3,858
Views
26
CrossRef citations to date
0
Altmetric
Review

High moisture extrusion of vegetable proteins for making fibrous meat analogs: A review

ORCID Icon, &

References

  • Aiking, H.; de Boer, J.; Vereijken, J. Sustainable Protein Production and Consumption: Pigs or Peas? Aiking, H., de Boer, J., and Vereijken, J. Eds.; Dordrecht, The Netherlands: Springer Netherlands, 2006.
  • Sabaté, J.; Sranacharoenpong, K.; Harwatt, H.; Wien, M.; Soret, S. The Environmental Cost of Protein Food Choices. Public. Health. Nutr. 2015, 18(11), 2067–2073. DOI: 10.1017/S1368980014002377.
  • McAfee, A. J.; McSorley, E. M.; Cuskelly, G. J.; Moss, B. W.; Wallace, J. M. W.; Bonham, M. P.; Fearon, A. M.; Sabaté, J.; Sranacharoenpong, K.; Harwatt, H. Red Meat Consumption: An Overview of the Risks and Benefits. Meat Sci. 2010, 84(1), 1–13. DOI: 10.1016/j.meatsci.2009.08.029.
  • Véronique Bouvard , Dana Loomis , Kathryn Z Guyton , Yann Grosse, Fatiha El Ghissassi , Lamia Benbrahim-Tallaa , Neela Guha , Heidi Mattock , Kurt Straif, & IARC. Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol.2015,16(16), 1599–1600 .
  • de Boer, J.; Schösler, H.; Aiking, H. Towards a Reduced Meat Diet: Mindset and Motivation of Young Vegetarians, Low, Medium and High Meat-Eaters. Appetite. 2017, 113, 387–397. DOI: 10.1016/j.appet.2017.03.007.
  • Davies, J.; Lightowler, H. Plant‐based Alternatives to Meat. Nutr. Food Sci. 1998, 98(2), 90–94. DOI: 10.1108/00346659810201050.
  • Wild, F.; Czerny, M.; Janssen, A. M.; Kole, A. P. W.; Zunabovic, M.; Domig, K. J. The Evolution of a Plant-Based Alternative to Meat. Agro FOOD Ind. Hi Tech. 2014, 25(February), 45–49. DOI: 10.1016/j.jpra.2017.05.004.
  • Mullee, A.; Vermeire, L.; Vanaelst, B.; Mullie, P.; Deriemaeker, P.; Leenaert, T.; De Henauw, S.; Dunne, A.; Gunter, M. J.; Clarys, P.; et al. Vegetarianism and Meat Consumption: A Comparison of Attitudes and Beliefs between Vegetarian, Semi-Vegetarian, and Omnivorous Subjects in Belgium. Appetite. 2017, 114, 299–305. DOI: 10.1016/j.appet.2017.03.052.
  • Elzerman, J. E.; Hoek, A. C.; van Boekel, M. A. J. S.; Luning, P. A. Consumer Acceptance and Appropriateness of Meat Substitutes in a Meal Context. Food Qual. Prefer. 2011, 22(3), 233–240. DOI: 10.1016/j.foodqual.2010.10.006.
  • WASDE. World Agricultural Supply and Demand Estimates (United State department of Agriculture, USA)1554-9089 ; 2018.
  • Day, L. Proteins from Land Plants - Potential Resources for Human Nutrition and Food Security. Trends Food Sci. Technol. 2013, 32(1), 25–42. DOI: 10.1016/j.tifs.2013.05.005.
  • Riaz, M. N. Extruders in Food Applications; first.; Riaz, M.N.Ed.; CRC Press: Boca Raton, 2000.10.15713/ins.mmj.3
  • Maskan, M.; Altan, A. Advances in Food Extrusion Technology; first.Maskan, M., Altan, A.,Eds.; CRC Press: Boca Raton,2012.10.1201/b11286
  • Muthukumarappan, K.; Karunanithy, C. Extrusion Process Design. Handb. Food Process Des, 2012;chap 25 ,pp 710–742. DOI: 10.1002/9781444398274.ch25
  • Berk, Z.;. 2013. Extrusion. In Food Process Engineering and Technology, Taylor, S.L., Ed., Academic Press:Burlington, USA, 373–393. doi:10.1016/B978-0-12-415923-5.00015-0.
