1,856
Views
5
CrossRef citations to date
0
Altmetric
Review

Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications

ORCID Icon, &

References

  • Fleurence, J.; Morançais, M.; Dumay, J. Seaweed Proteins. In Proteins in Food Processing, Second Edition ed. USA,2018; 245–262. DOI: 10.1016/B978-0-08-100722-8.00010-3
  • Wijesekara, I.; Lang, M.; Marty, C.; Gemin, M. P.; Boulho, R.; Douzenel, P.; Wickramasinghe, I.; Bedoux, G.; Bourgougnon, N. Different Extraction Procedures and Analysis of Protein from Ulva Sp. In Brittany, France. J. Appl. Phycol. 2017, 29(5), 2503–2511. DOI: 10.1007/s10811-017-1239-7.
  • Zemke-White, W. L.; Ohno, M. World Seaweed Utilisation: An End-of-Century Summary. J. Appl. Phycol. 1999, 11(4), 369–376. DOI: 10.1023/A:1008197610793.
  • Liuzzi, M. G.; Gappa, J. L.; Piriz, M. L. Latitudinal Gradients in Macroalgal Biodiversity in the Southwest Atlantic between 36 and 55°S. Hydrobiologia. 2011, 673(1), 205–214. DOI: 10.1007/s10750-011-0780-7.
  • Wernberg, T.; Russell, B. D.; Moore, P. J.; Ling, S. D.; Smale, D. A.; Campbell, A.; Coleman, M. A.; Steinberg, P. D.; Kendrick, G. A.; Connell, S. D. Impacts of Climate Change in a Global Hotspot for Temperate Marine Biodiversity and Ocean Warming. J. Exp. Mar. Bio. Ecol. 2011, 400(1–2), 7–16. DOI: 10.1016/j.jembe.2011.02.021.
  • Schmid, M.; Guihéneuf, F.; Stengel, D. B. Ecological and Commercial Implications of Temporal and Spatial Variability in the Composition of Pigments and Fatty Acids in Five Irish Macroalgae. Mar. Biol. 2017, 164(8), 1–18. DOI: 10.1007/s00227-017-3188-8.
  • Dumay, J.; Morançais, M.; Munier, M.; Le Guillard, C.; Fleurence, J. Phycoerythrins: Valuable Proteinic Pigments in Red Seaweeds. In Advances in Botanical Research.Elsevier,2014; pp 321–343. doi:10.1016/B978-0-12-408062-1.00011-1
  • Aryee, A. N.; Agyei, D.; Akanbi, T. O. Recovery and Utilization of Seaweed Pigments in Food Processing. Curr. Opin. Food Sci. 2018, 19, 113–119. DOI: 10.1016/j.cofs.2018.03.013.
  • Brotosudarmo, T. H. P.; Heriyanto,; Shioi, Y.; Indriatmoko,; Adhiwibawa, M. A. S.; Indrawati, R.; Limantara, L. Composition of the Main Dominant Pigments from Potential Two Edible Seaweeds. Philipp. J. Sci. 2018, 147(1), 47–55.
  • Norziah, M. H.; Ching, C. Y. Nutritional Composition of Edible Seaweed Gracilaria Changgi. Food Chem. 2000, 68(1), 69–76. DOI: 10.1016/S0308-8146(99)00161-2.
  • Cian, R. E.; Drago, S. R.; De Medina, F. S.; Martínez-Augustin, O. Proteins and Carbohydrates from Red Seaweeds: Evidence for Beneficial Effects on Gut Function and Microbiota. Mar. Drugs. 2015, 13(8), 5358–5383. DOI: 10.3390/md13085358.
  • Gorissen, S. H. M.; Crombag, J. J. R.; Senden, J. M. G.; Waterval, W. A. H.; Bierau, J.; Verdijk, L. B.; van Loon, L. J. C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids. 2018, 50(12), 1685–1695. DOI: 10.1007/s00726-018-2640-5.
  • Morgan, K. C.; Wright, J. L. C.; Simpson, F. J. Review of Chemical Constituents of the Red Alga Palmaria Palmata (Dulse). Econ. Bot. 1980, 34(1), 27–50. DOI: 10.1007/BF02859553.
  • Vázquez-Delfín, E.; Freile-Pelegrín, Y.; Pliego-Cortés, H.; Robledo, D. Seaweed Resources of Mexico: Current Knowledge and Future Perspectives. Bot. Mar. 2019, 95, 289–326. DOI: 10.1515/bot-2018-0070.
  • Fleurence, J. Seaweed Proteins: Biochemical, Nutritional Aspects and Potential Uses. Trends Food Sci. Technol. 1999, 11(3), 231–239. DOI: 10.1016/S0924-2244(99)00015-1.
  • Fleurence, J.; Morançais, M.; Dumay, J.; Decottignies, P.; Turpin, V.; Munier, M.; Garcia-Bueno, N.; Jaouen, P. What are the Prospects for Using Seaweed in Human Nutrition and for Marine Animals Raised through Aquaculture? Trends Food Sci. Technol. 2012, 27(1), 57–61. DOI: 10.1016/j.tifs.2012.03.004.
  • Lourenço, S. O.; Barbarino, E.; De-Paula, J. C.; Pereira, L. O. D. S.; Lanfer Marquez, U. M. Amino Acid Composition, Protein Content and Calculation of Nitrogen-to-Protein Conversion Factors for 19 Tropical Seaweeds. Phycol. Res. 2002, 50(3), 233–241. DOI: 10.1046/j.1440-1835.2002.00278.x.
  • Heidelbaugh, N. D.; Huber, C. S.; Bednarczyk, J. F.; Smith, M. C.; Rambaut, P. C.; Wheeler, H. O. Comparison of Three Methods for Calculating Protein Content of Foods. J. Agric. Food Chem. 1975, 23(4), 611–613. DOI: 10.1021/jf60200a006.
  • Anh, N. T. N.; Hai, T. N.; Hien, T. T. T. Effects of Partial Replacement of Fishmeal Protein with Green Seaweed (Cladophora Spp.) Protein in Practical Diets for the Black Tiger Shrimp (Penaeus Monodon) Postlarvae. J. Appl. Phycol. 2018, 30(4), 2649–2658. DOI: 10.1007/s10811-018-1457-7.
  • Sharma, S.; Hansen, L. D.; Hansen, J. O.; Mydland, L. T.; Horn, S. J.; Øverland, M.; Eijsink, V. G. H.; Vuoristo, K. S. Microbial Protein Produced from Brown Seaweed and Spruce Wood as a Feed Ingredient. J. Agric. Food Chem. 2018, 66(31), 8328–8335. DOI: 10.1021/acs.jafc.8b01835.
  • Cornish, M. L.; Garbary, D. J. Antioxidants from Macroalgae: Potential Applications in Human Health and Nutrition. ALGAE. 2010, 25(4), 155–171. DOI: 10.4490/algae.2010.25.4.155.
  • Mariotti, F.; Tomé, D.; Mirand, P. P. Converting Nitrogen into Protein - beyond 6.25 And Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48(2), 177–184. DOI: 10.1080/10408390701279749.
  • Angell, A. R.; Mata, L.; de Nys, R.; Paul, N. A. The Protein Content of Seaweeds: A Universal Nitrogen-to-Protein Conversion Factor of Five. J. Appl. Phycol. 2016, 28(1), 511–524. DOI: 10.1007/s10811-015-0650-1.
