4,702
Views
19
CrossRef citations to date
0
Altmetric
Review

High-moisture Extrusion Technology Application in the Processing of Textured Plant Protein Meat Analogues: A Review

, , ORCID Icon, , , , & show all

References

  • Bonny, S. P. F.; Gardner, G. E.; Pethick, D. W.; Hocquette, J.-F. What is Artificial Meat and What Does it Mean for the Future of the Meat Industry? J. Integr. Agr. 2015, 14 (2) , 255–263. DOI: 10.1016/S2095-3119(14)60888-1.
  • Vossen, E.; Goethals, S.; De Vrieze, J.; Boon, N.; Van Hecke, T.; De Smet, S. Red and Processed Meat Consumption within Two Different Dietary Patterns: Effect on the Colon Microbial Community and Volatile Metabolites in Pigs. Food Res. Int. 2020, 129, 108793. DOI: 10.1016/j.foodres.2019.108793.
  • Kumar, P.; Chatli, M.; Mehta, N.; Singh, P.; Malav, O.; Verma, A. K. Meat Analogues: Health Promising Sustainable Meat Substitutes. Crit. Rev. Food Sci. 2017, 57 (5) , 923–932. DOI: 10.1080/10408398.2014.939739.
  • Hedenus, F.; Wirsenius, S.; Johansson, D. J. The Importance of Reduced Meat and Dairy Consumption for Meeting Stringent Climate Change Targets. Clim. Change. 2014, 124 (1) , 79–91. DOI: 10.1007/s10584-014-1104-5.
  • Sofos, J. N. Challenges to Meat Safety in the 21st Century. Meat Sci. 2008, 78 (1–2) , 3–13. DOI: 10.1016/j.meatsci.2007.07.027.
  • Nelson, M. E.; Hamm, M. W.; Hu, F. B.; Abrams, S. A.; Griffin, T. S. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv. Nutr. 2016, 7 (6), 1005–1025. DOI: 10.3945/an.116.012567.
  • Samard, S.; Gu, B. Y.; Ryu, G. H. Effects of Extrusion Types, Screw Speed and Addition of Wheat Gluten on Physicochemical Characteristics and Cooking Stability of Meat Analogues. J. Sci. Food Agr. 2019, 99(11), 4922–4931. DOI: 10.1002/jsfa.9722.
  • Hoek, A. C.; Luning, P. A.; Weijzen, P.; Engels, W.; Kok, F. J.; De Graaf, C. Replacement of Meat by Meat Substitutes. A Survey on Person-and Product-related Factors in Consumer Acceptance. Appetite. 2011, 56(3), 662–673. DOI: 10.1016/j.appet.2011.02.001.
  • Kim, K.; Choi, B.; Lee, I.; Lee, H.; Kwon, S.; Oh, K.; Kim, A. Y. Bioproduction of Mushroom Mycelium of Agaricus Bisporus by Commercial Submerged Fermentation for the Production of Meat Analogue. J. Sci. Food Agr. 2011, 91(9), 1561–1568. DOI: 10.1002/jsfa.4348.
  • Stephan, A.; Ahlborn, J.; Zajul, M.; Zorn, H. Edible Mushroom Mycelia of Pleurotus Sapidus as Novel Protein Sources in a Vegan Boiled Sausage Analog System: Functionality and Sensory Tests in Comparison to Commercial Proteins and Meat Sausages. Eur. Food Res. Technol. 2018, 244(5), 913–924. DOI: 10.1007/s00217-017-3012-1.
  • Sha, L.; Xiong, Y. L. Plant Protein-based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Tech. 2020, 102, 51–61. DOI: 10.1016/j.tifs.2020.05.022.
  • Arora, B.; Kamal, S.; Sharma, V. Effect of Binding Agents on Quality Characteristics of Mushroom Based Sausage Analogue. J. Food Process. Pres. 2017, 41(5), e13134. DOI: 10.1111/jfpp.13134.
  • Zhang, J.; Liu, L.; Liu, H.; Yoon, A.; Rizvi, S. S.; Wang, Q. Changes in Conformation and Quality of Vegetable Protein during Texturization Process by Extrusion. Crit. Rev. Food Sci. 2019, 59(20), 3267–3280. doi:10.1080/10408398.2018.1487383.