  • Riaz, M. N.;. Texturized Vegetable Proteins. In Handbook of Food Proteins. Phillips, G.O., Williams, P.A.; Eds.; Woodhead Publishing Limited: Cambridge, 2011; pp 395–417. DOI: 10.1016/B978-1-84569-358-9.50030-2.
  • Guy, R. C. E.;. Raw Materials for Extrusion Cooking Processes. In The Technology of Extrusion Cooking; Frame, N.D., Ed.; Springer Science: Salisbury, 1994; pp 52–72.
  • Guy, R. C. E.; Riaz, M. N.; Mottaz, J.; Chessari, C. J.; Camire, M. E.; Bouvier, J.-M.; Kazemzadeh, M. Extrusion Cooking: Technologies and Applications; First Edit., Guy, R.C.E. Ed.; Woodhead Publishing Limited: Cambridge England, 2001.
  • Fellows, P. J. Food Processing Technology: Principles and Practice; fourth edi.; Fellows, P.J. Ed.; Duxford: Woodhead Publishing, 2017.
  • Lusas, E. W.; Riaz, M. N. Soy Protein Products : Processing and Use. Am Inst Nutr, 1994,vol 125 (3 Suppl), 573–580.
  • Riaz, M. N.;. 2004. Texturized Soy Protein as an Ingredient. In Proteins in Food Processing, Yada, R.Y., Ed., 517–558. Duxford, United Kingdom: Woodhead Publishing Limited: doi:10.1533/9781855738379.3.517.
  • Cheftel, J. C.; Kitagawa, M.; Queguiner, C. New Protein Texturization Processes by Extrusion Cooking at High Moisture Levels, Food Reviews International.1992, 8: 2, 235–275 . DOI: 10.1080/87559129209540940.
  • Groupe d’Etudes et de Promotion des Protéines Végétales (GEPV). Les Protéines Végétales, Des Atouts Uniques Pour Des Produits de Meilleure Qualité Nutritionnelle. Communiqué de presse GEPV. 2015.
  • Strahm, B.;. Meat Alternatives. In Soy Applications in Food; Riaz, M.N., Ed.; Taylor & Francis: Boca Raton, 2006; pp 135–154.
  • Bouvier, J.-M.; Campanella, O. H. Extrusion Processing Technology: Food and Non-Food Biomaterials; first edit.; ed; John Wiley & Sons: Oxford, 2014. Doi:10.1002/9781118541685.
  • Wenger, L. V. G.; Clark, D. S.; Hauck, B. W. High-Output Apparatus for Producing Dense, Uniforly Layered Meat Analogue Product. US4118164A. 1978.
  • Fang, Y.; Zhang, B.; Wei, Y. Effects of the Specific Mechanical Energy on the Physicochemical Properties of Texturized Soy Protein during High-Moisture Extrusion Cooking. J. Food Eng. 2014, 121(1), 32–38. DOI: 10.1016/j.jfoodeng.2013.08.002.
  • Zhang, B.; Zhang, Y.; Dreisoerner, J.; Wei, Y. The Effects of Screw Configuration on the Screw Fill Degree and Special Mechanical Energy in Twin-Screw Extruder for High-Moisture Texturised Defatted Soybean Meal. J. Food Eng. 2015, 157, 77–83. DOI: 10.1016/j.jfoodeng.2015.02.019.
  • Pietsch, V. L.; Emin, M. A.; Schuchmann, H. P. Process Conditions Influencing Wheat Gluten Polymerization during High Moisture Extrusion of Meat Analog Products. J. Food Eng. 2017, 198, 28–35. DOI: 10.1016/j.jfoodeng.2016.10.027.
  • Huber, G. R.;. Twin Screw Extruders. In Extruders in Food Applications; Riaz, M.N., Ed.; CRC Press: Boca Raton, 2000; pp 81–114.