  • Conklin-Brittain, N. L.; Dierenfeld, E. S.; Wrangham, R. W.; Norconk, M.; Silver, S. C. Chemical Protein Analysis: A Comparison of Kjeldahl Crude Protein and Total Ninhydrin Protein from Wild, Tropical Vegetation. J. Chem. Ecol. 1999, 25(12), 2601–2622. DOI: 10.1023/A:1020835120701.
  • Kazir, M.; Abuhassira, Y.; Robin, A.; Nahor, O.; Luo, J.; Israel, A.; Golberg, A.; Livney, Y. D. Extraction of Proteins from Two Marine Macroalgae, Ulva Sp. And Gracilaria Sp., For Food Application, and Evaluating Digestibility, Amino Acid Composition and Antioxidant Properties of the Protein Concentrates. Food Hydrocoll. 2019, 87(July 2018), 194–203. DOI: 10.1016/j.foodhyd.2018.07.047.
  • Wong, K.; Chikeung Cheung, P. Influence of Drying Treatment on Three Sargassum Species 2. Protein Extractability, in Vitro Protein Digestibility and Amino Acid Profile of Protein Concentrates. J. Appl. Phycol. 2001, 13(1), 51–58. DOI: 10.1023/A:1008188830177.
  • Abdollahi, M.; Axelsson, J.; Carlsson, N. G.; Nylund, G. M.; Albers, E.; Undeland, I. Effect of Stabilization Method and Freeze/Thaw-Aided Precipitation on Structural and Functional Properties of Proteins Recovered from Brown Seaweed (Saccharina Latissima). Food Hydrocoll. 2019, 96(January), 140–150. DOI: 10.1016/j.foodhyd.2019.05.007.
  • Chan, J. C. C.; Cheung, P. C. K.; Ang, P. O. Comparative Studies on the Effect of Three Drying Methods on the Nutritional Composition of Seaweed Sargassum Hemiphyllum (Turn.) C. Ag. J. Agric. Food Chem. 1997, 45(8), 3056–3059. DOI: 10.1021/jf9701749.
  • Julkunen-Tiitto, R. Phenolic Constituents in the Leaves of Northern Willows: Methods for the Analysis of Certain Phenolics. J. Agric. Food Chem. 1985, 33(2), 213–217. DOI: 10.1021/jf00062a013.
  • Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of Different Drying Temperatures on the Moisture and Phytochemical Constituents of Edible Irish Brown Seaweed. LWT - Food Sci. Technol. 2011, 44(5), 1266–1272. DOI: 10.1016/j.lwt.2010.12.022.
  • Garcia-Vaquero, M.; Lopez-Alonso, M.; Hayes, M. Assessment of the Functional Properties of Protein Extracted from the Brown Seaweed Himanthalia Elongata (Linnaeus) S. F. Gray. Food Res. Int. 2017, 99, 971–978. DOI: 10.1016/j.foodres.2016.06.023.
  • Garcia-Vaquero, M.; Hayes, M. Red and Green Macroalgae for Fish and Animal Feed and Human Functional Food Development. Food Rev. Int. 2016, 32(1), 15–45. DOI: 10.1080/87559129.2015.1041184.
  • Ogunwolu, S. O.; Henshaw, F. O.; Mock, H. P.; Santros, A.; Awonorin, S. O. Functional Properties of Protein Concentrates and Isolates Produced from Cashew (Anacardium Occidentale L.) Nut. Food Chem. 2009, 15(3), 852–858. DOI: 10.1016/j.foodchem.2009.01.011.
  • Mwasaru, M. A.; Muhammad, K.; Bakar, J.; Man, Y. B. C. Effects of Isolation Technique and Conditions on the Extractability, Physicochemical and Functional Properties of Pigeonpea (Cajanus Cajan) and Cowpea (Vigna Unguiculata) Protein Isolates. I. Physicochemical Properties. Food Chem. 1999, 67(4), 435–443. DOI: 10.1016/S0308-8146(99)00150-8.
  • Wong, K.; Cheung, P. C. Influence of Drying Treatment on Three Sargassum Species: 1. Proximate Composition, Amino Acid Profile and Some Physico-Chemical Properties. J. Appl. Phycol. 2001, 13(1), 43–50. DOI: 10.1023/A:1008149215156.
  • MacArtain, P.; Gill, C. I. R.; Brooks, M.; Campbell, R.; Rowland, I. R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65(12), 535–543. DOI: 10.1301/nr.2007.dec.535-543.
  • Urbano, M. G.; Goi, I. Bioavailability of Nutrients in Rats Fed on Edible Seaweeds, Nori (Porphyra Tenera) and Wakame (Undaria Pinnatifida), as a Source of Dietary Fibre. Food Chem. 2002, 76(3), 281–286. DOI: 10.1016/S0308-8146(01)00273-4.
  • Önning, G.; Asp, N.-G. Effect of Oat Saponins and Different Types of Dietary Fibre on the Digestion of Carbohydrates. Br. J. Nutr. 1995, 74(2), 229–237. DOI: 10.1079/bjn19950126.
  • Galland-Irmouli, A. V.; Fleurence, J.; Lamghari, R.; Luçon, M.; Rouxel, C.; Barbaroux, O.; Bronowicki, J. P.; Villaume, C.; Guéant, J. L. Nutritional Value of Proteins from Edible Seaweed Palmaria Palmata (Dulse). J. Nutr. Biochem. 1999, 10(6), 353–359. DOI: 10.1016/S0955-2863(99)00014-5.
  • Fleddermann, M.; Fechner, A.; Rößler, A.; Bähr, M.; Pastor, A.; Liebert, F.; Jahreis, G. Nutritional Evaluation of Rapeseed Protein Compared to Soy Protein for Quality, Plasma Amino Acids, and Nitrogen Balance - A Randomized Cross-over Intervention Study in Humans. Clin. Nutr. 2013, 32(4), 519–526. DOI: 10.1016/j.clnu.2012.11.005.
  • Zhao, Y.; Li, B.; Dong, S.; Liu, Z.; Zhao, X.; Wang, J.; Zeng, M. A Novel ACE Inhibitory Peptide Isolated from Acaudina Molpadioidea Hydrolysate. Peptides. 2009, 30(6), 1028–1033. DOI: 10.1016/j.peptides.2009.03.002.
  • Pangestuti, R.; Kim, S. K. Seaweed Proteins, Peptides, and Amino Acids. In Seaweed Sustainability: Food and Non-Food Applications; Academic press:USA,2015; pp 125–140. doi:10.1016/B978-0-12-418697-2.00006-4
  • Sheih, I. C.; Fang, T. J.; Wu, T. K. Isolation and Characterisation of a Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide from the Algae Protein Waste. Food Chem. 2009, 115(1), 279–284. DOI: 10.1016/j.foodchem.2008.12.019.
  • Kim, S.; Woo, S.; Yun, H.; Yum, S.; Choi, E.; Do, J.; Jo, J.; Kim, D.; Lee, T. Total Phenolic Contents and Biological Activities of Korean Seaweed Extracts. Food Sci. Biotechnol. 2005, 14, 798–802.
