868
Views
3
CrossRef citations to date
0
Altmetric
Review

Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , , , & show all

References

  • Bleich, S. N. A Road Map for Sustaining Healthy Eating Behavior. N. Engl. J. Med 2018, 379(6), 507–509. DOI: 10.1056/NEJMp1805494.
  • Loureiro, M.; Achargui, R.; Flakowski, R. V.; Zessen, J.; Stefanelli, T.; Pascoli, V.; Lüscher, C. Social Transmission of Food Safety Depends on Synaptic Plasticity in the Prefrontal Cortex. Science. 2019, 364(6444), 991–995. DOI: 10.1126/science.aaw5842.
  • Zeng, Y. W.; He, M. J.; Yang, J. Z.; Du, J.; Yang, X. M.; Pu, X. Y.; Li, X.; Yang, T.; Mandal, M. S. N. Rewilding Food Ecosystems for Human Health. Science. 2019, 364, (6438). https://science.sciencemag.org/content/364/6438/eaav5570
  • Zeng, Y. W.; Yang, J. Z.; Du, J.; Li, X.; Yang, X. M.; Pu, X. Y. Regular Functional Rice to Combat Human Diabetes. BMJ. 2019, 364(I969). https://www.bmj.com/content/364/bmj.l969/rr-0 (Accessed March 28, 2019)
  • Zeng, Y. W.; Pu, X. Y.; Yang, J. Y.; Du, J.; Yang, X. M.; Li, X.; Li, L.; Zhou, Y.; Yang, T. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings. Oxid. Med. Cell. Longev. 2018, 2018, 3232080. DOI: 10.1155/2018/3232080.
  • Zeng, Y. W. Human Diet and Health. Science. 2018, 362, (6416). https://www.science.org/doi/10.1126/science.aav9415 (Accessed December 1,2018).
  • Zeng, Y. W.; Pu, X. Y.; Du, J.; Yang, S. M.; Yang, T.; Jia, P. Use of Functional Foods for Diabetes Prevention in China.African Journal of Pharmacy and Pharmacology. 2012, 6(35), 2570–2579. DOI: 10.5897/AJPP12.119.
  • Zeng, Y. W.; Du, J.; Pu, X. Y.; Yang, S. M.; Yang, T.; Jia, P. Strategies of Functional Food for Hypertension Prevention in China. J. Med. Plant Res. 2011, 5(24), 5671–5676.
  • Zeng, Y. W.; Pu, X. Y.; Yang, X. M.; Yang, J. Z.; Du, J.; Yang, T.; Li, X. Strategies of Functional Foods for Heart Disease Prevention in Human Being. In 2016-International Conference on Environmental Research and Public Health, Zuo, Y.G. Eds Shenzhen, De Gruyter Open Ltd, Warsaw/Berlin, Germany, October 21–23, 2016. 2017.
  • Afshin, A.; Sur, P. J.; Fay, K. A.; Cornaby, L.; Ferrara, G.; Salama, J. S.; Mullany, E. C.; Abate, K. H.; Abbafati, C.; Abebe, Z.; GBD. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet. 2019, 393(10184), 1958–1972. 2017 doi:10.1016/S0140-6736(19)30041-8.
  • Guzman, M. K.; Parween, S.; Butardo, V. M.; Alhambra, C. M.; Anacleto, R.; Seiler, C.; Bird, A. R.; Chow, C. P.; Sreenivasulu, N. Investigating Glycemic Potential of Rice by Unraveling Compositional Variations in Mature Grain and Starch Mobilization Patterns during Seed Germination. Sci. Rep. 2017, 7(1), 5854. DOI: 10.1038/s41598-017-06026-0.
  • Zhou, H. J.; Wang, L. J.; Liu, G. F.; Meng, X. B.; Jing, Y. H.; Shu, X. L.; Kong, X. L.; Sun, J.; Yu, H.; Smith, S. M., et al. Critical Roles of Soluble Starch Synthase SSIIIa and Granule-bound Starch Synthase Waxy in Synthesizing Resistant Starch in Rice. PNAS. 2016, 113(45), 12844–12849.
  • World Economic Forum. The Global Economic Burden of Non-communicable Diseases. 2011, http://www3.weforum.org/docs/WEF_Harvard_HE_GlobalEconomicBurdenNonCommunicableDiseases_2011.pdf (accessed September 19,2011).
  • Kaiser, J. NIH’s ‘Precision Nutrition’ Bet Aims for Individualized Diets. Science. 2021, 371(6529), 552. DOI: 10.1126/science.371.6529.552.
  • Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A. A.; Ogurtsova, K., et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 Th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. DOI: 10.1016/j.diabres.2019.107843.
  • Popkin, B. M.; Corvalan, C.; Grummer-Strawn, L. M. Dynamics of the Double Burden of Malnutrition and the Changing Nutrition Reality. Lancet. 2020, 395(10217), 65–74. DOI: 10.1016/S0140-6736(19)32497-3.
  • Meenu, M.; Xu, B. A. Critical Review on anti-Diabetic and Anti-obesity Effects of Dietary Resistant Starch. Crit. Rev. Food Sci. Nutr. 2018, 30, 1–13.
  • Zeng, Y. W.; Ahmed, H. G. M.-D.; Zhu, C. F.; Yang, X. M.; Pu, X. Y.; Du, J.; Li, X.; Yang, J. Z.; Hodeib, S.; Korol, C. Functional Foods Enhance Immunity and COVID-19 Resistance. Science. 2020, 370(6515), eabd4570. doi:10.1126/science.abd4570.
  • Zeng, Y. W.; Pu, X. Y.; Du, J.; Yang, X. M.; Li, X.; Mandal, M. S. N.; Yang, T.; Yang, J. Z. Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic diseases.Oxid. Med. Cell. Longev. 2018, 2018, 3836172.
  • Hemler, E. C.; Hu, F. B. Plant-based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10(Supplement_4), S275–S283. DOI: 10.1093/advances/nmy117.
  • Dhital, S.; Warren, F. J.; Butterworth, P. J.; Ellis, P. R.; Gidley, M. J. Mechanisms of Starch Digestion by α-amylase—Structural Basis for Kinetic Properties. Crit. Rev. Food Sci. Nutr. 2017, 57(5), 875–892. DOI: 10.1080/10408398.2014.922043.
  • Lockyer, S.; Nugent, A. Health Effects of Resistant Starch. Nutr. Bullet. 2017, 42, 10–41.
  • Brighenti, F.; Casiraghi, M. C.; Baggio, C. Resistant Starch in the Italian Diet. Br. J. Nutr. 1998, 80(4), 333–341. DOI: 10.1079/096582198388283.
  • Murphy, M. M.; Douglass, J. S.; Birkett, A. Resistant Starch Intakes in the United States. J. Am. Diet. Assoc. 2008, 108(1), 67–78. DOI: 10.1016/j.jada.2007.10.012.
  • Baghurst, K. I.; Baghurst, P. A.; Record, S. J. Dietary Fiber, Non-starch Polysaccharide, and Resistant Starch Intakes in Australia. In CRC Handbook of Dietary Fiber in Human Nutrition(3rd ed.). CRC Press/Boca Raton/Spiller, G.A.(Ed.). 2001; pp 583–591. https://doi.org/10.1201/9781420038514
  • Chinabgao. 2017. Global Resistant Starch Market Research Report 2017. http://www.chinabgao.com/english/369993.html (Accessed July 20, 2018).
  • Chen, H.; Chen, G.; Zheng, X.; Guo, Y. Contribution of Specific Diseases and Injuries to Changes in Health Adjusted Life Expectancy in 187 Countries from 1990 to 2013: Retrospective Observational Study. BMJ. 2019, 364, l969. DOI: 10.1136/bmj.l969.
  • Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y, et al. Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet. 2019, 394(10204), 1145–1158.
  • Saneei, P.; Larijani, B.; Esmaillzadeh, A. Rice Consumption, Incidence of Chronic Diseases and Risk of Mortality: Meta-analysis of Cohort Studies. Public. Health. Nutr. 2017, 20(2), 233–244. DOI: 10.1017/S1368980016002172.
  • Englyst, H. N.; Kingman, S. M.; Cummings, J. H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50.
  • Prasad, V. S. S.; Hymavathi, A.; Babu, V. R.; Longvah, T. Nutritional Composition in Relation to Glycaemic Potential of Popular Indian Rice Varieties. Food Chem. 2018, 238, 29–34. DOI: 10.1016/j.foodchem.2017.03.138.
  • Wada, T.; Yamaguchi, O.; Miyazaki, M.; Miyahara, K.; Ishibashi, M.; Aihara, T.; Shibuta, T.; Inoue, T.; Tsubone, M.; Toyosawa, Y., et al. Development and Characterization of a New Rice Cultivar, ‘Chikushi-kona 85’, Derived from a Starch-branching Enzyme IIb-deficient Mutant Line. Breeding Science. 2018, 68(2), 278–283.