  • Noguchi, A.;. Extrusion Cooking of High Moisture Protein Foods. In Extrusion Cooking; Mercier, C., Linko, P., Harper, J.M., Eds.; American Association of Cereal Chemists, Inc: Saint Paul: Minnesota, USA, 1989; pp 343–370.
  • Bouvier, J.-M.; Bruyas, L.; Durand, D.; Le Royer, S.; Hermant, -J.-J. Method and Installation for the Continuous Preparation of a Retextured Food Product. WO 03/007729 A1. 2003.
  • Lin, S.; Huff, H. E.; Hsieh, F. H. Extrusion Process Parameters, Sensory Characteristics, and Structural Properties of a High Moisture Soy Protein Meat Analog. J. Food Sci. 2002, 67(3), 1066–1072. DOI: 10.1111/j.1365-2621.2002.tb09454.x.
  • Wu, M.; Sun, Y.; Bi, C.; Ji, F.; Li, B.; Xing, J. Effects of Extrusion Conditions on the Physicochemical Properties of Soy Protein/Gluten Composite. Int. J. Agric. Biol. Eng. 2018, 114, 230–237. DOI:10.25165/j.ijabe.20181104.4162.
  • Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High Moisture Extrusion Cooking of Pea Protein Isolates: Raw Material Characteristics, Extruder Responses, and Texture Properties. J. Food Eng. 2014, 127, 67–74. DOI: 10.1016/J.JFOODENG.2013.11.023.
  • Palanisamy, M.; Franke, K.; Berger, R. G.; Heinz, V.; Töpfl, S. High Moisture Extrusion of Lupin Protein: Influence of Extrusion Parameters on Extruder Responses and Product Properties. J. Sci. Food Agric. 2018. DOI: 10.1002/jsfa.9410.
  • Grahl, S.; Palanisamy, M.; Strack, M.; Meier-dinkel, L.; Toep, S.; Daniel, M. Towards More Sustainable Meat Alternatives : How Technical Parameters Affect the Sensory Properties of Extrusion Products Derived from Soy and Algae. J. Clean. Prod. 2018, 198, 962–971. DOI: 10.1016/j.jclepro.2018.07.041.
  • Pietsch, V. L.; Bühler, J. M.; Karbstein, H. P.; Emin, M. A. High Moisture Extrusion of Soy Protein Concentrate: Influence of Thermomechanical Treatment on Protein-Protein Interactions and Rheological Properties. J. Food Eng. 2019, 251, 11–18. DOI: 10.1016/j.jfoodeng.2019.01.001.
  • Akdogan, H. Pressure, Torque, and Energy Responses of a Twin Screw Extruder at High Moisture Contents. Food Res. Int. 1996, 29(5–6), 423–429. DOI: 10.1016/S0963-9969(96)00036-1.
  • Fang, Q.; Hanna, M. A. Extrusion Systems: Design. Encycl. Agric. Food, Biol. Eng. Second Ed, 2010,1, 470–473. DOI: 10.1081/e-eafe2-120046040.
  • Unlu, E.; Faller, J. F. RTD in Twin-Screw Food Extrusion. J. Food Eng. 2002, 53(2), 115–131. DOI: 10.1016/S0260-8774(01)00148-0.
  • Holay, S. H.; Harper, J. M. Influence of the Extrusion Shear Environment on Plant Protein Texturization. J. Food Sci. 1982, 47(6), 1869–1874. DOI: 10.1111/j.1365-2621.1982.tb12902.x.
  • Sun, P. L.; Jiang, L. Z.; Sun, Y.; Sun, Z. L.; Xie, T. M.; Cao, Y. The Experimental Study about the Influence of Extrusion System Parameters on Textured Degree of High Moisture Content Fibriform Imitated Meat. Adv. Mater. Res. 2011, 188, 250–253. DOI: 10.4028/scientific.net/AMR.188.250.
  • Kitabatake, N.; Mégard, D.; Cheftel, J. C. Continuous Gel Formation by HTST Extrusion‐Cooking: Soy Proteins. J. Food Sci. 1985, 50(5), 1260–1265. DOI: 10.1111/j.1365-2621.1985.tb10457.x.