  • Kim, E. Y.; Kim, D. G.; Kim, Y. R.; Hwang, H. J.; Nam, T. J.; Kong, I. S. An Improved Method of Protein Isolation and Proteome Analysis with Saccharina Japonica (Laminariales) Incubated under Different PH Conditions. J. Appl. Phycol. 2011, 23(1), 123–130. DOI: 10.1007/s10811-010-9550-6.
  • Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J. M. Chemical Composition, Antioxidant Activity and Sensory Evaluation of Five Different Species of Brown Edible Seaweeds. Food Res. Int. 2014, 66, 36–44. DOI: 10.1016/j.foodres.2014.08.035.
  • Sánchez-Machado, D. I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty Acids, Total Lipid, Protein and Ash Contents of Processed Edible Seaweeds. Food Chem. 2004, 85(3), 439–444. DOI: 10.1016/j.foodchem.2003.08.001.
  • Spiro, R. G. Glycoproteins. Adv. Protein Chem. 1973, 27, 349–467. DOI: 10.1016/S0065-3233(08)60451-9.
  • Senthilkumar, D.; Jayanthi, S. Partial Characterization and Anticancer Activities of Purified Glycoprotein Extracted from Green Seaweed Codium Decorticatum. J. Funct. Foods. 2016, 25, 323–332. DOI: 10.1016/j.jff.2016.06.010.
  • Domozych, D. S.; Ciancia, M.; Fangel, J. U.; Mikkelsen, M. D.; Ulvskov, P.; Willats, W. G. T. The Cell Walls of Green Algae: A Journey through Evolution and Diversity. Front. Plant Sci. 2012, 3, 82. DOI: 10.3389/fpls.2012.00082.
  • Popper, Z. A.; Michel, G.; Hervé, C.; Domozych, D. S.; Willats, W. G. T.; Tuohy, M. G.; Kloareg, B.; Stengel, D. B. Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annu. Rev. Plant Biol. 2011, 62(1), 567–590. DOI: 10.1146/annurev-arplant-042110-103809.
  • Fernández, P. V.; Ciancia, M.; Miravalles, A. B.; Estevez, J. M. Cell-Wall Polymer Mapping in the Coenocytic Macroalga Codium Vermilara (Bryopsidales, Chlorophyta). J. Phycol. 2010, 46, 456–465. DOI: 10.1111/j.1529-8817.2010.00821.x.
  • Estevez, J. M.; Fernández, P. V.; Kasulin, L.; Dupree, P.; Estevez, J. M. Chemical and in Situ Characterization of Macromolecular Components of the Cell Walls from the Green Seaweed Codium Fragile. Glycobiology. 2009, 19(3), 212–228. DOI: 10.1093/glycob/cwn101.
  • Fincher, G. B.; Stone, B. A.; Clarke, A. E. Arabinogalactan-Proteins: Structure, Biosynthesis, and Function. Annu. Rev. Plant Physiol. 1983, 34(1), 47–70. DOI: 10.1146/annurev.pp.34.060183.000403.
  • Thangam, R.; Senthilkumar, D.; Suresh, V.; Sathuvan, M.; Sivasubramanian, S.; Pazhanichamy, K.; Gorlagunta, P. K.; Kannan, S.; Gunasekaran, P.; Rengasamy, R., et al. Induction of ROS-Dependent Mitochondria-Mediated Intrinsic Apoptosis in MDA-MB-231 Cells by Glycoprotein from Codium Decorticatum. J. Agric. Food Chem. 2014, 62(15), 3410–3421. DOI: 10.1021/jf405329e.
  • Pliego-Cortés, H.; Wijesekara, I.; Lang, M.; Bourgougnon, N.; Bedoux, G. Current Knowledge and Challenges in Extraction, Characterization and Bioactivity of Seaweed Protein and Seaweed-Derived Proteins. Adv. Bot. Res. 2020, 95, 289–326. DOI: 10.1016/bs.abr.2019.11.008.
  • Rafiquzzaman, S. M.; Kim, E. Y.; Lee, J. M.; Mohibbullah, M.; Alam, M. B.; Soo Moon, I.; Kim, J. M.; Kong, I. S. Anti-Alzheimers and Anti-Inflammatory Activities of a Glycoprotein Purified from the Edible Brown Alga Undaria Pinnatifida. Food Res. Int. 2015, 77, 118–124. DOI: 10.1016/j.foodres.2015.08.021.
  • Rafiquzzaman, S. M.; Kim, E. Y.; Kim, Y. R.; Nam, T. J.; Kong, I. S. Antioxidant Activity of Glycoprotein Purified from Undaria Pinnatifida Measured by an in Vitro Digestion Model. Int. J. Biol. Macromol. 2013, 62, 265–272. DOI: 10.1016/j.ijbiomac.2013.09.009.
  • Rafiquzzaman, S. M.; Min Lee, J.; Ahmed, R.; Lee, J. H.; Kim, J. M.; Kong, I. S. Characterisation of the Hypoglycaemic Activity of Glycoprotein Purified from the Edible Brown Seaweed, Undaria Pinnatifida. Int. J. Food Sci. Technol. 2015, 50(1), 143–150. DOI: 10.1111/ijfs.12663.
  • Kim, E. Y.; Kim, Y. R.; Nam, T. J.; Kong, I. S. Antioxidant and DNA Protection Activities of a Glycoprotein Isolated from a Seaweed, Saccharina Japonica. Int. J. Food Sci. Technol. 2012, 47(5), 1020–1027. DOI: 10.1111/j.1365-2621.2012.02936.x.
  • Cardozo, K. H. M.; Guaratini, T.; Barros, M. P.; Falcão, V. R.; Tonon, A. P.; Lopes, N. P.; Campos, S.; Torres, M. A.; Souza, A. O.; Colepicolo, P., et al. Metabolites from Algae with Economical Impact. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 2007,146(1–2), 60–78. doi: 10.1016/j.cbpc.2006.05.007
  • Barre, A.; Simplicien, M.; Benoist, H.; Van Damme, E. J. M.; Rougé, P. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Mar. Drugs. 2019, 17(8), 440. DOI: 10.3390/md17080440.
  • Chaves, R. P.; Silva, S. R. D.; Nascimento Neto, L. G.; Carneiro, R. F.; Silva, A. L. C. D.; Sampaio, A. H.; Sousa, B. L. D.; Cabral, M. G.; Videira, P. A.; Teixeira, E. H., et al. Structural Characterization of Two Isolectins from the Marine Red Alga Solieria Filiformis (Kützing) P.W. Gabrielson and Their Anticancer Effect on MCF-7 Breast Cancer Cells. Int. J. Biol. Macromol. 2018, 107, 1320–1329. DOI: 10.1016/j.ijbiomac.2017.09.116.
  • Abreu, T. M.; Monteiro, V. S.; Martins, A. B. S.; Teles, F. B.; Da Conceição Rivanor, R. L.; Mota, É. F.; Macedo, D. S.; de Vasconcelos, S. M. M.; Júnior, J. E. R. H.; Benevides, N. M. B. Involvement of the Dopaminergic System in the Antidepressant-like Effect of the Lectin Isolated from the Red Marine Alga Solieria Filiformis in Mice. Int. J. Biol. Macromol. 2018, 111, 534–541. DOI: 10.1016/j.ijbiomac.2017.12.132.
