zhang, B. H.; Xu, X.; Lu, H.; Wang, L.; Yang, Q. Removal of Phoxim, Chlorothalonil and Cr3+ from Vegetable Using Bubble Flow. J. Food Eng. 2021, 291, 110217. DOI: 10.1016/j.jfoodeng.2020.110217.
  • Li, C.; Xie, Y.; Guo, Y.; Cheng, Y.; Yu, H.; Qian, H.; Yao, W. Effects of Ozone-microbubble Treatment on the Removal of Residual Pesticides and the Adsorption Mechanism of Pesticides onto the Apple Matrix. Food Control. 2021, 120, 107548. DOI: 10.1016/j.foodcont.2020.107548.
  • Ushida, A.; Koyama, T.; Nakamoto, Y.; Narumi, T.; Sato, T.; Hasegawa, T. Antimicrobial Effectiveness of Ultra-fine Ozone-rich Bubble Mixtures for Fresh Vegetables Using an Alternating Flow. J. Food Eng. 2017, 206, 48–56. DOI: 10.1016/j.jfoodeng.2017.03.003.
  • Zhang, F.; Xi, J.; Huang, -J.-J.; Hu, H.-Y. Effect of Inlet Ozone Concentration on the Performance of a Micro-bubble Ozonation System for Inactivation of Bacillus Subtilis Spores. Sep. Purif. Technol. 2013, 114, 126–133. DOI: 10.1016/j.seppur.2013.04.034.
  • Deotale, S. M.; Dutta, S.; Moses, J. A.; Anandharamakrishnan, C. Stability of Instant Coffee Foam by Nanobubbles Using Spray-Freeze Drying Technique. Food Bioprocess. Technol. 2020, 13(11), 1866–1877. DOI: 10.1007/s11947-020-02526-6.
  • Thai, V. N.; Dehbandi, R.; Fakhri, Y.; Sarafraz, M.; Nematolahi, A.; Dehghani, S. S.; Gholizadeh, A.; Mousavi Khaneghah, A. Potentially Toxic Elements (Ptes) in the Fillet of Narrow-Barred Spanish Mackerel (Scomberomorus Commerson): A Global Systematic Review, Meta-analysis and Risk Assessment. Biol. Trace Elem. Res. 2020, 34, 772–790. DOI: 10.1007/s12011-020-02476-2.
  • Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid Pesticide Residues in the Global Environment: An Overview. Chemosphere. 2018, 191, 990–1007. DOI: 10.1016/j.chemosphere.2017.10.115.
  • Cabello, F. C.; Godfrey, H. P.; Tomova, A.; Ivanova, L.; Doelz, H.; Millanao, A.; Buschmann, A. H. Antimicrobial Use in Aquaculture Re-examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environ. Microbiol. 2013, 15(7), 1917–1942. DOI: 10.1111/1462-2920.12134.
  • Wu, C.; Li, P.; Xia, S.; Wang, S.; Wang, Y.; Hu, J.; Liu, Z.; Yu, S. The Role of Interface in Microbubble Ozonation of Aromatic Compounds. Chemosphere. 2019, 220, 1067–1074. DOI: 10.1016/j.chemosphere.2018.12.174.
  • Zhou, W.; Chen, F.; Meng, Y.; Chandrasekaran, U.; Luo, X.; Yang, W.; Shu, K. Plant Waterlogging/flooding Stress Responses: From Seed Germination to Maturation. Plant Physiol. Bioch. 2020, 148, 228–236. DOI: 10.1016/j.plaphy.2020.01.020.
  • Arguello, M. N.; Mason, R. E.; Roberts, T. L.; Subramanian, N.; Acuna, A.; Addison, C. K.; Lozada, D. N.; Miller, R. G.; Gbur, E. Performance of Soft Red Winter Wheat Subjected to Field Soil Waterlogging: Grain Yield and Yield Components. Field Crops Res. 2016, 194, 57–64. DOI: 10.1016/j.fcr.2016.04.040.
  • Christianson, J. A.; Wilson, I. W.; Llewellyn, D. J.; Dennis, E. S. The Low-Oxygen-Induced NAC Domain Transcription Factor ANAC102 Affects Viability of Arabidopsis Seeds following Low-Oxygen Treatment. Plant Physiol. 2009, 149(4), 1724–1738. DOI: 10.1104/pp.108.131912.