  • Lin, S.; Huff, H. E.; Hsieh, F. H. Texture and Chemical Characteristics of Soy Protein Meat Analog Extruded at High Moisture. J. Food Sci. 2000, 65(2), 264–269. DOI: 10.1111/j.1365-2621.2000.tb15991.x.
  • Liu, K. S.; Hsieh, F. H. Protein-Protein Interactions during High-Moisture Extrusion for Fibrous Meat Analogues and Comparison of Protein Solubility Methods Using Different Solvent Systems. J. Agric. Food Chem. 2008, 56(8), 2681–2687. DOI: 10.1021/jf073343q.
  • Chen, F. L.; Wei, Y. M.; Zhang, B. Chemical Cross-Linking and Molecular Aggregation of Soybean Protein during Extrusion Cooking at Low and High Moisture Content. LWT - Food Sci. Technol. 2011, 44(4), 957–962. DOI: 10.1016/j.lwt.2010.12.008.
  • Pietsch, V. L.; Werner, R.; Karbstein, H. P.; Emin, M. A. High Moisture Extrusion of Wheat Gluten: Relationship between Process Parameters, Protein Polymerization, and Final Product Characteristics. J. Food Eng. 2019, 259, 3–11. DOI: 10.1016/j.jfoodeng.2019.04.006.
  • Högg, E.; Horneber, T.; Rauh, C. Experimental and Numerical Analyses of the Texturisation Process of a Viscoelastic Protein Matrix in a Cooling Die after High Moisture Extrusion Cooking. Ger. Assoc. Laser Anemometry Gala e.V. 2017, September. 978-3-9816764-5-7
  • Murillo, J. L. S.; Osen, R.; Hiermaier, S.; Ganzenmüller, G. Towards Understanding the Mechanism of Fi Brous Texture Formation during High-Moisture Extrusion of Meat Substitutes. J. Food Eng. 2019, 242, 8–20. DOI: 10.1016/j.jfoodeng.2018.08.009.
  • Zhang, J.; Liu, L.; Jiang, Y.; Shah, F.; Xu, Y.; Wang, Q. High-Moisture Extrusion of Peanut Protein-/Carrageenan/Sodium Alginate/Wheat Starch Mixtures: Effect of Different Exogenous Polysaccharides on the Process Forming a Fibrous Structure. Food Hydrocoll. 2019. DOI: 10.1016/j.foodhyd.2019.105311.
  • Zhang, J.; Liu, L.; Zhu, S.; Wang, Q. Texturisation Behaviour of Peanut–Soy Bean/Wheat Protein Mixtures during High Moisture Extrusion Cooking. Int. J. Food Sci. Technol. 2018, 53(11), 2535–2541. DOI: 10.1111/ijfs.13847.
  • Chen, F. L.; Wei, Y. M.; Zhang, B.; Ojokoh, A. O. System Parameters and Product Properties Response of Soybean Protein Extruded at Wide Moisture Range. J. Food Eng. 2010, 96(2), 208–213. DOI: 10.1016/j.jfoodeng.2009.07.014.
  • Poulesquin, A.; Vergnes, B.; Cassagnau, P.; Michel, A.; Carneiro, O. S.; Covas, J. A. A Study of Residence Time Distribution in Co-Rotating Twin Screw Extruders. Part II : Experimental Validation. Polym. Eng. Sci. 2003, 43(12), 1849–1862. DOI: 10.1002/pen.10157.
  • Yu, L.; Meng, Y.; Ramaswamy, H. S.; Boye, J. Residence Time Distribution of Soy Protein Isolate and Corn Flour Feed Mix in a Twin-screw Extruder. J. Food Process. Preserv. 38 (1), 2012, 1–12.DOI: 10.1111/jfpp.12005.
  • Kristiawan, M.; Micard, V.; Maladira, P.; Alchamieh, C.; Maigret, J.-E.; Réguerre, A.-L.; Emin, M. A.; Della Valle, G. Multi-Scale Structural Changes of Starch and Proteins during Pea Flour Extrusion. Food Res. Int. 2018, 108, 203–215. DOI: 10.1016/j.foodres.2018.03.027.
