537
Views
4
CrossRef citations to date
0
Altmetric
Review

Recent Development in Bioactive Compounds and Health Benefits of Kumquat Fruits

, & ORCID Icon

References

  • Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Kumquat (Fortunella Japonica Swingle) Juice: Flavonoid Distribution and Antioxidant Properties. Food Res. Int. 2011, 44(7), 2190–2197. DOI: 10.1016/J.FOODRES.2010.11.031.
  • Palma, A.; D’Aquino, S. Kumquat—Fortunella Japonica. In Exotic Fruits; Rodrigues, S., Silva, E. O.,Brito, E. S., Ed(s).;Academic Press:London, UK, 2018; pp 271–278.
  • Morton, F.; Dowling, C. F. Kumquat. In Fruits of Warm Climates; Morton, J.F., Ed.; Flair books:Miami, FL; 1987; pp 182–187.
  • Peng, L. W.; Sheu, M. J.; Lin, L. Y.; Wu, C. T.; Chiang, H. M.; Lin, W. H.; Lee, M. C.; Chen, H. C. Effect of Heat Treatments on the Essential Oils of Kumquat (Fortunella Margarita Swingle). Food Chem. 2013, 136(2), 532–537. DOI: 10.1016/J.FOODCHEM.2012.08.014.
  • Abirami, A.; Nagarani, G.; Siddhuraju, P. In Vitro Antioxidant, Anti-diabetic, Cholinesterase and Tyrosinase Inhibitory Potential of Fresh Juice from Citrus Hystrix and C. Maxima Fruits. Food Sci. Hum. Wellness. 2014, 3(1), 16–25. DOI: 10.1016/J.FSHW.2014.02.001.
  • Tan, S.; Zhao, X.; Yang, Y.; Ke, Z.; Zhou, Z. Chemical Profiling Using Uplc Q-Tof/Ms and Antioxidant Activities of Fortunella Fruits. J. Food Sci. 2016, 81(7), C1646–C1653. DOI: 10.1111/1750-3841.13352.
  • Sutour, S.; Luro, F.; Bradesi, P.; Casanova, J.; Tomi, F. Chemical Composition of the Fruit Oils of Five Fortunella Species Grown in the Same Pedoclimatic Conditions in Corsica (France). Nat. Prod. Communicat. 2016, 11(2), 259–262. DOI: 10.1177/1934578X1601100231.
  • Sharma, K.; Mahato, N.; Cho, M. H.; Lee, Y. R. Converting Citrus Wastes into Value-added Products: Economic and Environmentally Friendly Approaches. Nutrition. 2017, 34, 29–46. DOI: 10.1016/J.NUT.2016.09.006.
  • Lin, C. S. K.; Pfaltzgraff, L. A.; Herrero-Davila, L.; Mubofu, E. B.; Abderrahim, S.; Clark, J. H.; Koutinas, A. A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F., et al. Food Waste as a Valuable Resource for the Production of Chemicals, Materials and Fuels. Current Situation and Global Perspective. Energy Environ. Sci.2013, 6(2), 426–464. DOI: 10.1039/C2EE23440H.
  • Cevolani, D. Materie prime ad alto tenore in fibra. In Alimenti per la vacca da latte e il bovino da carne; Barbieri, L., Bombardieri, R., Carrescia, R., Conte, F., Frigerio, E., Mattiello, S., Menghini, E., Napoli, G, Eds, Bologana, Italy, Edagricole, 2016; 223-243.
  • Lou, S. N.; Ho, C. T. Phenolic Compounds and Biological Activities of Small-size Citrus: Kumquat and Calamondin. J. Food Drug Anal. 2017, 25(1), 162–175. DOI: 10.1016/J.JFDA.2016.10.024.
  • Souza, C. S. E.; Anunciação, P. C.; Mattos, C.; Lucia, D.; Gonçalves, R.; Das Dôres, R.; Célia, R.; De, R.; Milagres, M.; Maria, H., et al. Kumquat (Fortunella Margarita): A Good Alternative for the Ingestion of Nutrients and Bioactive Compounds. In proceedings of the proceedings 2021, November 10-25, 2020: Online; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020; Vol. 70, p. 105.
  • USDA FoodData Central Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168154/nutrients ( accessed on Dec 4, 2021).