  • Zhou, Y.; Bastida, F.; Zhou, B.; Sun, Y.; Gu, T.; Li, S.; Li, Y. Soil Fertility and Crop Production are Fostered by Micro-nano Bubble Irrigation with Associated Changes in Soil Bacterial Community. Soil Biol. Biochem. 2020, 141, 107663. DOI: 10.1016/j.soilbio.2019.107663.
  • Angelino, D.; Godos, J.; Ghelfi, F.; Tieri, M.; Titta, L.; Lafranconi, A.; Marventano, S.; Alonzo, E.; Gambera, A.; Sciacca, S., et al. Fruit and Vegetable Consumption and Health Outcomes: An Umbrella Review of Observational Studies. Int. J. Food Sci. Nutr. 2019, 70(6), 652–667. DOI: 10.1080/09637486.2019.1571021.
  • Samec, D.; Urlic, B.; Salopek-Sondi, B. Kale (Brassica Oleracea Var. Acephala) as a Superfood: Review of the Scientific Evidence behind the Statement. Crit. Rev. Food Sci. 2019, 59(15), 2411–2422. DOI: 10.1080/10408398.2018.1454400.
  • Fraga, C. G.; Croft, K. D.; Kennedy, D. O.; Tomas-Barberan, F. A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10(2), 514–528. DOI: 10.1039/c8fo01997e.
  • Jongenelis, M. I.; Scully, M.; Morley, B.; Pratt, I. S. Vegetable and Fruit Intake in Australian Adolescents: Trends over Time and Perceptions of Consumption. Appetite. 2018, 129, 49–54. DOI: 10.1016/j.appet.2018.06.033.
  • Jayawardena, R.; Jeyakumar, D. T.; Gamage, M.; Sooriyaarachchi, P.; Hills, A. P. Fruit and Vegetable Consumption among South Asians: A Systematic Review and Meta-analysis. Diabetes Metab. Syndr.: Clin. Res. Rev. 2020, 146, 1791–1800. DOI:10.1016/j.dsx.2020.09.004.
  • Philippe, V.; Neveen, A.; Marwa, A.; Basel, A.-Y. A. Occurrence of Pesticide Residues in Fruits and Vegetables for the Eastern Mediterranean Region and Potential Impact on Public Health. Food Control. 2021, 119, 107457. DOI: 10.1016/j.foodcont.2020.107457.
  • Foong, S. Y.; Ma, N. L.; Lam, S. S.; Peng, W.; Low, F.; Lee, B. H. K.; Alstrup, A. K. O.; Sonne, C. A Recent Global Review of Hazardous Chlorpyrifos Pesticide in Fruit and Vegetables: Prevalence, Remediation and Actions Needed. J. Hazard. Mater. 2020, 400, 123006. DOI: 10.1016/j.jhazmat.2020.123006.
  • Krol, W. J.; Arsenault, T. L.; Pylypiw, H. M.; Mattina, M. J. I. Reduction of Pesticide Residues on Produce by Rinsing. J. Agr. Food Chem. 2000, 48(10), 4666–4670. DOI: 10.1021/jf0002894.
  • Yang, T.; Doherty, J.; Zhao, B.; Kinchla, A. J.; Clark, J. M.; He, L. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. J. Agr. Food Chem. 2017, 65(44), 9744–9752. DOI: 10.1021/acs.jafc.7b03118.
  • Wanwimolruk, C.; Phopin, K.; Wanwimolruk, S. Food Safety in Thailand 6: How to Eat Guava Fruits Safely? Effects of Washing and Peeling on Removing Pesticide Residues in Guava Fruits. J. Food Safety. 2019, 39(4), e12654. DOI: 10.1111/jfs.12654.
  • Bajwa, U.; Sandhu, K. S. Effect of Handling and Processing on Pesticide Residues in Food- a Review. J Food Sci Tech Mys. 2014, 51(2), 201–220. DOI: 10.1007/s13197-011-0499-5.
  • Yadav, I. C.; Devi, N. L.; Syed, J. H.; Cheng, Z.; Li, J.; Zhang, G.; Jones, K. C. Current Status of Persistent Organic Pesticides Residues in Air, Water, and Soil, and Their Possible Effect on Neighboring Countries: A Comprehensive Review of India. Sci. Total Environ. 2015, 511, 123–137. DOI: 10.1016/j.scitotenv.2014.12.041.