  • Harper, J. M.;. Food Extrusion. In Food Properties and Computer-Aided Engineering of Food Processing Systems ; Singh, R.P., and Medina, A.G., Eds.; Kluwer Academic Publishers, 1989,168, pp 271–297.
  • Senouci, A.; Smith, A. C. An Experimental Study of Food Melt Rheology : Shear Viscosity Using a Slit Die Viscometer and a Capillary Rheometer. Rheol. Acta. 1988, 27(5), 546–554. DOI: 10.1007/BF01329355.
  • Son, Y. Determination of Shear Viscosity and Shear Rate from Pressure Drop and Flow Rate Relationship in a Rectangular Channel. Polymer (Guildf). 2007, 48(2), 632–637. DOI: 10.1016/j.polymer.2006.11.048.
  • Emin, M. A.; Schuchmann, H. P. A Mechanistic Approach to Analyze Extrusion Processing of Biopolymers by Numerical, Rheological, and Optical Methods. Trends Food Sci. Technol. 2017, 60, 88–95. DOI: 10.1016/j.tifs.2016.10.003.
  • Liu, K. S.; Hsieh, F. H. Protein-Protein Interactions in High Moisture-Extruded Meat Analogs and Heat-Induced Soy Protein Gels. JAOCS, J. Am. Oil Chem. Soc. 2007, 84(8), 741–748. DOI: 10.1007/s11746-007-1095-8.
  • Osen, R.; Schweiggert-Weisz, U. High-Moisture Extrusion: Meat Analogues; Elsevier, 2016. DOi: 10.1016/B978-0-08-100596-5.03099-7.
  • Riaz, M. N. Soy Applications in Food; first.Riaz, M.N.,Ed.; Taylor & Francis: Boca Raton,2006.10.1201/9781420037951
  • Navale, S. A.; Swami, S. B.; Thakor, N. J. Extrusion Cooking Technology for Foods : A Review. J. Ready To Eat Food. 2015, 2(3), 66–80.
  • Kearns, J. P.; Rokey, G. J.; Huber, G. R. Extrusion of Texturized Proteins. Am. Soybean Assoc. 2012, 18.
  • Singh, P.; Kumar, R.; Sabapathy, S. N.; Bawa, A. S. Functional and Edible Uses of Soy Protein Products. Compr. Rev. Food Sci. Food Saf. 2008, 7(1), 14–28. DOI: 10.1111/j.1541-4337.2007.00025.x.
  • Canadian Biotechnology Action Network CBAN. Where in the World are GM Crops and Foods ?; Canadian Biotechnology Action Network:Ottawa, 2015. DOI: 10.1163/_q3_SIM_00374.
  • Funk, C.; Kennedy, B. Differing Views on Benefits and Risks of Organic Foods, GMOs as Americans Report Higher Priority for Healthy Eating. 2016
  • Wunderlich, S.; Gatto, K. A. Consumer Perception of Genetically Modified Organisms and Sources of Information. Am. Soc. Nutr. 2015, 6, 842–851. DOI: 10.3945/an.115.008870.842.
  • Pietsch, V. L.; Karbstein, H. P.; Emin, M. A. Kinetics of Wheat Gluten Polymerization at Extrusion-like Conditions Relevant for the Production of Meat Analog Products. Food Hydrocoll. 2018, 85(March), 102–109. DOI: 10.1016/j.foodhyd.2018.07.008.
  • Chiang, J. H.; Loveday, S. M.; Hardacre, A. K.; Parker, M. E. Effects of Soy Protein to Wheat Gluten Ratio on the Physicochemical Properties of Extruded Meat Analogues. Food Struct. 2018. DOI: 10.1016/j.foostr.2018.11.002.
  • Murat, C.; Bard, M. H.; Dhalleine, C.; Cayot, N. Characterisation of Odour Active Compounds along Extraction Process from Pea Flour to Pea Protein Extract. Food Res. Int. 2013, 53(1), 31–41. DOI: 10.1016/j.foodres.2013.03.049.