  • Meenu, M.; Kurade, C.; Neelapu, B. C.; Kalra, S.; Ramaswamy, H. S.; Yu, Y. A Concise Review on Food Quality Assessment Using Digital Image Processing. Trends Food Sci. Technol. 2021, 118, 106–124. DOI: 10.1016/J.TIFS.2021.09.014.
  • Meenu, M.; Decker, E. A.; Xu, B. Application of Vibrational Spectroscopic Techniques for Determination of Thermal Degradation of Frying Oils and Fats: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–22. DOI: 10.1080/10408398.2021.1891520.
  • Meenu, M.; Xu, B. Application of Vibrational Spectroscopy for Classification, Authentication and Quality Analysis of Mushroom: A Concise Review. Food Chem. 2019, 289, 545–557. DOI: 10.1016/J.FOODCHEM.2019.03.091.
  • Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic Acids and Flavonoids Profiles of Commercial Honey from Different Floral Sources and Geographic Sources. 10.1080/10942912.2019.1579835. 2019, 22, 290–308. 10.1080/10942912.2019.1579835.
  • Yu, X.; Meenu, M.; Xu, B.; Yu, H. Impact of Processing Technologies on Isoflavones, Phenolic Acids, and Antioxidant Capacities of Soymilk Prepared from 15 Soybean Varieties. Food Chem. 2021, 345, 128612. DOI: 10.1016/J.FOODCHEM.2020.128612.
  • Zhou, Z.; Fan, Z.; Meenu, M.; Xu, B. Impact of Germination Time on Resveratrol, Phenolic Acids, and Antioxidant Capacities of Different Varieties of Peanut (Arachis Hypogaea Linn.) From China. Antioxidants. 2021, 10(11), 1714. DOI: 10.3390/ANTIOX10111714.
  • Diniz, A. B.; Oliveira, D. R. Chemical Composition of Kinkan Orange and Citrus Fruits. Demetra Food, Nutr. Heal 2015, 10, 835–845. DOI: 10.12957/DEMETRA.2015.16726.
  • Kelebek, H.; Selli, S. Determination of Volatile, Phenolic, Organic Acid and Sugar Components in a Turkish Cv. Dortyol (Citrus Sinensis L. Osbeck) Orange Juice. J. Sci. Food Agric. 2011, 91(10), 1855–1862. DOI: 10.1002/JSFA.4396.
  • Carr, A. C.; Maggini, S. Vitamin C and Immune Function. Nutrients. 2017, 9(11), 1211. DOI: 10.3390/NU9111211.
  • Hosseini, S. F.; Amraie, M.; Salehi, M.; Mohseni, M.; Aloui, H. Effect of Chitosan-based Coatings Enriched with Savory And/or Tarragon Essential Oils on Postharvest Maintenance of Kumquat (Fortunella Sp.) Fruit. Food Sci. Nutr. 2019, 7(1), 155. DOI: 10.1002/FSN3.835.
  • Andrade, R. S. G. D.; Diniz, M. C. T.; Neves, E. A.; Nóbrega, J. A. Determinação E Distribuição de Ácido Ascórbico Em Três Frutos Tropicais. Eclética Química 2002, 27(spe), 393–401. DOI: 10.1590/S0100-46702002000200032.
  • Wang, Y. W.; Zeng, W. C.; Xu, P. Y.; Lan, Y. J.; Zhu, R. X.; Zhong, K.; Huang, Y. N.; Gao, H. Chemical Composition and Antimicrobial Activity of the Essential Oil of Kumquat (Fortunella Crassifolia Swingle) Peel. Int. J. Mol. Sci. 2012, 13(3382). DOI: 10.3390/IJMS13033382.
  • Chen, M.-H.; Yang, K.-M.; Huang, T.-C.; Wu, M.-L. Traditional Small-size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity. Medicines. 2017, 4(2), 28. DOI: 10.3390/MEDICINES4020028.
  • Liu, X.; Liu, B.; Jiang, D.; Zhu, S.; Shen, W.; Yu, X.; Xue, Y.; Liu, M.; Feng, J.; Zhao, X. The Accumulation and Composition of Essential Oil in Kumquat Peel. Sci. Hortic. (Amsterdam). 2019, 252, 121–129. DOI: 10.1016/J.SCIENTA.2019.03.042.