  • Da Conceição Rivanor, R. L.; Chaves, H. V.; Do Val, D. R.; De Freitas, A. R.; Lemos, J. C.; Rodrigues, J. A. G.; Pereira, K. M. A.; De Araújo, I. W. F.; Bezerra, M. M.; Benevides, N. M. B. A Lectin from the Green Seaweed Caulerpa Cupressoides Reduces Mechanical Hyper-Nociception and Inflammation in the Rat Temporomandibular Joint during Zymosan-Induced Arthritis. Int. Immunopharmacol. 2014, 21(1), 34–43. DOI: 10.1016/j.intimp.2014.04.009.
  • Mu, J.; Hirayama, M.; Sato, Y.; Morimoto, K.; Hori, K. A Novel High-Mannose Specific Lectin from the Green Alga Halimeda Renschii Exhibits A Potent Anti-Influenza Virus Activity through High-Affinity Binding to the Viral Hemagglutinin. Mar. Drugs. 2017, 15(8), 255. DOI: 10.3390/md15080255.
  • Matsubara, K.; Sumi, H.; Hori, K. Platelet Aggregation Is Inhibited by Phycolectins. Experientia. 1996, 52(6), 540–543. DOI: 10.1007/BF01969724.
  • Oren, A.; Gunde-Cimerman, N. Mycosporines and Mycosporine-like Amino Acids: UV Protectants or Multipurpose Secondary Metabolites? FEMS Microbiol. Lett. 2007, 269(1), 1–10. DOI: 10.1111/j.1574-6968.2007.00650.x.
  • Bhatia, S.; Sharma, K.; Namdeo, A. G.; Chaugule, B. B.; Kavale, M.; Nanda, S. Broad-Spectrum Sun-Protective Action of Porphyra-334 Derived from Porphyra Vietnamensis. Pharmacogn. Res. 2010, 2(1), 45. DOI: 10.4103/0974-8490.60578.
  • Cermeño, M.; Kleekayai, T.; Amigo-Benavent, M.; Harnedy-Rothwell, P.; FitzGerald, R. J. Current Knowledge on the Extraction, Purification, Identification, and Validation of Bioactive Peptides from Seaweed. Electrophoresis. 2020, 41(20), 1694–1717. DOI: 10.1002/elps.202000153.
  • Doust, A. B.; Wilk, K. E.; Curmi, P. M. G.; Scholes, G. D. The Photophysics of Cryptophyte Light-Harvesting. J. Photochem. Photobiol. A Chem. 2006, 184(1–2), 1–17. DOI: 10.1016/j.jphotochem.2006.06.006.
  • Denis, C.; Ledorze, C.; Jaouen, P.; Fleurence, J. Comparison of Different Procedures for the Extraction and Partial Purification of R-Phycoerythrin from the Red Macroalga Grateloupia Turuturu. Bot. Mar. 2009, 52(3), 278–328. DOI: 10.1515/BOT.2009.034.
  • Fleurence, J.; Chenard, E.; Luçon, M. Determination of the Nutritional Value of Proteins Obtained from Ulva Armoricana. J. Appl. Phycol. 1999, 11(3), 231–239. DOI: 10.1023/A:1008067308100.
  • Fujiwara-Arasaki, T.; Mino, N.; Kuroda, M. The Protein Value in Human Nutrition of Edible Marine Algae in Japan. Hydrobiologia. 1984, 116(117), 513–516. DOI: 10.1007/BF00027735.
  • Abdel-fattah, A. F.; Sary, H. H. Glycoproteins from Ulva Lactuca. Phytochemistry. 1987, 26, 1447–1448. DOI: 10.1016/S0031-9422(00)81831-2.
  • Oh, J. H.; Nam, T. J. Hydrophilic Glycoproteins of an Edible Green Alga Capsosiphon Fulvescens Prevent Aging-Induced Spatial Memory Impairment by Suppressing Gsk-3β-Mediated Er Stress in Dorsal Hippocampus. Mar. Drugs. 2019, 17(3), 168. DOI: 10.3390/md17030168.
  • Harnedy, P. A.; FitzGerald, R. J. Extraction of Protein from the Macroalga Palmaria Palmata. LWT - Food Sci. Technol. 2013, 51(1), 375–382. DOI: 10.1016/j.lwt.2012.09.023.
  • Dumay, J.; Clément, N.; Morançais, M.; Fleurence, J. Optimization of Hydrolysis Conditions of Palmaria Palmata to Enhance R-Phycoerythrin Extraction. Bioresour. Technol. 2013, 131, 21–27. DOI: 10.1016/j.biortech.2012.12.146.
  • Elango, R.; Ball, R. O.; Pencharz, P. B. Amino Acid Requirements in Humans: With a Special Emphasis on the Metabolic Availability of Amino Acids. Amino Acids. 2009, 37(1), 19–27. DOI: 10.1007/s00726-009-0234-y.
  • Dawczynski, C.; Schubert, R.; Jahreis, G. Amino Acids, Fatty Acids, and Dietary Fibre in Edible Seaweed Products. Food Chem. 2007, 103(3), 891–899. DOI: 10.1016/j.foodchem.2006.09.041.
  • Laohakunjit, N.; Selamassakul, O.; Kerdchoechuen, O. Seafood-like Flavour Obtained from the Enzymatic Hydrolysis of the Protein by-Products of Seaweed (Gracilaria Sp.). Food Chem. 2014, 158, 162–170. DOI: 10.1016/j.foodchem.2014.02.101.
  • Ratana-arporn, P.; Chirapart, A. Nutritional Evaluation of Tropical Green Seaweeds Caulerpa Lentillifera and Ulva Reticulata. Kasetsart J. - Nat. Sci. 2006, 40, 75–83.
  • Lumbessy, S. Y.; Andayani, S.; Nursyam, H.; Firdaus, M. Biochemical Study of Amino Acid Profile of Kappaphycus Alvarezii and Gracilaria Salicornia Seaweeds from Gerupuk Waters, West Nusa Tenggara (NTB). EurAsian J. Biosci. 2019, 13, 303–307.
  • Zubia, M.; Payri, C. E.; Deslandes, E.; Guezennec, J. Chemical Composition of Attached and Drift Specimens of Sargassum Mangarevense and Turbinaria Ornata (Phaeophyta: Fucales) from Tahiti, French Polynesia. Bot. Mar. 2003, 46(6), 562–571. DOI: 10.1515/BOT.2003.059.
  • Uribe, E.; Vega-Gálvez, A.; Vargas, N.; Pasten, A.; Rodríguez, K.; Ah-Hen, K. S. Phytochemical Components and Amino Acid Profile of Brown Seaweed Durvillaea Antarctica as Affected by Air Drying Temperature. J. Food Sci. Technol. 2018, 55(12), 4792–4801. DOI: 10.1007/s13197-018-3412-7.
  • Biancarosa, I.; Espe, M.; Bruckner, C. G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E. J. Amino Acid Composition, Protein Content, and Nitrogen-to-Protein Conversion Factors of 21 Seaweed Species from Norwegian Waters. J. Appl. Phycol. 2017, 29(2), 1001–1009. DOI: 10.1007/s10811-016-0984-3.
  • Conde, E.; Balboa, E. M.; Parada, M.; Falqué, E. Algal Proteins, Peptides and Amino Acids. In Functional Ingredients from Algae for Foods and Nutraceuticals. USA, 2013; pp 135–180. doi:10.1533/9780857098689.1.135
  • Holdt, S. L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. DOI: 10.1007/s10811-010-9632-5.