  • Ogunniyi, A. D.; Dandie, C. E.; Brunetti, G.; Drigo, B.; Aleer, S.; Hall, B.; Ferro, S.; Deo, P.; Venter, H.; Myers, B., et al. Neutral Electrolyzed Oxidizing Water Is Effective for Pre-harvest Decontamination of Fresh Produce. Food Microbiol. 2021, 93, 103610. DOI: 10.1016/j.fm.2020.103610.
  • Wang, L.; Ali, J.; Wang, Z.; Oladoja, N. A.; Cheng, R.; Zhang, C.; Mailhot, G.; Pan, G. Oxygen Nanobubbles Enhanced Photodegradation of Oxytetracycline under Visible Light: Synergistic Effect and Mechanism. Chem. Eng. J. 2020, 388, 124227. DOI: 10.1016/j.cej.2020.124227.
  • Rodriguez, C.; Taminiau, B.; García-Fuentes, E.; Daube, G.; Korsak, N. Listeria Monocytogenes Dissemination in Farming and Primary Production: Sources, Shedding and Control Measures. Food Control. 2021, 120, 107540. DOI: 10.1016/j.foodcont.2020.107540.
  • Deng, L.-Z.; Mujumdar, A. S.; Pan, Z.; Vidyarthi, S. K.; Xu, J.; Zielinska, M.; Xiao, H.-W. Emerging Chemical and Physical Disinfection Technologies of Fruits and Vegetables: A Comprehensive Review. Crit. Rev. Food Sci. 2020, 60(15), 2481–2508. DOI: 10.1080/10408398.2019.1649633.
  • Feng, Y.; Zhou, C.; Yagoub, A. E. A.; Sun, Y.; Owusu-Ansah, P.; Yu, X.; Wang, X.; Xu, X.; Zhang, J.; Ren, Z. Improvement of the Catalytic Infrared Drying Process and Quality Characteristics of the Dried Garlic Slices by Ultrasound-assisted Alcohol Pretreatment. LWT - Food Sci. Technol. 2019, 116, 108577. DOI: 10.1016/j.lwt.2019.108577.
  • Cui, H.; Zhang, C.; Li, C.; Lin, L. Inhibition of Escherichia Coli O157: H7biofilm on Vegetable Surface by Solid Liposomes of Clove Oil. LWT - Food Sci. Technol. 2020, 117, 108656. DOI: 10.1016/j.lwt.2019.108656.
  • Alenyorege, E. A.; Ma, H.; Aheto, J. H.; Ayim, I.; Chikari, F.; Osae, R.; Zhou, C. Response Surface Methodology Centred Optimization of Mono-frequency Ultrasound Reduction of Bacteria in Fresh-cut Chinese Cabbage and Its Effect on Quality. LWT - Food Sci. Technol. 2020, 122, 108991. DOI: 10.1016/j.lwt.2019.108991.
  • Singh, A.; Sekhon, A. S.; Unger, P.; Babb, M.; Yang, Y.; Michael, M. Impact of Gas Micro-nano-bubbles on the Efficacy of Commonly Used Antimicrobials in the Food Industry. J. Appl. Microbiol. 2020, 130(4), 1092–1105. DOI: 10.1111/jam.14840.
  • Zhu, Z. W.; Li, T.; Sun, D. W.; Ni, D.; Zhang, W.; Yan, X.; Mu, W. Pressure-related Cooling and Freezing Techniques for the Food Industry: Fundamentals and Applications. Crit. Rev. Food Sci. 2020, 4, 1–16. DOI: 10.1080/10408398.2020.1841729.
  • Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods-The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods. 2020, 9(10), 1488. DOI: 10.3390/foods9101488.
  • Uchida, T.; Yamazaki, K.; Gohara, K. Gas Nanobubbles as Nucleation Acceleration in the Gas-Hydrate Memory Effect. J. Phys. Chem. C. 2016, 120(47), 26620–26629. DOI: 10.1021/acs.jpcc.6b07995.
  • Phan, K. K. T.; Truong, T.; Wang, Y.; Bhandari, B. Formation and Stability of Carbon Dioxide Nanobubbles for Potential Applications in Food Processing. Food Eng. Rev. 2020, 13(1), 3–14. DOI: 10.1007/s12393-020-09233-0.
  • Barker, G. S.; Jefferson, B.; Judd, S. J. The Control of Bubble Size in Carbonated Beverages. Chem. Eng. Sci. 2002, 57(4), 565–573. DOI: 10.1016/s0009-2509(01)00391-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.