  • Sicari, V.; Poiana, M. Comparison of the Volatile Component of the Essential Oil of Kumquat (Fortunella Margarita Swingle) Extracted by Supercritical Carbon Dioxide, Hydrodistillation and Conventional Solvent Extraction. J. Essent. Oil-Bear. Plants. 2017, 20(1), 87–94. DOI: 10.1080/0972060X.2017.1282841.
  • Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M. I.; Galanis, A.; Kourkoutas, Y.; Chlichlia, K., et al. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum Basilicum, Mentha Spicata, Pimpinella Anisum and Fortunella Margarita. Molecules. 2016, 21(8), 1069. DOI: 10.3390/MOLECULES21081069. Mentha spicata, Pimpinella anisum and Fortunella margarita.
  • Al-Saman, M. A.; Abdella, A.; Mazrou, K. E.; Tayel, A. A.; Irmak, S. Antimicrobial and Antioxidant Activities of Different Extracts of the Peel of Kumquat (Citrus Japonica Thunb). J. Food Meas. Charact. 2019, 13(4), 3221–3229. 2019 134. DOI: 10.1007/S11694-019-00244-Y.
  • Grosch, W.;. Evaluation of the Key Odorants of Foods by Dilution Experiments, Aroma Models and Omission. Chem. Senses. 2001, 26(5), 533–545. DOI: 10.1093/CHEMSE/26.5.533.
  • Jayaprakasha, G. K.; Kranthi Kumar, C.; Chaudhary, P.; Chidambara Murthy, K. N.; Patil, B. S. Identification of Volatiles from Kumquats and Their Biological Activities. ACS Symp. Ser. 2013, 1129, 63–92. DOI: 10.1021/BK-2013-1129.CH004.
  • Lou, S. N.; Lai, Y. C.; Huang, J. D.; Ho, C. T.; Ferng, L. H. A.; Chang, Y. C. Drying Effect on Flavonoid Composition and Antioxidant Activity of Immature Kumquat. Food Chem. 2015, 171, 356–363. DOI: 10.1016/J.FOODCHEM.2014.08.119.
  • Lou, S. N.; Lai, Y. C.; Hsu, Y. S.; Ho, C. T. Phenolic Content, Antioxidant Activity and Effective Compounds of Kumquat Extracted by Different Solvents. Food Chem. 2016, 197, 1–6. DOI: 10.1016/J.FOODCHEM.2015.10.096.
  • Izli, G.; Izli, N.; Taskin, O.; Yildiz, G. Convective Drying of Kumquat Slices: Comparison of Different Drying Temperatures on Drying Kinetics, Colour, Total Phenolic Content and Antioxidant Capacity. Lat. Am. Appl. Res. - An Int. J 2018, 48(1), 37–42. DOI: 10.52292/J.LAAR.2018.256.
  • Boudhrioua, N.; Bahloul, N.; Ben Slimen, I.; Kechaou, N. Comparison on the Total Phenol Contents and the Color of Fresh and Infrared Dried Olive Leaves. Ind. Crop Prod. 2009, 29(2–3), 412–419. DOI: 10.1016/J.INDCROP.2008.08.001.
  • Mrad, N. D.; Boudhrioua, N.; Kechaou, N.; Courtois, F.; Bonazzi, C. Influence of Air Drying Temperature on Kinetics, Physicochemical Properties, Total Phenolic Content and Ascorbic Acid of Pears. Food Bioprod. Process. 2012, 90(3), 433–441. DOI: 10.1016/J.FBP.2011.11.009.
  • Ogawa, K.; Kawasaki, A.; Omura, M.; Yoshida, T.; Ikoma, Y.; Yano, M. 3′,5′-Di-C-β-glucopyranosylphloretin, a Flavonoid Characteristic of the Genus Fortunella. Phytochemistry. 2001, 57(5), 737–742. DOI: 10.1016/S0031-9422(01)00132-7.
  • Xu, Z.; Meenu, M.; Chen, P.; Xu, B. Comparative Study on Phytochemical Profiles and Antioxidant Capacities of Chestnuts Produced in Different Geographic Area in China. Antioxidants (Basel, Switzerland). 2020, 9. DOI: 10.3390/ANTIOX9030190.
  • Wu, Z.; Meenu, M.; Xu, B. Nutritional Value and Antioxidant Activity of Chinese Black Truffle (Tuber Indicum) Grown in Different Geographical Regions in China. LWT. 2021, 135, 110226. DOI: 10.1016/J.LWT.2020.110226.