  • Vieira, E. F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M. J.; Oliva-teles, M. T.; Paula Carvalho, A.; Domingues, V. F.; Antunes, F.; Oliveira, T. A. C., et al. Seaweeds from the Portuguese Coast as a Source of Proteinaceous Material: Total and Free Amino Acid Composition Profile. Food Chem. 2018, 269, 264–275. DOI: 10.1016/j.foodchem.2018.06.145.
  • Wong, P. F.; Tan, L. J.; Nawi, H.; AbuBakar, S. Proteomics of the Red Alga, Gracilaria Changii (Gracilariales, Rhodophyta). J. Phycol. 2006, 42(1), 113–120. DOI: 10.1111/j.1529-8817.2006.00182.x.
  • Nagai, K.; Yotsukura, N.; Ikegami, H.; Kimura, H.; Morimoto, K. Protein Extraction for 2-DE from the Lamina of Ecklonia Kurome (Laminariales): Recalcitrant Tissue Containing High Levels of Viscous Polysaccharides. Electrophoresis. 2008, 29(3), 672–681. DOI: 10.1002/elps.200700461.
  • Yotsukura, N.; Nagai, K.; Kimura, H.; Morimoto, K. Seasonal Changes in Proteomic Profiles of Japanese Kelp: Saccharina Japonica (Laminariales, Phaeophyceae). J. Appl. Phycol. 2010, 22(4), 443–451. DOI: 10.1007/s10811-009-9477-y.
  • Fleurence, J.; Gutbier, G.; Mabeau, S.; Leray, C. Fatty Acids from 11 Marine Macroalgae of the French Brittany Coast. J. Appl. Phycol. 1994, 6(5–6), 527–532. DOI: 10.1007/BF02182406.
  • Buschmann, A. H.; Hurd, C. L.; Harrison, P. J.; Bischof, K.; Lobban, C. S. Seaweed Ecology and Physiology; Cambridge University Press: Cambridge, UK, 2016, pp 551. DOI: 10.1111/jpy.12398.
  • Jordan, P.; Vilter, H. Extraction of Proteins from Material Rich in Anionic Mucilages: Partition and Fractionation of Vanadate-Dependent Bromoperoxidases from the Brown Algae Laminaria Digitata and L. Saccharina in Aqueous Polymer Two-Phase Systems. BBA - Gen. Subj. 1991, 1073(1), 98–106. DOI: 10.1016/0304-4165(91)90188-M.
  • Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein-Phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51(2), 954–970. DOI: 10.1016/j.foodres.2013.02.009.
  • Stern, J. L.; Hagerman, A. E.; Steinberg, P. D.; Mason, P. K. Phlorotannin-Protein Interactions. J. Chem. Ecol. 1996, 22(10), 1877–1899. DOI: 10.1007/BF02028510.
  • Harrysson, H.; Hayes, M.; Eimer, F.; Carlsson, N. G.; Toth, G. B.; Undeland, I. Production of Protein Extracts from Swedish Red, Green, and Brown Seaweeds, Porphyra Umbilicalis Kützing, Ulva Lactuca Linnaeus, and Saccharina Latissima (Linnaeus) J. V. Lamouroux Using Three Different Methods. J. Appl. Phycol. 2018, 30(6), 3565–3580. DOI: 10.1007/s10811-018-1481-7.
  • Barbarino, E.; Lourenço, S. O. An Evaluation of Methods for Extraction and Quantification of Protein from Marine Macro- and Microalgae. Journal of Applied Phycology. 2005, 17(5), 447–460. DOI: 10.1007/s10811-005-1641-4.
  • Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods. 2017, 6(5), 33. DOI: 10.3390/foods6050033.
  • Kadam, S. U.; Tiwari, B. K.; O’Donnell, C. P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61(20), 4667–4675. DOI: 10.1021/jf400819p.
  • Vásquez, V.; Martínez, R.; Bernal, C. Enzyme-Assisted Extraction of Proteins from the Seaweeds Macrocystis Pyrifera and Chondracanthus Chamissoi: Characterization of the Extracts and Their Bioactive Potential. Journal of Applied Phycology. 2019, 31(3), 1999–2010. DOI: 10.1007/s10811-018-1712-y.
  • Wijesinghe, W. A. J. P.; Jeon, Y. J. Enzyme-Assistant Extraction (EAE) of Bioactive Components: A Useful Approach for Recovery of Industrially Important Metabolites from Seaweeds: A Review. Fitoterapia. 2012, 83, 6–12. DOI: 10.1016/j.fitote.2011.10.016.
  • Veide Vilg, J.; Undeland, I. PH-Driven Solubilization and Isoelectric Precipitation of Proteins from the Brown Seaweed Saccharina Latissima—Effects of Osmotic Shock, Water Volume and Temperature. J. Appl. Phycol. 2017, 29(1), 585–593. DOI: 10.1007/s10811-016-0957-6.
  • Siriwardhana, N.; Kim, K. N.; Lee, K. W.; Kim, S. H.; Ha, J. H.; Song, C. B.; Lee, J. B.; Jeon, Y. J. Optimisation of Hydrophilic Antioxidant Extraction from Hizikiafusiformis by Integrating Treatments of Enzymes, Heat and PH Control. Int. J. Food Sci. Technol. 2008, 43, 587–596. DOI: 10.1111/j.1365-2621.2006.01485.x.
  • Sanz-Pintos, N.; Pérez-Jiménez, J.; Buschmann, A. H.; Vergara-Salinas, J. R.; Pérez-Correa, J. R.; Saura-Calixto, F. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds. J. Food Sci. 2017, 82(2), 289–295. DOI: 10.1111/1750-3841.13592.
  • Le Guillard, C.; Bergé, J. P.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J. Y.; Baron, R.; Fleurence, J.; Dumay, J. Soft Liquefaction of the Red Seaweed Grateloupia Turuturu Yamada by Ultrasound-Assisted Enzymatic Hydrolysis Process. J. Appl. Phycol. 2016, 28(4), 2575–2585. DOI: 10.1007/s10811-015-0788-x.
  • Contreras, L.; Ritter, A.; Dennett, G.; Boehmwald, F.; Guitton, N.; Pineau, C.; Moenne, A.; Potin, P.; Correa, J. A. Two-dimensional Gel Electrophoresis Analysis of Brown Algal Protein Extracts. J. Phycol. 2008, 44(5), 1315–1321. DOI: 10.1111/j.1529-8817.2008.00575.x.
  • Wang, W.; Vignani, R.; Scali, M.; Cresti, M. A Universal and Rapid Protocol for Protein Extraction from Recalcitrant Plant Tissues for Proteomic Analysis. Electrophoresis. 2006, 27(13), 2782–2786. DOI: 10.1002/elps.200500722.
  • Esquivel-Hernández, D. A.; Ibarra-Garza, I. P.; Rodríguez-Rodríguez, J.; Cuéllar-Bermúdez, S. P.; Rostro-Alanis, M. D. J.; Alemán-Nava, G. S.; García-Pérez, J. S.; Parra-Saldívar, R. Green Extraction Technologies for High-Value Metabolites from Algae: A Review. Biofuels, Bioprod. Biorefining. 2017, 11(1), 215–231. DOI: 10.1002/bbb.1735.
  • Grote, B. Recent Developments in Aquaculture of Palmaria Palmata (Linnaeus) (Weber & Mohr 1805): Cultivation and Uses. Rev. Aquac. 2019, 11(1), 25–41. DOI: 10.1111/raq.12224.