  • Wild, F.; Czerny, M.; Janssen, A. M.; Kole, A. P.; Zunabovic, M.; Domig, K. J. The Evolution of a Plant-based Alternative to Meat. From Niche Markets to Widely Accepted Meat Alternatives. Agro Food Ind. Hi-Tech. 2014, 25(1), 45–49. doi:10.2147/OTT.S58734.
  • Alam, M.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Crit. Rev. Food Sci. 2016, 56(3), 445–473. DOI: 10.1080/10408398.2013.779568.
  • Akdogan, H. High Moisture Food Extrusion. Int. J. Food Sci. Technol. 1999, 34(3), 195–207. DOI: 10.1046/j.1365-2621.1999.00256.x.
  • Maurya, A.; Said, P. Extrusion Processing on Physical and Chemical Properties of Protein Rich Products-an Overview. J. Bioresour. Eng. Technol. 2014, 2(4), 61–67.
  • Zhang, B.; Zhang, Y.; Dreisoerner, J.; Wei, Y. The Effects of Screw Configuration on the Screw Fill Degree and Special Mechanical Energy in Twin-screw Extruder for High-moisture Texturised Defatted Soybean Meal. J. Food Eng. 2015, 157, 77–83. DOI: 10.1016/j.jfoodeng.2015.02.019.
  • Pietsch, V. L.; Werner, R.; Karbstein, H. P.; Emin, M. A. High Moisture Extrusion of Wheat Gluten: Relationship between Process Parameters, Protein Polymerization, and Final Product Characteristics. J. Food Eng. 2019, 259, 3–11. DOI: 10.1016/j.jfoodeng.2019.04.006.
  • Steel, C. J.; Leoro, M. G. V.; Schmiele, M.; Ferreira, R. E.; Chang, Y. K. . Thermoplastic Extrusion in Food Processing.Thermoplastic Elastomers; Intech Press: Rijeka, Croatia, 2012; pp265–290 .
  • Zhang, J.; Liu, L.; Zhu, S.; Wang, Q. Texturisation Behaviour of Peanut–soy Bean/wheat Protein Mixtures during High Moisture Extrusion Cooking. Int. J. Food Sci. Technol. 2018, 53(11), 2535–2541. DOI: 10.1111/ijfs.13847.
  • Guerrero, P.; Beatty, E.; Kerry, J.; De La Caba, K. Extrusion of Soy Protein with Gelatin and Sugars at Low Moisture Content. J. Food Eng. 2012, 110(1), 53–59. DOI: 10.1016/j.jfoodeng.2011.12.009.
  • Wolz, M.; Kastenhuber, S.; Kulozik, U. High Moisture Extrusion for Microparticulation of Whey proteins–Influence of Process Parameters. J. Food Eng. 2016, 185, 56–61. DOI: 10.1016/j.jfoodeng.2016.04.002.
  • Zhang, G.; Zhao, X.; Li, X.; Du, G.; Zhou, J.; Chen, J. Challenges and Possibilities for Bio-manufacturing Cultured Meat. Trends Food Sci.Tech. 2020, 97, 443–450. DOI: 10.1016/j.tifs.2020.01.026.
  • Bhat, Z. F.; Kumar, S.; Fayaz, H. In Vitro Meat Production: Challenges and Benefits over Conventional Meat Production. J. Integr. Agr. 2015, 14(2), 241–248. DOI: 10.1016/S2095-3119(14)60887-X.
  • Slade, P. If You Build It, Will They Eat It? Consumer Preferences for Plant-based and Cultured Meat Burgers. Appetite. 2018, 125, 428–437. DOI: 10.1016/j.appet.2018.02.030.
  • Post, M. J. Cultured Meat from Stem Cells: Challenges and Prospects. Meat Sci. 2012, 92, 297–301. DOI: 10.1016/j.meatsci.2012.04.008.
  • Kadim, I. T.; Mahgoub, O.; Baqir, S.; Faye, B.; Purchas, R. Cultured Meat from Muscle Stem Cells: A Review of Challenges and Prospects. J. Integr. Agr. 2015, 14(2), 222–233. DOI: 10.1016/S2095-3119(14)60881-9.