  • Birt, D. F.; Boylston, T.; Hendrich, S.; Jane, J. L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G. J.; Rowling, M., et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4(6), 587–601.
  • Yang, R. F.; Sun, C. L.; Bai, J. J.; Luo, Z. X.; Shi, B.; Zhang, J. M.; Yan, W. G.; Piao, Z. Z. A Putative Gene SBE3-rs for Resistant Starch Mutated from SBE3 for Starch Branching Enzyme in Rice (Oryza Sativa L.). PLoS ONE. 2012, 7(8), e43026. DOI: 10.1371/journal.pone.0043026.
  • Yang, R. F.; Bai, J. J.; Fang, J.; Wang, Y.; Lee, G.; Piao, Z. Z. A Single Amino Acid Mutation of OsSBEIIb Contributes to Resistant Starch Accumulation in Rice. Breed. Sci. 2016, 66(4), 481–489. DOI: 10.1270/jsbbs.16037.
  • Baghurst, P. A.; Baghurst, K.; Record, S. Dietary Fiber, Non-starch Polysaccharides and Resistant Starch: A Review. Food Aus. 1996, 48(3), S3–35.
  • Yang, C. Z.; Shu, X. L.; Zhang, L. L.; Wang, X. Y.; Zhao, H. J.; Ma, C. X.; Wu, D. X. Starch Properties of Mutant Rice High in Resistant Starch. Journal of Agricultural and Food Chemistry. 2006, 54(2), 523–528. DOI: 10.1021/jf0524123.
  • Shu, X.; Jia, L.; Ye, H.; Li, C.; Wu, D. Slow Digestion Properties of Rice Different in Resistant Starch. J. Agric. Food. Chem. 2009, 57(16), 7552–7559. DOI: 10.1021/jf900988h.
  • Krishnan, V.; Mondal, D.; Bollinedi, H.; Srivastava, S.; Sv, R.; Madhavan, L.; Thomas, B.; R, A. T.; Singh, A.; Singh, A. K., et al. Cooking Fat Types Alter the Inherent Glycaemic Response of Niche Rice Varieties through Resistant Starch (RS) formation.Int. International Journal of Biological Macromolecules. 2020, 162, 1668–1681. DOI: 10.1016/j.ijbiomac.2020.07.265.
  • Ordonio, R. L.; Matsuoka, M. Increasing Resistant Starch Content in Rice for Better Consumer Health. PNAS. 2016, 113(45), 12616–12618. DOI: 10.1073/pnas.1616053113.
  • Wang, H.; Liu, Y.; Chen, L.; Li, X.; Wang, J.; Xie, F. Insights into the Multi-scale Structure and Digestibility of Heat-moisture Treated Rice Starch. Food Chemistry. 2018, 242, 323–329. DOI: 10.1016/j.foodchem.2017.09.014.
  • Li, R.; Jiang, M.; Zheng, W.; Zhang, H. GUN4-mediated Tetrapyrrole Metabolites Regulates Starch Biosynthesis during Early Seed Development in Rice. J. Cereal Sci. 2021, 101, 103317. DOI: 10.1016/j.jcs.2021.103317.
  • He, M.; Qiu, C.; Liao, Z.; Sui, Z.; Corke, H. Impact of Cooking Conditions on the Properties of Rice: Combined Temperature and Cooking Time. Int. J. Biol. Macromol. 2018, 117, 87–94. DOI: 10.1016/j.ijbiomac.2018.05.139.
  • Silva, W. M. F.; Biduski, B.; Lima, K. O.; Pinto, V. Z.; Hoffmann, J. F.; Vanier, N. L.; Dias, A. R. G. Starch Digestibility and Molecular Weight Distribution of Proteins in Rice Grains Subjected to Heat-moisture Treatment. Food Chemistry. 2017, 219, 260–267. DOI: 10.1016/j.foodchem.2016.09.134.
  • Zeng, Y. W.; Sun, D.; Du, J.; Pu, X. Y.; Yang, S. M.; Yang, X. M.; Yang, T.; Yang, J. Z. Identification of QTLs for Resistant Starch and Total Alkaloid Content in Brown and Polished Rice. Genet. Mol. Res. 2016, 15(3), 15037268. DOI: 10.4238/gmr.15037268.
  • Nakaya, M.; Shojo, A.; Hirai, H.; Matsumoto, K.; Kitamura, S. Hypolipidemic Effects of Starch and γ-oryzanol from Wx/ae Double-mutant Rice on BALB/c.KOR-Apoe(shl) Mice. Biosci. Biotechnol. Biochem. 2013, 77(7), 1435–1440. DOI: 10.1271/bbb.130087.
  • Ashwar, B. A.; Gani, A.; Gani, A.; Shah, A.; Masoodi, F. A. Production of RS4 from Rice Starch and Its Utilization as an Encapsulating Agent for Targeted Delivery of Probiotics. Food Chemistry. 2018, 239, 287–294. DOI: 10.1016/j.foodchem.2017.06.110.
  • Baysal, C.; He, W.; Drapal, M.; Villorbina, G.; Medina, V.; Capell, T.; Khush, G. S.; Zhu, C.; Fraser, P. D.; Christou, P. Inactivation of Rice Starch Branching Enzyme IIb Triggers Broad and Unexpected Changes in Metabolism by Transcriptional Reprogramming. Proc. Natl. Acad. Sci. USA. 2020, 117(42), 26503–26512. DOI: 10.1073/pnas.2014860117.
  • Kwak, J. H.; Paik, J. K.; Kim, H. I.; Kim, O. Y.; Shin, D. Y.; Kim, H.-J.; Lee, J. H.; Lee, J. H. Dietary Treatment with Rice Containing Resistant Starch Improves Markers of Endothelial Function with Reduction of Postprandial Blood Glucose and Oxidative Stress in Patients with Prediabetes or Newly Diagnosed Type 2 Diabetes. Atherosclerosis. 2012, 224(2), 457–464. DOI: 10.1016/j.atherosclerosis.2012.08.003.
  • Zheng, Y.; Wei, Z.; Zhang, R.; Deng, Y.; Tang, X.; Zhang, Y.; Liu, G.; Liu, L.; Wang, J.; Liao, N., et al. Optimization of the Autoclave Preparation Process for Improving Resistant Starch Content in Rice Grains. Food Sci. Nutr. 2020, 8(5), 2383–2394. DOI: 10.1002/fsn3.1528.
  • Ha, A. W.; Han, G. J.; Kim, W. K. Effect of Retrograded Rice on Weight Control, Gut Function, and Lipid Concentrations in Rats. Nutrition Research and Practice. 2012, 6(1), 16–20. DOI: 10.4162/nrp.2012.6.1.16.
  • Ashwar, B. A.; Gani, A.; Shah, A.; Masoodi, F. A. Physicochemical Properties, In-vitro Digestibility and Structural Elucidation of RS4 from Rice Starch. Int. J. Biol. Macromol. 2017, 105(Pt 1), 471–477. DOI: 10.1016/j.ijbiomac.2017.07.057.
  • Jeong, O.; Shin, M. Preparation and Stability of Resistant Starch Nanoparticles, Using Acid Hydrolysis and Cross-linking of Waxy Rice Starch. Food Chemistry. 2018, 256, 77–84. DOI: 10.1016/j.foodchem.2018.02.098.
  • Pan, T.; Lin, L.; Wang, J.; Liu, Q.; Wei, C. Long Branch-chains of Amylopectin with B-type Crystallinity in Rice Seed with Inhibition of Starch Branching Enzyme I and IIb Resist in Situ Degradation and Inhibit Plant Growth during Seedling Development: Degradation of Rice Starch with Inhibition of SBEI/IIb during Seedling Development. BMC Plant Biol. 2018, 18(1), 1–9. DOI: 10.1186/s12870-017-1213-1.
  • Nakata, M.; Miyashita, T.; Kimura, R.; Nakata, Y.; Takagi, H.; Kuroda, M.; Yamaguchi, T.; Umemoto, T.; Yamakawa, H. MutMapPlus Identified Novel Mutant Alleles of a Rice Starch Branching Enzyme IIb Gene for Fine-tuning of Cooked Rice Texture. Plant Biotechnology Journal. 2018, 16(1), 111–123. DOI: 10.1111/pbi.12753.
  • Cakir, B.; Tian, L.; Crofts, N.; Chou, H. L.; Koper, K.; Ng, C. Y.; Tuncel, A.; Gargouri, M.; Hwang, S. K.; Fujita, N., et al. Re-programming of Gene Expression in the CS8 Rice Line Over-expressing ADP Glucose Pyrophosphorylase Induces a Suppressor of Starch Biosynthesis. Plant J. 2019, 97(6), 1073–1088. DOI: 10.1111/tpj.14180.