  • Asgar, M. A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A. A. Nonmeat Protein Alternatives as Meat Extenders and Meat Analogs. Compr. Rev. Food Sci. Food Saf. 2010, 9(5), 513–529. DOI: 10.1111/j.1541-4337.2010.00124.x.
  • Arêas, J. A. G. Extrusion of Food Proteins. Crit. Rev. Food Sci. Nutr. 1992, 32(4), 365–392. DOI: 10.1055/s-2004-815600.
  • Dekkers, B. L. Creation of Fibrous Plant Protein Foods. Doctoral dissertation, Wageningen University. 2018.
  • Tolstoguzov, V. B. Texturising by Phase Separation. Biotechnol. Adv. 2006, 24(6), 626–628. DOI: 10.1016/j.biotechadv.2006.07.001.
  • Palanisamy, M.; Töpfl, S.; Aganovic, K.; Berger, R. G. Influence of Iota Carrageenan Addition on the Properties of Soya Protein Meat Analogues. LWT - Food Sci. Technol. 2018, 87, 546–552. DOI: 10.1016/j.lwt.2017.09.029.
  • Dekkers, B. L.; Boom, R. M.; van der Goot, A. J. Viscoelastic Properties of Soy Protein Isolate - Pectin Blends: Richer than Those of a Simple Composite Material. Food Res. Int. 2018, 107(2017), 281–288. DOI: 10.1016/j.foodres.2018.02.037.
  • Della Valle, G.; Quillien, L.; Gueguen, J. Relationships between Processing Conditions and Starch and Protein Modifications during Extrusion‐cooking of Pea Flour. J. Sci. Food Agric. 1994, 64(4), 509–517. DOI: 10.1002/jsfa.2740640418.
  • Camire, M. E.;. Chemical Changes During Extrusion Cooking: Recent Advances. In Process-Induced Chemical Changes in Food. Shahidi, F., Ho, C.-T., Chuyen, N.V.; Eds.; Plenum Press: New York, 1998; pp 109–121. DOI: 10.1007/978-1-4899-1925-0.
  • Arêas, J. A. G.; Rocha-Olivieri, C. M.; Marques, M. R. Extrusion Cooking: Chemical and Nutritional Changes. Encycl. Food Heal, 2016,1, 569–575.DOI:10.1016/B978-0-12-384947-2.00266-X.
  • Singh, S.; Gamlath, S.; Wakeling, L. Nutritional Aspects of Food Extrusion: A Review. Int. J. Food Sci. Technol. 2007, 42(8), 916–929. DOI: 10.1111/j.1365-2621.2006.01309.x.
  • Burgess, L.; Stanley, D. W. A Possible Mechanism for Thermal Texturization of Soybean Protein. Can. Inst. Food Sci. Technol. J. 1976, 94, 228–231. DOI:10.1016/S0315-5463(76)73681-2.
  • Hager, D. F. Effects of Extrusion upon Soy Concentrate Solubility. J. Agric. Food Chem. 1984, 32(2), 293–296. DOI: 10.1021/jf00122a029.
  • Prudencio-Ferreira, S. H.; Arêas, J. A. G. Protein‐Protein Interactions in the Extrusion of Soya at Various Temperatures and Moisture Contents. J. Food Sci. 1993, 58(2), 378–381. DOI: 10.1111/j.1365-2621.1993.tb04279.x.
  • Osen, R.; Toelstede, S.; Eisner, P.; Schweiggert-Weisz, U. Effect of High Moisture Extrusion Cooking on Protein-protein Interactions of Pea (Pisum Sativum L.) Protein Isolates. Int. J. Food Sci. Technol. 2015, 50(6), 1390–1396. DOI: 10.1111/ijfs.12783.
  • Alonso, R.; Orue, E.; Zabalza, M. J.; Grant, G.; Marzo, F. Effect of Extrusion Cooking on Structure and Functional Properties of Pea and Kidney Bean. J. Sci. Food Agric. 2000, 80(3), 397–403. DOI: 10.1002/1097-0010(200002)80:3<397::AID-JSFA542>3.0.CO;2-3.