  • Alemañ, A. E.; Robledo, D.; Hayashi, L. Development of Seaweed Cultivation in Latin America: Current Trends and Future Prospects. Phycologia. 2019, 58(5), 462–471. DOI: 10.1080/00318884.2019.1640996.
  • Magnusson, M.; Glasson, C. R. K.; Vucko, M. J.; Angell, A.; Neoh, T. L.; de Nys, R. Enrichment Processes for the Production of High-Protein Feed from the Green Seaweed Ulva Ohnoi. Algal Res. 2019, 41, 101555. DOI: 10.1016/j.algal.2019.101555.
  • Mittal, R.; Sharma, R.; Raghavarao, K. S. M. S. Aqueous Two-Phase Extraction of R-Phycoerythrin from Marine Macro-Algae, Gelidium Pusillum. Bioresour. Technol. 2019, 280, 277–286. DOI: 10.1016/j.biortech.2019.02.044.
  • Mittal, R.; Tavanandi, H. A.; Mantri, V. A.; Raghavarao, K. S. M. S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-Algae, Gelidium Pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. DOI: 10.1016/j.ultsonch.2017.02.030.
  • Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P. B. Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Mar. Drugs. 2015, 13(5), 3182–3230. DOI: 10.3390/md13053182.
  • Jung, K. A.; Lim, S. R.; Kim, Y.; Park, J. M. Potentials of Macroalgae as Feedstocks for Biorefinery. Bioresour. Technol. 2013, 135, 182–190. DOI: 10.1016/j.biortech.2012.10.025.
  • Hardouin, K.; Bedoux, G.; Burlot, A. S.; Donnay-Moreno, C.; Bergé, J. P.; Nyvall-Collén, P.; Bourgougnon, N. Enzyme-Assisted Extraction (EAE) for the Production of Antiviral and Antioxidant Extracts from the Green Seaweed Ulva Armoricana (Ulvales, Ulvophyceae). Algal Res. 2016, 16, 233–239. DOI: 10.1016/j.algal.2016.03.013.
  • Escobedo-Avellaneda, Z.; Pateiro-Moure, M.; Chotyakul, N.; Torres, J. A.; Welti-Chanes, J.; Pérez-Lamela, C. Benefits and Limitations of Food Processing by High-Pressure Technologies: Effects on Functional Compounds and Abiotic Contaminants. CYTA - J. Food. 2011, 9(4), 351–364. DOI: 10.1080/19476337.2011.616959.
  • Gomez, L.; Tiwari, B.; Garcia-Vaquero, M. Emerging Extraction Techniques: Microwave-Assisted Extraction. In Sustainable Seaweed Technologies. Elsevier, 2020; pp 207–224. doi:10.1016/b978-0-12-817943-7.00008-1
  • Zabetakis, I.; Leclerc, D.; Kajda, P. The Effect of High Hydrostatic Pressure on the Strawberry Anthocyanins. J. Agric. Food Chem. 2000, 48(7), 2749–2754. DOI: 10.1021/jf9911085.
  • Suwal, S.; Perreault, V.; Marciniak, A.; Tamigneaux, É.; Deslandes, É.; Bazinet, L.; Jacques, H.; Beaulieu, L.; Doyen, A. Effects of High Hydrostatic Pressure and Polysaccharidases on the Extraction of Antioxidant Compounds from Red Macroalgae, Palmaria Palmata and Solieria Chordalis. J. Food Eng. 2019, 252, 53–59. DOI: 10.1016/j.jfoodeng.2019.02.014.
  • Machmudah, S.; Wahyudiono,; Kanda, H.; Goto, M. Emerging Seaweed Extraction Techniques: Supercritical Fluid Extraction. In Sustainable Seaweed Technologies. Elsevier, 2020; pp 257–286. doi:10.1016/b978-0-12-817943-7.00010-x
  • Zhang, X.; Cao, D.; Sun, X.; Sun, S.; Xu, N. Preparation and Identification of Antioxidant Peptides from Protein Hydrolysate of Marine Alga Gracilariopsis Lemaneiformis. J. Appl. Phycol. 2019, 31(4), 2585–2596. DOI: 10.1007/s10811-019-1746-9.
  • Plaza, M.; Cifuentes, A.; Ibáñez, E. In the Search of New Functional Food Ingredients from Algae. Trends Food Sci. Technol. 2008, 19(1), 31–39. DOI: 10.1016/j.tifs.2007.07.012.
  • Smit, A. J. Medicinal and Pharmaceutical Uses of Seaweed Natural Products: A Review. J. Appl. Phycol. 2004, 16(4), 245–262. DOI: 10.1023/B:JAPH.0000047783.36600.ef.
  • Wijesekara, I.; Pangestuti, R.; Kim, S. K. Biological Activities and Potential Health Benefits of Sulfated Polysaccharides Derived from Marine Algae. Carbohydr. Polym. 2011, 84(1), 14–21. DOI: 10.1016/j.carbpol.2010.10.062.
  • Pangestuti, R.; Kim, S. K. Biological Activities and Health Benefit Effects of Natural Pigments Derived from Marine Algae. J. Funct. Foods. 2011, 3(4), 255–266. DOI: 10.1016/j.jff.2011.07.001.
  • Wijesekara, I.; Yoon, N. Y.; Kim, S. K. Phlorotannins from Ecklonia Cava (Phaeophyceae): Biological Activities and Potential Health Benefits. BioFactors. 2010, 36(6), 408–414. DOI: 10.1002/biof.114.
  • Kim, S. K.; Wijesekara, I. Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review. J. Funct. Foods. 2010, 2(1), 1–9. DOI: 10.1016/j.jff.2010.01.003.
  • Zehlila, A.; Schaumann, A.; Mlouka, A. B.; Bourguiba, I.; Hardouin, J.; Masmoudi, O.; Cosette, P.; Amri, M.; Jouenne, T. Glioprotective Effect of Ulva Rigida Extract against UVB Cellular Damages. Algal Res. 2017, 23, 203–215. DOI: 10.1016/j.algal.2017.02.001.
  • Scalbert, A.; Johnson, I. T.; Saltmarsh, M. Polyphenols. Antioxidants and Beyond. Am. J. Clin. Nutr. 2005, 1(1), 16–22.
  • Devi, K. P.; Suganthy, N.; Kesika, P.; Pandian, S. K. Bioprotective Properties of Seaweeds: In Vitro Evaluation of Antioxidant Activity and Antimicrobial Activity against Food Borne Bacteria in Relation to Polyphenolic Content. BMC Complement. Altern. Med. 2008, 8(1), 38. DOI: 10.1186/1472-6882-8-38.
  • Chattopadhyay, N.; Ghosh, T.; Sinha, S.; Chattopadhyay, K.; Karmakar, P.; Ray, B. Polysaccharides from Turbinaria Conoides: Structural Features and Antioxidant Capacity. Food Chem. 2010, 118(3), 823–829. DOI: 10.1016/j.foodchem.2009.05.069.
  • Romay, C.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr. Protein Pept. Sci. 2005, 4(3), 207–216. DOI: 10.2174/1389203033487216.