  • Crofts, N.; Abe, N.; Oitome, N. F.; Matsushima, R.; Hayashi, M.; Tetlow, I. J.; Emes, M. J.; Nakamura, Y.; Fujita, N. Amylopectin Biosynthetic Enzymes from Developing Rice Seed Form Enzymatically Active Protein Complexes. J. Exp. Bot. 2015, 66(15), 4469–4482. DOI: 10.1093/jxb/erv212.
  • Rashmi, S.; Urooj, A. Effect of Processing on Nutritionally Important Starch Fractions in Rice Varieties. Int. J. Food Sci. Nutr. 2003, 54(1), 27–36. DOI: 10.1080/096374803161976.
  • Nakamura, Y.; Ono, M.; Hatta, T.; Kainuma, K.; Yashiro, K.; Matsuba, G.; Matsubara, A.; Miyazato, A.; Mizutani, G. Effects of BEIIb-deficiency on the Cluster Structure of Amylopectin and the Internal Structure of Starch Granules in Endosperm and Culm of Japonica-type Rice. Front. Plant Sci. 2020, 11, 571346. DOI: 10.3389/fpls.2020.571346.
  • Butardo, V. M.;.; Daygon, V. D., Jr; Colgrave, M. L.;.; Campbell, P. M.; Resurreccion, A.; Cuevas, R. P.; Jobling, S. A.; Tetlow, I.; Rahman, S.; Morell, M., et al. Biomolecular Analyses of Starch and Starch Granule Proteins in the High-amylose Rice Mutant Goami2. J. Agric. Food Chem. 2012, 60(46), 11576–11585.
  • Liu, L.; Ma, X.; Liu, S.; Zhu, C.; Jiang, L.; Wang, Y.; Shen, Y.; Ren, Y.; Dong, H.; Chen, L., et al. Identification and Characterization of a Novel Waxy Allele from a Yunnan Rice Landrace. Plant Mol. Biol. 2009, 71(6), 609–626.
  • Kong, X.; Chen, Y.; Zhu, P.; Sui, Z.; Corke, H.; Bao, J. Relationships among Genetic, Structural, and Functional Properties of Rice Starch. Journal of Agricultural and Food Chemistry. 2015, 63(27), 6241–6248. DOI: 10.1021/acs.jafc.5b02143.
  • Toyosawa, Y.; Kawagoe, Y.; Matsushima, R.; Crofts, N.; Ogawa, M.; Fukuda, M.; Kumamaru, T.; Okazaki, Y.; Kusano, M.; Saito, K., et al. Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm. Plant Physiol. 2016, 170(3), 1255–1270.
  • Zhou, X.; Ying, Y.; Hu, B.; Pang, Y.; Bao, J. Physicochemical Properties and Digestibility of Endosperm Starches in Four Indica Rice Mutants. Carbohydrate Polymers. 2018, 195, 1–8. DOI: 10.1016/j.carbpol.2018.04.070.
  • Li, H.; Gilbert, R. G. Starch Molecular Structure: The Basis for an Improved Understanding of Cooked Rice Texture. Carbohydr. Polym. 2018, 195, 9–17. DOI: 10.1016/j.carbpol.2018.04.065.
  • Shu, X.; Sun, J.; Wu, D. Effects of Grain Development on Formation of Resistant Starch in Rice. Food Chem. 2014, 164, 89–97. DOI: 10.1016/j.foodchem.2014.05.014.
  • Qi, X.; Tester, R. F. Utilization of Dietary Fiber (Non-starch Polysaccharide and Resistant Starch) Molecules for Diarrhea Therapy: A Mini-review. Int. J. Biol. Macromol. 2019, 122, 572–577. DOI: 10.1016/j.ijbiomac.2018.10.195.
  • Itoh, Y.; Crofts, N.; Abe, M.; Hosaka, Y.; Fujita, N. Characterization of the Endosperm Starch and the Pleiotropic Effects of Biosynthetic Enzymes on Their Properties in Novel Mutant Rice Lines with High Resistant Starch and Amylose Content. Plant Sci. 2017, 258, 52–60. DOI: 10.1016/j.plantsci.2017.02.002.
  • Tsuiki, K.; Fujisawa, H.; Itoh, A.; Sato, M.; Fujita, N. Alterations of Starch Structure Lead to Increased Resistant Starch of Steamed Rice: Identification of High Resistant Starch Rice Lines. J. Cereal Sci. 2016, 68, 88–92. DOI: 10.1016/j.jcs.2016.01.002.
  • Butardo, V. M.; Fitzgerald, M. A.; Bird, A. R.; Gidley, M. J.; Flanagan, B. M.; Larroque, O.; Resurreccion, A. P.; Laidlaw, H. K.; Jobling, S. A.; Morell, M. K., et al. Impact of Down-regulation of Starch Branching Enzyme IIb in Rice by Artificial microRNA- and Hairpin RNA-mediated RNA Silencing. J. Exp. Bot. 2011, 62(14), 4927–4941.
  • Parween, S.;.; Anonuevo, J. J.; Butardo, V. M., Jr; Misra, G.; Anacleto, R.;.; Llorente, C.; Kosik; Romero, M. V.; Bandonill, E. H.; Mendioro, M. S., et al. Balancing the Double-edged Sword Effect of Increased Resistant Starch Content and Its Impact on Rice Texture: Its Genetics and Molecular Physiological Mechanisms. Plant Biotechnol. J. 2020, 18(8), 1763–1777. DOI: 10.1111/pbi.13339.
  • Gani, A.; Ashwar, B. A.; Akhter, G.; Gani, A.; Shah, A.; Masoodi, F. A.; Wani, I. A. Resistant Starch from Five Himalayan Rice Cultivars and Horse Chestnut: Extraction Method Optimization and Characterization. Sci. Rep. 2020, 10(1), 4097. DOI: 10.1038/s41598-020-60770-4.
  • Adebamowo, S. N.; Eseyin, O.; Yilme, S.; Adeyemi, D.; Willett, W. C.; Hu, F. B.; Spiegelman, D.; Adebamowo, C. A. A Mixed-methods Study on Acceptability, Tolerability, and Substitution of Brown Rice for White Rice to Lower Blood Glucose Levels among Nigerian Adults. Front. Nutr. 2017, 4, 33. DOI: 10.3389/fnut.2017.00033.
  • Pletsch, E. A.; Hamaker, B. R. Brown Rice Compared to White Rice Slows Gastric Emptying in Humans. European Journal of Clinical Nutrition. 2018, 72(3), 367–373. DOI: 10.1038/s41430-017-0003-z.
  • Nakayama, T.; Nagai, Y.; Uehara, Y.; Nakamura, Y.; Ishii, S.; Kato, H.; Tanaka, Y. Eating Glutinous Brown Rice Twice a Day for 8 Weeks Improves Glycemic Control in Japanese Patients with Diabetes Mellitus. Nutr. Diabetes. 2017, 7(5), e273. DOI: 10.1038/nutd.2017.26.
  • Kondo, K.; Morino, K.; Nishio, Y.; Ishikado, A.; Arima, H.; Nakao, K.; Nakagawa, F.; Nikami, F.; Sekine, O.; Nemoto, K., et al. Fiber-rich Diet with Brown Rice Improves Endothelial Function in Type 2 Diabetes Mellitus: A Randomized Controlled Trial. PLoS ONE. 2017, 12(6), 1–16.
  • Mohan, V.; Spiegelman, D.; Sudha, V.; Gayathri, R.; Hong, B.; Praseena, K.; Anjana, R. M.; Wedick, N. M.; Arumugam, K.; Malik, V., et al. Effect of Brown Rice, White Rice, and Brown Rice with Legumes on Blood Glucose and Insulin Responses in Overweight Asian Indians: A Randomized Controlled Trial. Diabetes Technol. Ther. 2014, 16(5), 317–325. DOI: 10.1089/dia.2013.0259.
  • Yen, H.-W.; Lin, H.-L.; Hao, C.-L.; Chen, F.-C.; Chen, C.-Y.; Chen, J.-H.; Shen, K.-P. Effects of Pre-germinated Brown Rice Treatment High-fat Diet-induced Metabolic Syndrome in C57BL/6J Mice. Bioscience, Biotechnology, and Biochemistry. 2017, 81(5), 979–986. DOI: 10.1080/09168451.2017.1279848.
  • Liu, Y. Q.; Strappe, P.; Shang, W. T.; Zhou, Z. K. Functional Peptides Derived from Rice Bran Proteins. Critical Reviews in Food Science and Nutrition. 2019, 59(2), 349–356. DOI: 10.1080/10408398.2017.1374923.
  • Jung, C. H.; Lee, D. H.; Ahn, J.; Lee, H.; Choi, W. H.; Jang, Y. J.; Ha, T. Y. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake. Nutrients. 2015, 7(6), 4851–4861. DOI: 10.3390/nu7064851.