  • Meade, S. J.; Reid, E. A.; Gerrard, J. A. The Impact of Processing on the Nutritional Quality of Food Proteins. AOCS. 2005, 88(3), 904–922.
  • Cheftel, J. C. Nutritional Effects of Extrusion-Cooking. Food Chem. 1986, 20(4), 263–283. DOI: 10.1016/0308-8146(86)90096-8.
  • Chaiyakul, S.; Jangchud, K.; Jangchud, A.; Wuttijumnong, P.; Winger, R. Effect of Extrusion Conditions on Physical and Chemical Properties of High Protein Glutinous Rice-Based Snack. LWT - Food Sci. Technol. 2009, 42(3), 781–787. DOI: 10.1016/j.lwt.2008.09.011.
  • Chung, S. Y.; Swaisgood, H. E.; Catignani, G. L. Effects of Alkali Treatment and Heat Treatment in the Presence of Fructose on Digestibility of Food Proteins as Determined by an Immobilized Digestive Enzyme Assay (IDEA). J. Agric. Food Chem. 1986, 34(3), 579–584. DOI: 10.1021/jf00069a051.
  • Lee, K. H.; Ryu, H. S.; Rhee, K. C. Protein Solubility Characteristics of Commercial Soy Protein Products. JAOCS, J. Am. Oil Chem. Soc. 2003, 80(1), 85–90. DOI: 10.1007/s11746-003-0656-6.
  • Zheng, H. G.; Yang, X. Q.; Tang, C. H.; Li, L.; Ahmad, I. Preparation of Soluble Soybean Protein Aggregates (SSPA) from Insoluble Soybean Protein Concentrates (SPC) and Its Functional Properties. Food Res. Int. 2008, 41(2), 154–164. DOI: 10.1016/j.foodres.2007.10.013.
  • Walther, G.; Van Lengerich, B. H.; Robie, S. C.; Weinstein, J. N. System and Method for Producing Extruded Protein Product. US 2018/0098557A1. 2018.
  • Grinberg, V. Y.; Tolstoguzov, V. B. Thermodynamic Incompatibility of Proteins and Polysaccharides in Solutions. Food Hydrocoll. 1997, 11(2), 145–158. DOI: 10.1016/S0268-005X(97)80022-7.
  • Boer, J. D.; Schösler, H.; Aiking, H. ‘“ Meatless Days “’ or ‘“ Less but Better ”’? Exploring Strategies to Adapt Western Meat Consumption to Health and Sustainability Challenges, Appetite . 2014, 76, 120–128. doi:10.1016/j.appet.2014.02.002
  • Hartmann, C.; Siegrist, M. Consumer Perception and Behaviour regarding Sustainable Protein Consumption: A Systematic Review. Trends Food Sci. Technol. 2017, 61, 11–25. DOI: 10.1016/j.tifs.2016.12.006.
  • Osen, R. Texturization of Pea Protein Isolates Using High Moisture Extrusion Cooking, 2017. Doctoral dissertation, Technische Universität München.
  • Horvat, M.; Azad Emin, M.; Hochstein, B.; Willenbacher, N.; Schuchmann, H. P. A Multiple-step Slit Die Rheometer for Rheological Characterization of Extruded Starch Melts. J. Food Eng. 2013, 116(2), 398–403. DOI: 10.1016/j.jfoodeng.2012.11.028.
  • Philipp, C.; Oey, I.; Silcock, P.; Beck, S. M.; Buckow, R. Impact of Proteincontent on Physical and Microstructural Properties of Extruded Rice Starch-pea Protein Snacks. J. Food Eng. 2017, 212, 165–173. DOI: 10.1016/j.jfoodeng.2017.05.024.
  • Thadavathi, Y. L. N.; Wassén, S.; Kádár, R. In-line Rheological Andmicrostroctural Characterization of High Moisture Content Protein Vegetable Mixtures in Single Screw Extrusion. J. Food Eng. 2018, 245, 112–123. DOI: 10.1016/j.jfoodeng.2018.10.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.