  • Jung, J. H.; Choi, J. W.; Lee, M. K.; Choi, Y. H.; Nam, T. J. Effect of Cyclophilin from Pyropia Yezoensis on the Proliferation of Intestinal Epithelial Cells by Epidermal Growth Factor Receptor/Ras Signaling Pathway. Mar. Drugs. 2019, 17(5), 297. DOI: 10.3390/md17050297.
  • Wang, W.; Wang, S. X.; Guan, H. S. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview. Mar. Drugs. 2012, 10(12), 2795–2816. DOI: 10.3390/md10122795.
  • Sridharan, M. C.; Dhamotharan, R. Antibacterial Activity of Marine Brown Alga Turbinaria Conoides. J. Chem. Pharm. Res. 2012, 4, 2292–2294.
  • Heo, S. J.; Park, E. J.; Lee, K. W.; Jeon, Y. J. Antioxidant Activities of Enzymatic Extracts from Brown Seaweeds. Bioresour. Technol. 2005, 96(14), 1613–1623. DOI: 10.1016/j.biortech.2004.07.013.
  • Elias, R. J.; Kellerby, S. S.; Decker, E. A. Antioxidant Activity of Proteins and Peptides. Crit. Rev. Food Sci. Nutr. 2008, 48(5), 430–441. DOI: 10.1080/10408390701425615.
  • Admassu, H.; Gasmalla, M. A. A.; Yang, R.; Zhao, W. Bioactive Peptides Derived from Seaweed Protein and Their Health Benefits: Antihypertensive, Antioxidant, and Antidiabetic Properties. J. Food Sci. 2018, 83(1), 6–16. DOI: 10.1111/1750-3841.14011.
  • Papadopoulou, A.; Frazier, R. A. Characterization of Protein-Polyphenol Interactions. Trends Food Sci. Technol. 2004, 15(3–4), 186–190. DOI: 10.1016/j.tifs.2003.09.017.
  • Lu, Y. A.; Lee, H. G.; Li, X.; Hyun, J. M.; Kim, H. S.; Kim, T. H.; Kim, H. M.; Lee, J. J.; Kang, M. C.; Jeon, Y. J. Anti-Obesity Effects of Red Seaweed, Plocamium Telfairiae, in C57BL/6 Mice Fed a High-Fat Diet. Food Funct. 2020, 11(3), 2299–2308. DOI: 10.1039/c9fo02924a.
  • Joel, C. H.; Sutopo, C. C. Y.; Prajitno, A.; Su, J. H.; Hsu, J. L. Screening of Angiotensin-I Converting Enzyme Inhibitory Peptides Derived from Caulerpa Lentillifera. Molecules. 2018, 23(11), 3005. DOI: 10.3390/molecules23113005.
  • Samarathunga, J.; Jayasinghe, M.; Edirisinghe, M.; Wijesekara, I.; Abeysundara, P.; Shafi, A.; Farooq, U.; Senadheera, S. A Comparative Study to Develop Calcium, Zinc, and Antioxidant Rich Drinking Yoghurt Products Using Plant and Pharmaceutical Ingredients. Asian J. Agric. Biol. 2020, 8(2), 174–185. DOI: 10.35495/ajab.2019.08.360.
  • Hirayama, M.; Shibata, H.; Imamura, K.; Sakaguchi, T.; Hori, K. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus Alvarezii Represent a Potent Anti-HIV Activity through High-Affinity Binding to the Viral Envelope Glycoprotein Gp120. Mar. Biotechnol. 2016, 18(1), 144–160. DOI: 10.1007/s10126-015-9684-2.
  • Charoensiddhi, S.; Conlon, M. A.; Franco, C. M. M.; Zhang, W. The Development of Seaweed-Derived Bioactive Compounds for Use as Prebiotics and Nutraceuticals Using Enzyme Technologies. Trends Food Sci. Technol. 2017, 70, 20–33. DOI: 10.1016/j.tifs.2017.10.002.
  • Tapotubun, A. M.; Matrutty, T. E. A. A.; Riry, J.; Tapotubun, E. J.; Fransina, E. G.; Mailoa, M. N.; Riry, W. A.; Setha, B.; Rieuwpassa, F. Seaweed Caulerpa Sp Position as Functional Food. IOP Conf. Ser. Earth Environ. Sci. 2020, 517(1), 012021. DOI: 10.1088/1755-1315/517/1/012021.
  • Suresh Kumar, K.; Ganesan, K.; Selvaraj, K.; Subba Rao, P. V. Studies on the Functional Properties of Protein Concentrate of Kappaphycus Alvarezii (Doty) Doty - an Edible Seaweed. Food Chem. 2014, 153, 353–360. DOI: 10.1016/j.foodchem.2013.12.058.
  • Fernández-Segovia, I.; Lerma-García, M. J.; Fuentes, A.; Barat, J. M. Characterization of Spanish Powdered Seaweeds: Composition, Antioxidant Capacity and Technological Properties. Food Res. Int. 2018, 111, 212–219. DOI: 10.1016/j.foodres.2018.05.037.
  • Chandi, G. K.; Sogi, D. S. Functional Properties of Rice Bran Protein Concentrates. J. Food Eng. 2007, 79(2), 592–597. DOI: 10.1016/j.jfoodeng.2006.02.018.
  • Banach, J. L.; Hoek-van Den Hil, E. F.; van der Fels-klerx, H. J. Food Safety Hazards in the European Seaweed Chain. Compr. Rev. Food Sci. Food Saf. 2020, 19(2), 332–364. DOI: 10.1111/1541-4337.12523.
  • Bogolitsyn, K. G.; Kaplitsin, P. A.; Pochtovalova, A. S. Amino-Acid Composition of Arctic Brown Algae. Chem. Nat. Compd. 2014, 49(6), 1110–1113. DOI: 10.1007/s10600-014-0831-1.
  • Hardouin, K.; Burlot, A. S.; Umami, A.; Tanniou, A.; Stiger-Pouvreau, V.; Widowati, I.; Bedoux, G.; Bourgougnon, N. Biochemical and Antiviral Activities of Enzymatic Hydrolysates from Different Invasive French Seaweeds. J. Appl. Phycol. 2014, 26(2), 1029–1042. DOI: 10.1007/s10811-013-0201-6.
  • Fareeha, A.; Atika, A.; Aliya, R. Protein Extraction from Ulva Lactuca and Padina Pavonica Found at Buleji Coast, Karachi, Pakistan. Int. J. Phycol. Phycochem. 2013, 9(1), 49–52.
  • Lee, S. E.; Chung, H.; Kim, Y. S. Effects of Enzymatic Modification of Wheat Protein on the Formation of Pyrazines and Other Volatile Components in the Maillard Reaction. Food Chem. 2012, 131(4), 1248–1254. DOI: 10.1016/j.foodchem.2011.09.113.
  • Wu, Y. F. G.; Cadwallader, K. R. Characterization of the Aroma of a Meatlike Process Flavoring from Soybean-Based Enzyme-Hydrolyzed Vegetable Protein. J. Agric. Food Chem. 2002, 50(10), 2900–2907. DOI: 10.1021/jf0114076.
  • Guo, X.; Tian, S.; Small, D. M. Generation of Meat-like Flavourings from Enzymatic Hydrolysates of Proteins from Brassica Sp. Food Chemistry. 2010, 119(1), 167–172. DOI: 10.1016/j.foodchem.2009.05.089.