  • Kozuka, C.; Shimizu-Okabe, C.; Takayama, C.; Nakano, K.; Morinaga, H.; Kinjo, A.; Fukuda, K.; Kamei, A.; Yasuoka, A.; Kondo, T., et al. Marked Augmentation of PLGA Nanoparticle-induced Metabolically Beneficial Impact of γ-oryzanol on Fuel Dyshomeostasis in Genetically Obese-diabetic Ob/ob Mice. Drug Delivery. 2017, 24(1), 558–568. DOI: 10.1080/10717544.2017.1279237.
  • Nguyen, N. T. L.; Nguyen, B. D. T.; Dai, T. T. X.; Co, S. H.; Do, T. T.; Tong Thi, A. N.; Nguyen Cong, H.; Nguyen Cong, H. Influence of Germinated Brown Rice‐based Flour Modified by MAse on Type 2 Diabetic Mice and HepG2 Cell Cytotoxic Capacity. Food Sci. Nutr. 2021, 9(2), 781–793. DOI: 10.1002/fsn3.2043.
  • Kozuka, C.; Kaname, T.; Shimizu-Okabe, C.; Takayama, C.; Tsutsui, M.; Matsushita, M.; Abe, K.; Masuzak, H. Impact of Brown Rice-specific γ-oryzanol on Epigenetic Modulation of Dopamine D2 Receptors in Brain Striatum in High-fat-diet-induced Obesity in Mice. Diabetologia. 2017, 60(8), 1502–1511. DOI: 10.1007/s00125-017-4305-4.
  • Wu, F.; Yang, N.; Touré, A.; Jin, Z.; Xu, X. Germinated Brown Rice and Its Role in Human Health. Crit. Rev. Food Sci. Nutr. 2013, 53(5), 451–463. DOI: 10.1080/10408398.2010.542259.
  • Lim, S. M.; Goh, Y. M.; Mohtarrudin, N.; Loh, S. P. Germinated Brown Rice Ameliorates Obesity in High-fat Diet Induced Obese Rats. BMC Complementary and Alternative Medicine. 2016, 16(1), 140. DOI: 10.1186/s12906-016-1116-y.
  • Lim, S. M.; Goh, Y. M.; Kuan, W. B.; Loh, S. P. Effect of Germinated Brown Rice Extracts on Pancreatic Lipase, Adipogenesis and Lipolysis in 3T3-L1 Adipocytes. Lipids Health Dis. 2014, 13(1), 139. DOI: 10.1186/1476-511X-13-169.
  • Ghasemzadeh, A.; Karbalaii, M. T.; Jaafar, H. Z. E.; Rahmat, A. Phytochemical Constituents, Antioxidant Activity, and Antiproliferative Properties of Black, Red, and Brown Rice Bran. Chem. Cent J. 2018, 12(1), 17. DOI: 10.1186/s13065-018-0382-9.
  • Zeng, Y. W.; Yang, J. Z.; Pu, X. Y.; Du, J.; Yang, T.; Yang, S. M.; Zhu, W. H. Strategies of Functional Food for Cancer Prevention in Human Beings. Asian Pac. J. Cancer Prev. 2013, 14(3), 1585–1592. DOI: 10.7314/APJCP.2013.14.3.1585.
  • Zeng, Y. W.; Du, J.; Pu, X. Y.; Yang, J.; Yang, T.; Yang, S.; Yang, X. Coevolution between Cancer Activities and Food Structure of Human Being from Southwest China. BioMed. Res. Int. 2015, 2015, 497934. DOI: 10.1155/2015/497934.
  • Zhao, R.; Ghazzawi, N.; Wu, J.; Le, K.; Li, C.; Moghadasian, M. H.; Siow, Y. L.; Apea-Bah, F. B.; Beta, T.; Yin, Z., et al. Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low- Density Lipoprotein Receptor-knockout Mice. J. Agric. Food Chem. 2018, 66(17), 4512–4520.
  • Praengam, K.; Sahasakul, Y.; Kupradinun, P.; Sakarin, S.; Sanitchua, W.; Rungsipipat, A.; Rattanapinyopituk, K.; Angkasekwinai, P.; Changsri, K.; Mhuantong, W., et al. Brown Rice and Retrograded Brown Rice Alleviate Inflammatory Response in Dextran Sulfate Sodium (Dss)-induced Colitis Mice. Food Funct. 2017, 8(12), 4630–4643. DOI: 10.1039/C7FO00305F.
  • Kazemzadeh, M.; Safavi, S. M.; Nematollahi, S.; Nourieh, Z. Effect of Brown Rice Consumption on Inflammatory Marker and Cardiovascular Risk Factors among Overweight and Obese Non- Menopausal Female Adults. Int. J. Prev. Med. 2014, 5(4), 478–488.
  • Kawakami, K.; Yamada, K.; Yamada, T.; Nabika, T.; Nomura, M. Antihypertensive Effect of γ- Aminobutyric Acid-enriched Brown Rice on Spontaneously Hypertensive Rats. J. Nutr. Sci. Vitaminol. 2018, 64(1), 56–62. DOI: 10.3177/jnsv.64.56.
  • Kowaka, E.; Shimajiri, Y.; Kawakami, K.; Tongu, M.; Akama, K. Field Trial of GABA Fortified Rice Plants and Oral Administration of Milled Rice in Spontaneously Hypertensive Rats. Transgenic Res. 2015, 24(3), 561–569. DOI: 10.1007/s11248-014-9859-z.
  • Goufo, P.; Trindade, H. Rice Antioxidants: Phenolic Acids, Flavonoids, Anthocyanins, Proanthocyanidins, Tocopherols, Tocotrienols, γ-oryzanol, and Phytic Acid. Food Sci. Nutr. 2014, 2(2), 75–104. DOI: 10.1002/fsn3.86.
  • Matsumoto, K.; Maekawa, M.; Nakaya, M.; Takemitsu, H.; Satoh, H.; Kitamura, S. Wx/ae Double-mutant Brown Rice Prevents the Rise in Plasma Lipid and Glucose Levels in Mice. Biosci. Biotechnol. Biochem. 2012, 76(11), 2112–2117. DOI: 10.1271/bbb.120501.
  • Dainty, S. A.; Klingel, S. L.; Pilkey, S. E.; McDonald, E.; McKeown, B.; Emes, M. J.; Duncan, A. M. Resistant Starch Bagels Reduce Fasting and Postprandial Insulin in Adults at Risk of Type 2 Diabetes. J. Nutr. 2016, 146(11), 2252–2259. DOI: 10.3945/jn.116.239418.
  • Karimi, P.; Farhangi, M. A.; Sarmadi, B.; Gargari, B. P.; Zare-Javid, A.; Pouraghaei, M.; Dehghan, P. The Therapeutic Potential of Resistant Starch in Modulation of Insulin Resistance, Endotoxemia, Oxidative Stress and Antioxidant Biomarkers in Women with Type 2 Diabetes: A Randomized Controlled Clinical Trial. Ann. Nutr. Metab. 2016, 68(2), 85–93. DOI: 10.1159/000441683.
  • Kiatponglarp, W.; Tongta, S.; Rolland-Sabaté, A.; Buléon, A. Crystallization and Chain Reorganization of Debranched Rice Starches in Relation to Resistant Starch Formation. Carbohydrate Polymers. 2015, 122, 108–114. DOI: 10.1016/j.carbpol.2014.12.070.
  • Gargari, B. P.; Namazi, N.; Khalili, M.; Sarmadi, B.; Jafarabadi, M. A.; Dehghan, P. Is There Any Place for Resistant Starch, as Alimentary Prebiotic, for Patients with Type 2 Diabetes? Complement. Ther. Med. 2015, 23(6), 810–815. DOI: 10.1016/j.ctim.2015.09.005.
  • Tayebi, K. H.; Vaziri, N. D.; Abedi, B.; Asl, B. H.; Ghojazadeh, M.; Jing, W.; Vatankhah, A. M. Effect of High Amylose Resistant Starch (HAM-RS2) Supplementation on Biomarkers of Inflammation and Oxidative Stress in Hemodialysis Patients: A Randomized Clinical Trial. Hemodial. Int. 2018, 22(4), 492–500. DOI: 10.1111/hdi.12653.
  • Qian, Y.; Zhao, X.; Kan, J. Preventive Effect of Resistant Starch on Activated Carbon-induced Constipation in Mice. Exp. Ther. Med. 2013, 6(1), 228–232. DOI: 10.3892/etm.2013.1096.
  • Sonia, S.; Witjaksono, F.; Ridwan, R. Effect of Cooling of Cooked White Rice on Resistant Starch Content and glycemic Response. J.Clin. Asia Pacific Journal of Clinical Nutrition. 2015, 24(4), 620–625. DOI: 10.6133/apjcn.2015.24.4.13.
  • Chen, Y. F. Breeding Functional Rice for Preventive Diabetes in Yunnan Province. Yunnan Daily. 2014, 1, 1–2.