  • Zhang, Y.; Meenu, M.; Yu, H.; Xu, B. An Investigation on Phenolic and Antioxidant Capacity of Under-utilized Food Legumes Consumed in China. Foods. 2020, 9(4), 438. DOI: 10.3390/FOODS9040438.
  • Oke, F.; Aslim, B.; Ozturk, S.; Altundag, S. Essential Oil Composition, Antimicrobial and Antioxidant Activities of Satureja Cuneifolia Ten. Food Chem. 2009, 112(4), 874–879. DOI: 10.1016/j.foodchem.2008.06.061.
  • Fisher, K.; Phillips, C. Potential Antimicrobial Uses of Essential Oils in Food: Is Citrus the Answer? Trends Food Sci. Technol. 2008, 19(3), 156–164. DOI: 10.1016/J.TIFS.2007.11.006.
  • Jayaprakasha, G. K.; Chidambara Murthy, K. N.; Etlinger, M.; Mantur, S. M.; Patil, B. S. Radical Scavenging Capacities and Inhibition of Human Prostate (Lncap) Cell Proliferation by Fortunella Margarita. Food Chem. 2012, 131(1), 184–191. DOI: 10.1016/J.FOODCHEM.2011.08.058.
  • Jayaprakasha, G. K.; Murthy, K. C.; Demarais, R.; Patil, B. Inhibition of Prostate Cancer (Lncap) Cell Proliferation by Volatile Components from Nagami Kumquats. Planta Med. 2012, 78(10), 974–980. DOI: 10.1055/S-0031-1298619.
  • Abdallah, I. Z. A.; Ahmed, M. M.; Montaser, S. A.; Hafez, S. S. Efficiency of Kumquat Fruit (Fortunella Margarita) Extract against Hepatotoxicity and Infertility Induced by Gamma Irradiation in Male Albino Rats. Egypt. J. Radiat. Sci. Appl 2019, 32, 187–199. DOI: 10.21608/EJRSA.2019.17840.1082.
  • Mohamed, D. A.; Fouda, K.; Hamed, I. M.; Abdelgayed, S. S. Protective Effect of Kumquat Fruits and Carrot Seeds Extracts against Brain Aging in Rats. J. Herbmed Pharmacol 2019, 8(4), 287–294. DOI: 10.1093/chemse/26.5.533.
  • Tan, S.; Li, M.; Ding, X.; Fan, S.; Guo, L.; Gu, M.; Zhang, Y.; Feng, L.; Jiang, D.; Li, Y., et al. Effects of Fortunella Margarita Fruit Extract on Metabolic Disorders in High-fat Diet-induced Obese C57BL/6 Mice. PLoS One. 2014, 9, DOI: 10.1371/JOURNAL.PONE.0093510.
  • Choi, M. Y.; Chai, C.; Park, J. H.; Lim, J.; Lee, J.; Kwon, S. W. Effects of Storage Period and Heat Treatment on Phenolic Compound Composition in Dried Citrus Peels (Chenpi) and Discrimination of Chenpi with Different Storage Periods through Targeted Metabolomic Study Using HPLC-DAD Analysis. J. Pharm. Biomed. Anal. 2011, 54(4), 638–645. DOI: 10.1016/J.JPBA.2010.09.036.
  • Krishna, A.; Kumar, A. Evaluation of Radioprotective Effects of Rajgira (Amaranthus Paniculatus) Extract in Swiss Albino Mice. J. Radiat. Res 2005, 46(2), 233–239. DOI: 10.1269/JRR.46.233.
  • Dionísio, A. P.; Molina, G.; Souza de Carvalho, D.; Dos Santos, R.; Bicas, J. L.; Pastore, G. M. Natural Flavourings from Biotechnology for Foods and Beverages. In Natural Food Additives, Ingredients and Flavourings; Woodhead Publishing:Cambridge, UK, 2012; pp 231–259.
  • Nakajima, T.; Ninomiya, Y.; Nenoi, M. Radiation-induced Reactions in the Liver Modulation of Radiation Effects by Lifestyle-related Factors. Int. J. Mol. Sci. 2018, 19(12), 3855. DOI: 10.3390/IJMS19123855.
  • Benson, R.; Madan, R.; Kilambi, R.; Chander, S. Radiation Induced Liver Disease: A Clinical Update. J. Egypt. Natl. Canc. Inst 2016, 28(1), 7–11. DOI: 10.1016/J.JNCI.2015.08.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.