  • Imm, J. Y.; Lee, C. M. Production of Seafood Flavor from Red Hake (Urophycis Chuss) by Enzymatic Hydrolysis. J. Agric. Food Chem. 1999, 47, 2360–2366. DOI: 10.1021/jf9811020.
  • Chronakis, I. S.; Madsen, M. Algal Proteins. Handbook of Food Proteins. 2011, 353–394. DOI: 10.1016/B978-1-84569-758-7.50014-9.
  • Román, R. B.; Alvárez-Pez, J. M.; Fernández, F. G. A.; Grima, E. M. Recovery of Pure B-Phycoerythrin from the Microalga Porphyridium Cruentum. J. Biotechnol. 2002, 93(1), 73–85. DOI: 10.1016/S0168-1656(01)00385-6.
  • Kadam, S. U.; Prabhasankar, P. Marine Foods as Functional Ingredients in Bakery and Pasta Products. Food Res. Int. 2010, 43(8), 1975–1980. DOI: 10.1016/j.foodres.2010.06.007.
  • Roohinejad, S.; Koubaa, M.; Barba, F. J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of Seaweeds to Develop New Food Products with Enhanced Shelf-Life, Quality and Health-Related Beneficial Properties. Food Res. Int. 2017, 99, 1066–1083. DOI: 10.1016/j.foodres.2016.08.016.
  • Gilani, G. S.; Xiao, C. W.; Cockell, K. A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108(S2), S315–S332. DOI: 10.1017/S0007114512002371.
  • Gilani, G. S.; Cockell, K. A.; Sepehr, E. Effects of Antinutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2005, 88(3), 967–987. DOI: 10.1093/jaoac/88.3.967.
  • Lahaye, M.; Vigouroux, J. Liquefaction of Dulse (Palmaria Palmata (L.) Kuntze) by a Commercial Enzyme Preparation and a Purified Endo,β-1,4-D-Xylanase. J. Appl. Phycol. 1992, 4(4), 329–337. DOI: 10.1007/BF02185790.
  • Horie, Y.; Sugase, K.; Horie, K. Physiological Differences of Soluble and Insoluble Dietary Fibre Fractions of Brown Algae and Mushrooms in Pepsin Activity in Vitro and Protein Digestibility. Asia Pac. J. Clin. Nutr. 1995, 4(2), 251–255.
  • Benevides, N.; Silva, S.; Magalhães, S.; Melo, F.; Freitas, A.; Vasconcelos, M. Proximate Analysis, Toxic and Antinutritional Factors of Ten Brazilian Marine Algae. Rev. Bras. Fisiol. Veg. 1998, 10, 31–36.
  • Dumay, J.; Morançais, M. Proteins and Pigments. In Seaweed in Health and Disease Prevention. Elsevier, 2016; pp 275–318. doi:10.1016/B978-0-12-802772-1.00009-9
  • Bobin-Dubigeon, C.; Hoebler, C.; Lognoné, V.; Dagorn-Scaviner, C.; Mabeau, S.; Barry, J. L.; Lahaye, M. Chemical Composition, Physico-Chemical Properties, Enzymatic Inhibition and Fermentative Characteristics of Dietary Fibres from Edible Seaweeds. Sci. Aliments. 1997, 17, 619–639.
  • O’ Connor, J.; Meaney, S.; Williams, G. A.; Hayes, M. Extraction of Protein from Four Different Seaweeds Using Three Different Physical Pre-Treatment Strategies. Molecules. 2020, 25(8), 2005. DOI: 10.3390/molecules25082005.
  • Sánchez-Machado, D. I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P.; Simal-Lozano, J. High-Performance Liquid Chromatographic Analysis of Amino Acids in Edible Seaweeds after Derivatization with Phenyl Isothiocyanate. Chromatographia. 2003, 58(3–4), 159–163. DOI: 10.1365/s10337-003-0031-9.
  • Prisacaru, V.; Sevciuc, T. Supporting the Soybean Production and Processing Sector in the Context of Concern for Sustainable Development. Scientific papers: management, economic engineering in agriculture & rural development; http://dspace.uasm.md:8080/xmlui/handle/123456789/4497 (accessed April 2, 2020).
  • Fernand, F.; Israel, A.; Skjermo, J.; Wichard, T.; Timmermans, K. R.; Golberg, A. Offshore Macroalgae Biomass for Bioenergy Production: Environmental Aspects, Technological Achievements and Challenges. Renew. Sustain. Energy Rev. 2017, 75, 35–45. DOI: 10.1016/j.rser.2016.10.046.
  • Cheney, D. Toxic and Harmful Seaweeds. In Seaweed in Health and Disease Prevention. Elsevier, 2016; pp 407–421. doi:10.1016/B978-0-12-802772-1.00013-0
  • Sarwar, G.; Peace, R. W. Comparisons between True Digestibility of Total Nitrogen and Limiting Amino Acids in Vegetable Proteins Fed to Rats. J. Nutr. 1986, 116(7), 1172–1184. DOI: 10.1093/jn/116.7.1172.
  • Gilani, G. S.; Sepehr, E. Protein Digestibility and Quality in Products Containing Antinutritional Factors are Adversely Affected by Old Age in Rats. J. Nutr. 2003, 133(1), 220–225. DOI: 10.1093/jn/133.1.220.
  • Evenepoel, P.; Geypens, B.; Luypaerts, A.; Hiele, M.; Ghoos, Y.; Rutgeerts, P. Digestibility of Cooked and Raw Egg Protein in Humans as Assessed by Stable Isotope Techniques. J. Nutr. 1998, 128(10), 1716–1722. DOI: 10.1093/jn/128.10.1716.
  • Yin, Y.; Zhou, L.; Pereira, J.; Zhang, J.; Zhang, W. Insights into Digestibility and Peptide Profiling of Beef Muscle Proteins with Different Cooking Methods. J. Agric. Food Chem. 2020, 68(48), 14243–14251. DOI: 10.1021/acs.jafc.0c04054.
  • Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M. R. Microalgae of Interest as Food Source: Biochemical Composition and Digestibility. Algal Res. 2019, 42, 101617. DOI: 10.1016/j.algal.2019.101617.
  • Marrion, O.; Schwertz, A.; Fleurence, J.; Guéant, J. L.; Villaume, C. Improvement of the Digestibility of the Proteins of the Red Alga Palmaria Palmata by Physical Processes and Fermentation. Nahrung – Food. 2003, 47(5), 339–344. DOI: 10.1002/food.200390078.
  • Marrion, O.; Fleurence, J.; Schwertz, A.; Guéant, J. L.; Mamelouk, L.; Ksouri, J.; Villaume, C. Evaluation of Protein in Vitro Digestibility of Palmaria Palmata and Gracilaria Verrucosa. J. Appl. Phycol. 2005, 17(2), 99–102. DOI: 10.1007/s10811-005-5154-y.
  • Wong, K. H.; Cheung, P. C. K. Nutritional Evaluation of Some Subtropical Red and Green Seaweeds Part II. In Vitro Protein Digestibility and Amino Acid Profiles of Protein Concentrates. Food Chem. 2001, 72(1), 11–17. DOI: 10.1016/S0308-8146(00)00176-X.
  • Mišurcová, L.; Kráčmar, S.; Klejdus, B.; Vacek, J. Nitrogen Content Dietary Fiber, and Digestibility in Algal Food Products. Czech J. Food Sci. 2010, 28(1), 27–35. DOI: 10.17221/111/2009-cjfs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.