  • Wei, M. L.; Du, J.; Zeng, Y. W.; Yang, S. M.; Pu, X. Y.; Yang, T. Genetic Variation of Functional Components in Brown Rice of Mini Core Collection of Yunnan Landrace Rice and Its Advanced Backcross Lines. J. Hunan Agric. Univ. 2013, 39(2), 121–125. DOI: 10.3724/SP.J.1238.2013.00121.
  • Zeng, Y. W.; Zeng, Y.; Pu, Z. G.; Wang, Y. C.; Du, J.; Pu, X. Y.; Yang, S. M.; Yang, T.; Yang, X. M. DNA Fingerprint and Determination of Functional Components for Rice with Diabetes Prevention. Adv. Mater. Res. 2013, 634638, 1566–1569. https://doi.org/10.4028/www.scientific.net/AMR.634-638.1566.
  • Vidrine, K.; Ye, J.; Martin, R. J.; McCutcheon, K. L.; Raggio, A. M.; Pelkman, C.; Durham, H. A.; Zhou, J.; Senevirathne, R. N.; Williams, C., et al. Resistant Starch from High Amylose Maize (HAM-RS2) and Dietary Butyrate Reduce Abdominal Fat by a Different Apparent Mechanism. Obesity. 2014, 22(2), 344–348.
  • Si, X.; Zhou, Z.; Strappe, P.; Blanchard, C. A Comparison of RS4-type Resistant Starch to RS2-type Resistant Starch in Suppressing Oxidative Stress in High-fat-diet-induced Obese Rats. Food & Function. 2017, 8(1), 232–240. DOI: 10.1039/C6FO01225F.
  • Sun, J.; Wang, Y.; Zhang, X. Q.; Rasmussen, S. K.; Jiang, X.; Song, W. J.; Wu, D. X.; Shu, X. L. Dependence of Physiochemical, Functional and Textural Properties of High-resistant Starch Rice on Endogenous Non-starch Polysaccharides. Int. J. Food Sci. Technol. 2018, 53(4), 1079–1086. DOI: 10.1111/ijfs.13686.
  • Zhou, Y.; Meng, S.; Chen, D.; Zhu, X.; Yuan, H. Structure Characterization and Hypoglycemic Effects of Dual Modified Resistant Starch from Indica Rice Starch. Carbohydr. Polym. 2014, 103, 81–86. DOI: 10.1016/j.carbpol.2013.12.020.
  • Yuan, H.; Zhu, X.; Chen, D. W.; Wang, W.; Meng, S.; Wang, J. Effects of Dual Modified Resistant Indica Rice Starch on Azoxymethane-induced Incipient Colon Cancer in Mice. Exp. Ther. Med. 2017, 13(5), 2036–2042. DOI: 10.3892/etm.2017.4172.
  • Yuan, H.; Wang, W.; Chen, D.; Zhu, X.; Meng, L. Effects of a Treatment with Se-rich Rice Flour High in Resistant Starch on Enteric Dysbiosis and Chronic Inflammation in Diabetic ICR Mice. J. Sci. Food Agric. 2017, 97(7), 2068–2074. DOI: 10.1002/jsfa.8011.
  • Yang, F.; Zhu, J.-R.; Zhang, L.; Gu, R.; Zhang, Z.-Y.; Liu, J.; Hong, J.-A. Effects of High Resistant Starch Staple Food on Blood Glucose Fluctuation in Hospitalized Patients with Type 2 Diabetes Mellitus. Food Nutr. China. 2019, 25, 78–82.
  • Zhang, H.; Yang, X. F.; Li, Q. Effects of High Resistant Starch Rice on Post-meal Blood Glucose Volatility in Type 2 Diabetes Mellitus Patients. Chin. Gener. Pratc. Nurs. 2019, 17, 308–310.
  • Zhu, L.; Gu, M.; Meng, X.; Cheung, S. C.; Yu, H.; Huang, J.; Sun, Y.; Shi, Y.; Liu, Q. High-amylose Rice Improves Indices of Animal Health in Normal and Diabetic Rats. Plant Biotechnol. J. 2012, 10(3), 353–362. DOI: 10.1111/j.1467-7652.2011.00667.x.
  • Wang, L. L.; He, F.; Fan, H. R.; Ye, L. J.; Zhang, P. H. Determination of Glycemic Index of High Resistant Starch Rice and Intervention on Blood Glucose Level in Type 2 Diabetes Patients. Acta Nutr. Sin. 2017, 39, 197–199.
  • Zheng, B.; Wang, T.; Wang, H.; Chen, L.; Zhou, Z. Studies on Nutritional Intervention of Rice Starch- Oleic Acid Complex (Resistant Starch Type V) in Rats Fed by High-fat Diet. Carbohydr. Polym. 2020, 246, 116637. DOI: 10.1016/j.carbpol.2020.116637.
  • Zhang, W.; Luo, X.; Zhan, Z.; Shu, Z.; Wang, P.; Ding, W.; Zeng, X.; Shi, Y.-C. Comparison of the Structural and Functional Properties of Starches in Rice from Main and Ratoon Crops. Journal of Cereal Science. 2021, 99, 103233. DOI: 10.1016/j.jcs.2021.103233.
  • Yi, X.; Li, C. Main Controllers for Improving the Resistant Starch Content in Cooked White Rice. Food Hydrocoll. 2022, 122, 107083. DOI: 10.1016/j.foodhyd.2021.107083.
  • Reed, O.; Ai, Y.; Leutcher, J. L.; Jane, J. L. Effects of Cooking Methods and Starch Structures on Starch Hydrolysis Rates of Rice. J. Food Sci. 2013, 78(7), 1076–1081. DOI: 10.1111/1750-3841.12165.
  • Purohit, S. R.; Rao, P. S. Optimization of Paddy Parboiling Process for Higher Starch Crystallinity by Response Surface Methodology. Int. J. Biol. Macromol. 2017, 104(Pt A), 1091–1098. DOI: 10.1016/j.ijbiomac.2017.06.089.
  • Li, Y.; Ding, G. Q.; Yokoyama, W.; Zhong, F. Characteristics of Annealed Glutinous Rice Flour and Its Formation of Fast-frozen Dumplings. Journal of Cereal Science. 2018, 79, 106–112. DOI: 10.1016/j.jcs.2017.09.016.
  • Parchure, A. A.; Kulkarni, P. R. Effect of Food Processing Treatments on Generation of Resistant Starch. Int. J. Food Sci. Nutr. 1997, 48(4), 257–260. DOI: 10.3109/09637489709028570.
  • Stewart, M. L.; Zimmer, J. P. Postprandial Glucose and Insulin Response to a High-fiber Muffin Top Containing Resistant Starch Type 4 in Healthy Adults: A Double-blind, Randomized, Controlled Trial. Nutrition. 2018, 53, 59–63. DOI: 10.1016/j.nut.2018.01.002.
  • Hung, P. V.; Chau, H. T.; Phi, N. T. In Vitro Digestibility and in Vivo Glucose Response of Native and Physically Modified Rice Starches Varying Amylose Contents. Food Chem. 2016, 191, 74–80. DOI: 10.1016/j.foodchem.2015.02.118.
  • Wei, C.; Xu, B.; Qin, F.; Yu, H.; Chen, C.; Meng, X.; Zhu, L.; Wang, Y.; Gu, M.; Liu, Q. C-type Starch from High-amylose Rice Resistant Starch Granules Modified by Antisense RNA Inhibition of Starch Branching Enzyme. Journal of Agricultural and Food Chemistry. 2010, 58(12), 7383–7388. DOI: 10.1021/jf100385m.
  • Chi, C.; Li, X.; Feng, T.; Zeng, X.; Chen, L.; Li, L. Improvement in Nutritional Attributes of Rice Starch with Dodecyl Gallate Complexation: A Molecular Dynamic Simulation and in Vitro Study. J. Agric. Food Chem. 2018, 66(35), 9282–9290. DOI: 10.1021/acs.jafc.8b02121.
  • Patindol, J. A.; Guraya, H. S.; Champagne, E. T.; McClung, A. M. Nutritionally Important Starch Fractions of Rice Cultivars Grown in Southern United States. J. Food Sci. 2010, 75(5), 137–144.
  • Li, Z.-T.; Hu, G.-A.; Zhu, L.; Zhao, Z.-C.; Jiang, Y.; Gao, M.-J.; Zhan, X.-B. In Vitro Digestion and Fecal Fermentation of Highly Resistant Starch Rice and Its Effect on the Gut Microbiota. Food Chemistry. 2021, 361, 130095. DOI: 10.1016/j.foodchem.2021.130095.
  • Maldaner, V.; Coradi, P. C.; Nunes, M. T.; Müller, A.; Carneiro, L. O.; Teodoro, P. E.; Teodoro, L. P. R.; Bressiani, J.; Anschau, K. F.; Müller, E. I. Effects of Intermittent Drying on Physicochemical and Morphological Quality of Rice and Endosperm of Milled Brown Rice. LWT-Food Sci. Technol. 2021, 152, 112334. DOI: 10.1016/j.lwt.2021.112334.
  • Li, F.; Guan, X.; Li, C. Effects of Degree of Milling on the Starch Digestibility of Cooked Rice during (In Vitro) Small Intestine Digestion. Int. J. Bio. Macromol. 2021, 188, 774–782. DOI: 10.1016/j.ijbiomac.2021.08.079.
  • You, S.-Y.; Oh, S.-G.; Han, H. M.; Jun, W.; Hong, Y.-S.; Chung, H.-J. Impact of Germination on the Structures and in Vitro Digestibility of Starch from Waxy Brown Rice. International Journal of Biological Macromolecules. 2016, 82, 863–870. DOI: 10.1016/j.ijbiomac.2015.11.023.
  • Huang, M.; Li, X.; Hu, L.; Xiao, Z.; Chen, J.; Cao, F.; Pavelka, K.; Vencovský, J.; Distler, J. H. W.; Šenolt, L. Comparing Texture and Digestion Properties between White and Brown Rice of Indica Cultivars Preferred by Chinese Consumers. Sci. Rep. 2021, 11(1), 1–5. DOI: 10.1038/s41598-020-79139-8.
  • Gulzar, B.; Hussain, S. Z.; Naseer, B.; Naik, H. R. Enhancement of Resistant Starch Content in Modified Rice Flour Using Extrusion Technology. Cereal Chem. 2021, 98(3), 634–641. DOI: 10.1002/cche.10407.
  • Bai, T.-G.; Zhang, L.; Qian, J.-Y.; Jiang, W.; Wu, M.; Rao, S.-Q.; Li, Q.; Zhang, C.; Wu, C. Pulsed Electric Field Pretreatment Modifying Digestion, Texture, Structure and Flavor of Rice. LWT-Food Sci. Technol. 2021, 138, 110650. DOI: 10.1016/j.lwt.2020.110650.
  • Matsubara, M.; Nakato, Y.; Kondo, E. Enhancing Resistant Starch Content in Brown Rice Using Supercritical Carbon Dioxide Processing. J. Food Process. Eng. 2021, 44(2), e13617. DOI: 10.1111/jfpe.13617.
  • Wang, R.; Li, M.; Liu, J.; Wang, F.; Wang, J.; Zhou, Z. Dual Modification Manipulates Rice Starch Characteristics following Debranching and Propionate Esterification. Food Hydrocolloids. 2021, 119, 106833. DOI: 10.1016/j.foodhyd.2021.106833.
  • Zheng, J.; Huang, S.; Zhao, R.; Wang, N.; Kan, J.; Zhang, F. Effect of Four Viscous Soluble Dietary Fibers on the Physicochemical, Structural Properties, and in Vitro Digestibility of Rice Starch: A Comparison Study. Food Chem. 2021, 362, 130181. DOI: 10.1016/j.foodchem.2021.130181.
  • Brownlee, I. A.; Gill, S.; Wilcox, M. D.; Pearson, J. P.; Chater, P. I. Starch Digestion in the Upper Gastrointestinal Tract of Humans. Starch-Starke. 2017, 70, 1–9.
  • Li, C.; Li, H.; Gilbert, R. G. Characterizing Starch Molecular Structure of Rice. Methods Mol. Biol. 2018, 1892, 169–185.
  • Sullivan, Z. A.; Khoury-Hanold, W.; Lim, J.; Smillie, C.; Biton, M.; Reis, B. S.; Zwick, R. K.; Pope, S. D.; Israni-Winger, K.; Parsa, R., et al. γδ T Cells Regulate the Intestinal Response to Nutrient Sensing. Science. 2021, 371(6535), eaba8310. DOI: 10.1126/science.aba8310.
  • Ma, Z.; Boye, J. I. Research Advances on Structural Characterization of Resistant Starch and Its Structure -physiological Function Relationship: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(7), 1059–1083. DOI: 10.1080/10408398.2016.1230537.
  • Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y. Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J., et al. Gut Bacteria Selectively Promoted by Dietary fibers Alleviate Type 2 Diabetes. Science. 2018, 359(6380), 1151–1156.
  • Zhao, C.; Yang, C.; Chi-Wai, S. T.; Zhang, Y.; Portillo, M. P.; Paoli, P.; Wu, Y.; Cheang, W. S.; Liu, B.; Carpéné, C., et al. Regulation of Glucose Metabolism by Bioactive Phytochemicals for the Management of Type 2 Diabetes Mellitus. Crit. Rev. Food Sci. Nutr. 2019, 59(6), 830–847. DOI: 10.1080/10408398.2018.1501658.
  • Kim, Y. J.; Kim, J. G.; Lee, W.-K.; So, K. M.; Kim, J. K. Trial Data of the Anti-obesity Potential of a High Resistant Starch Diet for Canines Using Dodamssal Rice and the Identification of Discriminating Markers in Feces for Metabolic Profiling. Metabolomics. 2019, 15(2), 21. DOI: 10.1007/s11306-019-1479-4.
  • Zarei, I.; Luna, E.; Leach, J. E.; McClung, A.; Vilchez, S.; Koita, O.; Ryan, E. P. Comparative Rice Bran Metabolomics across Diverse Cultivars and Functional Rice Gene–bran Metabolite Relationships. Metabolites. 2018, 8(4), 63. DOI: 10.3390/metabo8040063.
  • Gong, E. S.; Luo, S.; Li, T.; Liu, C.; Zhang, G.; Chen, J.; Zeng, Z.; Liu, R. H. Phytochemical Profiles and Antioxidant Activity of Processed Brown Rice Products. Food Chem. 2017, 232, 67–78. DOI: 10.1016/j.foodchem.2017.03.148.
  • Kumar, A.; Sahoo, S.; Sahu, S.; Nayak, L.; Ngangkham, U.; Parameswaran, C.; Bose, L. K.; Samantaray, S.; Kumar, G.; Sharma, S. G. Rice with Pulses or Cooking Oils Can Be Used to Elicit Lower Glycemic Response. Journal of Food Composition and Analysis. 2018, 71, 1–7. DOI: 10.1016/j.jfca.2018.05.003.
  • Pratiwi, V. N. Comparative Study on Resistant Starch, Amylose Content and Glycemic Index after Precooked Process in White Rice. IOP Conference Series: Earth and Environmental Science. International Conference on Green Agro-industry and Bioeconomy; October 24-25,2017, Batu City, East Java, Indonesia 2018, 131, 12–17.
  • Tian, J.; Ogawa, Y.; Shi, J.; Chen, S.; Zhang, H.; Liu, D.; Ye, X. The Microstructure of Starchy Food Modulates Its Digestibility. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3117–3128. DOI: 10.1080/10408398.2018.1484341.
  • Kiatponglarp, W.; Rugmai, S.; Rolland-Sabaté, A.; Buléon, A.; Tongta, S. Spherulitic Self-assembly of Debranched Starch from Aqueous Solution and Its Effect on Enzyme Digestibility. Food Hydrocolloids. 2016, 55, 235–243. DOI: 10.1016/j.foodhyd.2015.11.027.
  • Wan, J.; Wu, Y.; Pham, Q.; Yu, L.; Chen, M.-H.; Boue, S. M.; Yokoyama, W.; Li, B.; Wang, T. T. Y. Effects of Rice with Different Amounts of Resistant Starch on Mice Fed a High-fat Diet: Attenuation of Adipose Weight gain.J. Agric. Food Chem. 2020, 68(46), 13046–13055. DOI: 10.1021/acs.jafc.9b05505.
  • Farooq, A. M.; Dhital, S.; Li, C.; Zhang, B.; Huang, Q. Effects of Palm Oil on Structural and in Vitro Digestion Properties of Cooked Rice Starches. International Journal of Biological Macromolecules. 2018, 107(Pt A), 1080–1085. DOI: 10.1016/j.ijbiomac.2017.09.089.
  • Wing, R. A.; Purugganan, M. D.; Zhang, Q. F. The Rice Genome Revolution: From an Ancient Grain to Green Super Rice. Nat. Rev. Genet. 2018, 19(8), 505–517. DOI: 10.1038/s41576-018-0024-z.
  • Hu, E. A.; Pan, A.; Malik, V.; Sun, Q. White Rice Consumption and Risk of Type 2 Diabetes: Meta-analysis and Systematic Review. Brit. Med. J. 2012, 344(mar15 3), e1454. DOI: 10.1136/bmj.e1454.
  • Imam, M. U.; Ismail, M.; Ooi, D. J.; Sarega, N.; Ishaka, A. Increased Risk of Insulin Resistance in Rat Offspring Exposed Prenatally to White Rice. Mol. Nutr. Food Res. 2015, 59(1), 180–184. DOI: 10.1002/mnfr.201400396.
  • Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kato, M.; Inoue, M.; Tsugane, S. Rice Intake and Type 2 Diabetes in Japanese Men and Women: The Japan Public Health Center-based Prospective Study. American Journal of Clinical Nutrition. 2010, 92(6), 1468–1477. DOI: 10.3945/ajcn.2010.29512.
  • Kaur, B.; Ranawana, V.; Henry, J. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values. Crit. Rev. Food Sci. Nutr. 2016, 56(2), 215–236. DOI: 10.1080/10408398.2012.717976.
  • Boers, H. M.; Hoorn, J. S. T.; Mela, D. J. A Systematic Review of the Influence of Rice Characteristics and Processing Methods on Postprandial Glycaemic and insulinaemic Responses. British Journal of Nutrition. 2015, 114(7), 1035–1045. DOI: 10.1017/S0007114515001841.
  • Hung, P. V.; Vien, N. L.; Phi, N. T. L. Resistant Starch Improvement of Rice Starches under a Combination of Acid and Heat-moisture Treatments. Food Chem. 2016, 191, 67–73. DOI: 10.1016/j.foodchem.2015.02.002.
  • Groen, S. C.; Ćalić, I.; Joly-Lopez, Z.; Platts, A. E.; Choi, J. Y.; Natividad, M.; Dorph, K.; Mauck, W. M.; Bracken, B.; Cabral, C. L. U., et al. The Strength and Pattern of Natural Selection on Gene Expression in Rice. Nature. 2020, 578(7796), 572–576.
  • Raungrusmee, S.; Anal, A. K. Effects of Lintnerization, Autoclaving, and Freeze-thaw Treatments on Resistant Starch Formation and Functional Properties of Pathumthani 80 Rice Starch. Foods. 2019, 8(11), 558. DOI: 10.3390/foods8110558.
  • Xia, J.; Zhu, D.; Wang, R.; Cui, Y.; Yan, Y. Crop Resistant Starch and Genetic Improvement: A Review of Recent Advances. Theor. Appl. Genet. 2018, 131(12), 2495–2511. DOI: 10.1007/s00122-018-3221-4.
  • Bindels, L. B.; Walter, J.; Ramer-Tait, A. E. Resistant Starches for the Management of Metabolic Diseases. Curr. Opin. Clin. Nutr. Metab. Care. 2015, 18(6), 559–565. DOI: 10.1097/MCO.0000000000000223.
  • Yuan, H. C.; Meng, Y.; Bai, H.; Shen, D. Q.; Wan, B. C.; Chen, L. Y. Meta-analysis Indicates that Resistant Starch Lowers Serum Total Cholesterol and Low-density Cholesterol. Nutrition Research. 2018, 54, 1–11. DOI: 10.1016/j.nutres.2018.02.008.
  • Teng, B.; Zhang, C.; Zhang, Y.; Du, S. Y.; Xi, M.; Song, F. S.; Ni, J. L.; Luo, Z. X.; Ni, D. H. Effects of Different Wx Alleles on Amylopectin Molecular Structure and Enzymatic Hydrolysis Properties of Rice Starch. Int. J. Food Prop. 2018, 21(1), 2772–2784. DOI: 10.1080/10942912.2018.1561464.
  • Li, C.; Gong, B.; Huang, T.; Yu, W. W. In Vitro Digestion Rate of Fully Gelatinized Rice Starches Is Driven by Molecular Size and Amylopectin Medium-long Chains. Carbohydr. Polym. 2021, 254, 117275.
  • Li, C.; Hu, Y.; Gu, F.; Gong, B. Causal Relations among Starch Fine Molecular Structure, Lamellar/crystalline Structure and in Vitrodigestion Kinetics of Native Rice Starch. Food Funct. 2021, 12(2), 682–695. DOI: 10.1039/D0FO02934C.
  • Zou, W.; Butardo, V. M., Jr; Toutounji, M.; Luo, J.; Farahnaky, A.; Blanchard, C. Harnessing Particle Disintegration of Cooked Rice Grains for Predicting Glycaemic Index. Carbohydr. Polym. 2020, 248, 116789. DOI: 10.1016/j.carbpol.2020.116789.
  • Li, C.; Hu, Y.; Li, E. Effects of Amylose and Amylopectin Chain-length Distribution on the Kinetics of Long-term Rice Starch Retrogradation. Food Hydrocoll. 2021, 111, 106239. DOI: 10.1016/j.foodhyd.2020.106239.
  • Purwani, E. Y.; Purwadaria, T.; Suhartono, M. T. Fermentation RS3 Derived from Sago and Rice Starch with Clostridium Butyricum BCC B2571 or Eubacterium Rectale DSM 17629. Anaerobe. 2012, 18(1), 55–61. DOI: 10.1016/j.anaerobe.2011.09.007.
  • Qin, R. B.; Wang, J.; Chao, C.; Yu, J. L.; Copeland, L.; Wang, S. J.; Wang, S. RS5 Produced More Butyric Acid through Regulating the Microbial Community of Human Gut Microbiota. J. Agr. Food Chem. 2021, 69(10), 3209–3218.
  • Inagawa, H.; Saika, T.; Nishiyama, N.; Nisizawa, T.; Kohchi, C.; Uenobe, M.; Soma, G. I. Improvement Effect of Dewaxed Brown Rice on Constipation in Antibiotic-treated Mice. Vivo. 2017, 31(4), 573–577.
  • Mbanjo, E. G. N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L. A.; Sreenivasulu, N. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front. Genet. 2020, 11, 229. DOI: 10.3389/fgene.2020.00229.
  • Man, J.; Yang, Y.; Zhang, C.; Zhou, X.; Dong, Y.; Zhang, F.; Liu, Q.; Wei, C. Structural Changes of High-amylose Rice Starch Residues following in Vitro and in Vivo Digestion. J. Agric. Food Chem. 2012, 60(36), 9332–9341. DOI: 10.1021/jf302966f.
  • Keenan, M. J.; Martin, R. J.; Raggio, A. M.; McCutcheon, K. L.; Brown, I. L.; Birkett, A.; Newman, S. S.; Skaf, J.; Hegsted, M.; Tulley, R. T., et al. High-amylose Resistant Starch Increases Hormones and Improves Structure and Function of the Gastrointestinal Tract: A Microarray Study. J. Nutrigenet. Nutrigenomics. 2012, 5(1), 26–44. DOI: 10.1159/000335319.
  • Sun, H.; Ma, X.; Zhang, S.; Zhao, D.; Liu, X. Resistant Starch Produces Antidiabetic Effects by Enhancing Glucose Metabolism and Ameliorating Pancreatic Dysfunction in Type 2 Diabetic Rats. Int. J. Biol. Macromol. 2018, 110, 276–284. DOI: 10.1016/j.ijbiomac.2017.11.162.
  • Chen, L. H.; Song, J. L.; Qian, Y.; Zhao, X.; Suo, H. Y.; Li, J. Increased Preventive Effect on Colon Carcinogenesis by Use of Resistant Starch (RS3) as the Carrier for Polysaccharide of Larimichthys Crocea Swimming Bladder. Int. J. Mol. Sci. 2014, 15(1), 817–829. DOI: 10.3390/ijms15010817.
  • Wang, H.; Pang, G. Effect of Resistant and Digestible Rice Starches on Human Cytokine and Lactate Metabolic Networks in Serum. Cytokine. 2017, 93, 57–65. DOI: 10.1016/j.cyto.2017.05.009.
  • Arribas, C.; Cabellos, B.; Sánchez, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M. M. The Impact of Extrusion on the Nutritional Composition, Dietary Fiber and in Vitro Digestibility of Gluten-free Snacks Based on Rice, Pea and Carob Flour Blends. Food Funct. 2017, 8(10), 3654–3663. DOI: 10.1039/C7FO00910K.
  • Shimotoyodome, A.; Suzuki, J.; Fukuoka, D.; Tokimitsu, I.; Hase, T. RS4-type Resistant Starch Prevents High -fat Diet-induced Obesity via Increased Hepatic Fatty Acid Oxidation and Decreased Postprandial GIP in C57BL/6J Mice. Am. J. Physiol. Endocrinol. Metab. 2010, 298(3), 652–662. DOI: 10.1152/ajpendo.00468.2009.
  • Qian, Y.; Li, G.; Zhu, K.; Suo, H. Y.; Sun, P.; Zhao, X. Effects of Three Types of Resistant Starch on Intestine and Their Gastric Ulcer Preventive Activities in Vivo. J. Korean Soc. App. Biol. Chem. 2013, 56(6), 739–746. DOI: 10.1007/s13765-013-3229-z.
  • Haub, M. D.; Hubach, K. L.; Al-Tamimi, E. K.; Ornelas, S.; Seib, P. A. Different Types of Resistant Starch Elicit Different Glucose Responses in Humans. J. Nutr. Metab. 2010, 2010, 230501. DOI: 10.1155/2010/230501.
  • Qian, Y.; Zhao, X.; Song, J. L.; Zhu, K.; Sun, P.; Li, G. J.; Wang, R.; Kan, J. Q. Inhibitory Effects of Resistant Starch (RS3) as a Carrier for Stachyose on Dextran Sulfate Sodium-induced Ulcerative Colitis in C57BL/6 Mice. Exp. Ther. Med. 2013, 6(5), 1312–1316. DOI: 10.3892/etm.2013.1280.
  • Zhang, Y.; Wang, Y.; Zheng, B.; Lu, X.; Zhuang, W. The in Vitro Effects of Retrograded Starch (Resistant Starch Type 3) from Lotus Seed Starch on the Proliferation of Bifidobacterium Adolescentis. Food Funct. 2013, 4(11), 1609–1616. DOI: 10.1039/c3fo60206k.
  • Zeng, Y. W.; Yang, S. M.; Du, J.; Wu, D. X.; Pu, X. Y.; Fang, Y. N. Research Progress of High Resistant Starch Rice for Preventive Treatment of Chronic Diseases. Bullet. Agri. Sci. Technol. 2009 ,1 , 37–39.
  • Shi, B.; Sun, Z. M.; Bai, J. J.; Yang, R. F.; Zhang, X. F.; Piao, Z. Z. Effects of Youtang Rice for Type 2 Diabetics of Postprandial Blood Glucose. J. Chin. Cereals Oils Assoc. 2014, 29(1), 1–5.
  • Bao, J. S.; Zhou, X.; Xu, F. F.; He, Q.; Park, Y. J. Genome-wide Association Study of the Resistant Starch Content in Rice Grains. Starch. 2017, 69(7–8), 7–8. DOI: 10.1002/star.201600343.
  • Chen, M. H.; Bergman, C. J.; McClung, A. M.; Everette, J. D.; Tabien, R. E. Resistant Starch: Variation among High Amylose Rice Varieties and Its Relationship with Apparent Amylose Content, Pasting Properties and Cooking Methods. Food Chem. 2017, 234, 180–189. DOI: 10.1016/j.foodchem.2017.04.170.
  • Gani, A. B.; Ashwar, A.; Akhter, G.; Shah, A.; Wani, I. A.; Masoodi, F. A. Physico-chemical, Structural, Pasting and Thermal Properties of Starches of Fourteen Himalayan Rice Cultivars. Int. J. Biol. Macromol. 2017, 95, 1101–1107. DOI: 10.1016/j.ijbiomac.2016.10.100.
  • Zeng, Y. W.; Zhang, H. L.; Li, Z. C.; Shen, S. Q.; Sun, J. L.; Wang, M. X.; Liao, D. Q.; Liu, X.; Wang, X. K.; Xiao, F. H. Evaluation of Genetic Diversity in the Rice Landraces (Oryza Sativa L.) In Yunnan, China. Breed. Sci. 2007, 57(2), 91–99. DOI: 10.1270/jsbbs.57.91.
  • Zeng, Y. W.; Shen, S. Q.; Li, Z. C.; Yang, Z. Y.; Wang, X. K.; Zhang, H. L.; Wen, G. S. Ecogeographic and Genetic Diversity Based on Morphological Characters of Indigenous Rice (Oryza Sativa L.) In Yunnan, China. Genet. Resour. Crop Evol. 2003, 50(6), 566–577.
  • Zeng, Y. W.; Du, J.; Yang, S. M.; Pu, X. Y.; Wang, Y. C.; Yang, T.; Sun, Z. H.; Xin, P. Y. The Zonal Characteristics and Cultivated Types Difference of Functional Components in Brown Rice for Core Collection of Yunnan Rice. Spectrosc. Spect. Anal. 2010, 30(12), 3388–3394.
  • Luo, X.; Huang, J. F.; Zhu, Y. S.; Xie, H. G.; Wu, F. X.; Zhang, M. Q.; Zhang, J. F.; Xie, H. A. Genetic Analysis of High Resistant Starch Characteristics for Rice Variety Gongmi3 (Oryza Sativa Ssp. Indica). J. Agric. Biotechnol. 2014, 22(1), 10–16.
  • Yang, S. M.; Yang, T.; Wang, J. J.; Zeng, Y. W.; Du, J.; Pu, X. Y.; Xie, Y. W. Effects of Resistant Starch Content on Mixture and Cooking among Different Genotypes Rice. J. Hunan Agric. Univ. 2010, 36(6), 605–608.
  • Raja, R. B.; Agasimani, S.; Jaiswal, S.; Thiruvengadam, V.; Sabariappan, R.; Chibbar, R. N.; Ram, S. G. EcoTILLING by Sequencing Reveals Polymorphisms in Genes Encoding Starch Synthases that are Associated with Low Glycemic Response in Rice. BMC Plant Biol. 2017, 17(1), 13. DOI: 10.1186/s12870-016-0968-0.
  • Sun, Y.; Jiao, G.; Liu, Z.; Zhang, X.; Li, J.; Guo, X.; Du, W.; Du, J.; Francis, F.; Zhao, Y., et al. Generation of High-amylose Rice through CRISPR/Cas9-mediated Targeted Mutagenesis of Starch Branching Enzymes. Front. Plant Sci. 2017, 8, 298. DOI: 10.3389/fpls.2017.00298.
  • Luo, J.; Jobling, S. A.; Millar, A.; Morell, M. K.; Li, Z. Allelic Effects on Starch Structure and Properties of Six Starch Biosynthetic Genes in a Rice Recombinant Inbred Line Population. Rice (NY). 2015, 8(1), 15. DOI: 10.1186/s12284-015-0046-5.
  • Gurunathan, S.; Ramadoss, B. R.; Mudili, V.; Siddaiah, C.; Kalagatur, N. K.; Bapu, J. R. K.; Mohan, C. D.; Alqarawi, A. A.; Hashem, A.; Allah, E. F. A. Single Nucleotide Polymorphisms in Starch Biosynthetic Genes Associated with Increased Resistant Starch Concentration in Rice Mutant. Front. Genet. 2019, 10, 946. DOI: 10.3389/fgene.2019.00946.
  • Zhang, N.; Wang, M.; Fu, J.; Shen, Y.; Ding, Y.; Wu, D.; Shu, X.; Song, W. Identifying Genes for Resistant Starch, Slowly Digestible Starch, and Rapidly Digestible Starch in Rice Using Genome-wide Association Studies. Genes. Genom. 2020, 42(11), 1227–1238.
  • Guo, D.; Ling, X.; Zhou, X.; Li, X.; Wang, J.; Qiu, S.; Yang, Y.; Zhang, B. Evaluation of the Quality of a High-Resistant Starch and Low-Glutelin Rice (Oryza sativaL.) Generated through CRISPR/Cas9-Mediated Targeted Mutagenesis. J. Agric. Food Chem. 2020, 68(36), 9733–9742. DOI: 10.1021/acs.jafc.0c02995.
  • Yang, R.; Piao, Z.; Wan, C.; Lee, G.; Ruan, X.; Bai, J. Breeding for Three-line Japonica Hybrid Rice Combinations with High Resistant Starch Content Using Molecular Marker-assisted Selection. Breed. Sci. 2020, 70(3), 409–414. DOI: 10.1270/jsbbs.20005.
  • Miura, S.; Koyama, N.; Crofts, N.; Hosaka, Y.; Abe, M.; Fujita, N. Generation And starch characterization of Non-transgenic BEI and BEIIb Double Mutant Rice (Oryza Sativa) with Ultra-high Level Of resistant starch. Rice (N Y). 2021, 14(1), 3. DOI: 10.1186/s12284-020-00441-0.
  • Saito, Y.; Watanabe, T.; Sasaki, T.; Watanabe, K.; Hirayama, M.; Fujita, N. Effects of Single Ingestion of Rice Cracker and Cooked Rice with High Resistant Starch on Postprandial Glucose and Insulin Responses in Healthy Adults:Two Randomized, Single-blind,cross-over Trials. Biosci. Biotechnol. Biochem. 2020, 84(2), 365–371. DOI: 10.1080/09168451.2019.1687282.
  • Li, X.; Yang, X. M.; Du, J.; Chen, Z. Y.; Wei, M. L.; Pu, X. Y.; Yang, J. Z.; Yang, T.; Mandal, M. S. N.; Chen, L. J., et al. Identifcation of Four Functional Component Content QTLs of Brown Rice in the Yunnan Minicore Collection and Its Nearisogenic Lines Using Association Mapping. Cereal Res. Commun. 2021. DOI:10.1007/s42976-021-00191-9.
  • Cai, T.; Sun, H.; Qiao, J.; Zhu, L.; Zhang, F.; Zhang, J.; Tang, Z.;.; Wei, X.; Yang, J.; Yuan, Q.;., et al. Cell-free Chemoenzymatic Starch Synthesis from Carbon Dioxide. Science. 2021, 373(6562), 1523–1527. DOI: 10.1126/science.abh4049.
  • Zeng, Y. W. Rice Resistant Starch Synthesis Controls Human Diabetes. Science. 2021, 373, (6562). https://www.science.org/doi/10.1126/science.abh4049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.