  • Zhang, J.; Liu, L.; Jiang, Y.; Faisal, S.; Wei, L.; Cao, C.; Yan, W.; Wang, Q. Converting Peanut Protein Biomass Waste into “Double Green” Meat Substitutes Using A High-Moisture Extrusion Process: A Multiscale Method to Explore A Process for Forming A Meat-Like Fibrous Structure. J. Agr. Food Chem. 2019, 67(38), 10713–10725. DOI: 10.1021/acs.jafc.9b02711.
  • Pietsch, V. L.; Bühler, J. M.; Karbstein, H. P.; Emin, A. M. High Moisture Extrusion of Soy Protein Concentrate: Influence of Thermomechanical Treatment on Protein-protein Interactions and Rheological Properties. J. Food Eng. 2019, 251, 11–18. DOI: 10.1016/j.jfoodeng.2019.01.001.
  • Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature. 2014, 515(7528), 518–522. DOI: 10.1038/nature13959.
  • Zhang, J.; Li, L.; Yuanrong, J.; Faisal, S.; Qiang, W. A New Insight into the High-moisture Extrusion Process of Peanut Protein: From the Aspect of the Orders and Amount of Energy Input. J. Food Eng. 2020, 264, 109668. DOI: 10.1016/j.jfoodeng.2019.07.015.
  • Elzerman, J. E.; Van Boekel, M.; Luning, A. P. Exploring Meat Substitutes: Consumer Experiences and Contextual Factors. Brit. Food J. 2013, 115, 700–710. DOI: 10.1108/00070701311331490.
  • Fiorentini, M.; Kinchla, A. J.; Nolden, A. A. Role of Sensory Evaluation in Consumer Acceptance of Plant-based Meat Analogs and Meat Extenders: A Scoping Review. Foods. 2020, 9(9), 1334. DOI: 10.3390/foods9091334.
  • Chen, Q.; Zhang, J.; Zhang, Y.; Meng, S.; Wang, Q. Rheological Properties of Pea Protein Isolate-amylose/amylopectin Mixtures and the Application in the High-moisture Extruded Meat Substitutes. Food Hydrocolloid. 2021, 117, 106732. DOI: 10.1016/j.foodhyd.2021.106732.
  • Samard, S.; Ryu, G. H. A Comparison of Physicochemical Characteristics, Texture, and Structure of Meat Analogue and Meats. J. Sci. Food Agr. 2019, 99 (6), 2708–2715. doi:10.1002/jsfa.9438.
  • Zhang, J.; Liu, L.; Jiang, Y.; Shah, F.; Xu, Y.; Wang, Q. High-moisture Extrusion of Peanut Protein-/carrageenan/sodium Alginate/wheat Starch Mixtures: Effect of Different Exogenous Polysaccharides on the Process Forming a Fibrous Structure. Food Hydrocolloid. 2020, 99, 105311. DOI: 10.1016/j.foodhyd.2019.105311.
  • Osen, R.; Toelstede, S.; Eisner, P.; Schweiggert‐Weisz, U. Effect of High Moisture Extrusion Cooking on Protein–protein Interactions of Pea (Pisum Sativum L.) Protein Isolates. Int. J. Food Sci. Technol. 2015, 50(6), 1390–1396. DOI: 10.1111/ijfs.12783.
  • Singh, S.; Gamlath, S.; Wakeling, L. Nutritional Aspects of Food Extrusion: A Review. Int. J. Food Sci. Technol. 2007, 42(8), 916–929. DOI: 10.1111/j.1365-2621.2006.01309.x.
  • Riaz, M. N.; Asif, M.; Ali, R. Stability of Vitamins during Extrusion. Crit. Rev. Food Sci. 2009, 49(4), 361–368. doi:10.1080/10408390802067290.
  • Thadavathi, Y. L.; Wassén, S.; Kádár, R. In-line Rheological and Microstroctural Characterization of High Moisture Content Protein Vegetable Mixtures in Single Screw Extrusion. J. Food Eng. 2019, 245, 112–123. DOI: 10.1016/j.jfoodeng.2018.10.006.
  • Guldiken, B.; Yovchev, A.; Nosworthy, M. G.; Stone, A. K.; House, J. D.; Hood‐Niefer, S.; Nickerson, M. T. Effect of Extrusion Conditions on the Physical Properties of Desi Chickpea‐barley Extrudates and Quality Attributes of Their Resulting Flours. J. Texture Stud. 2020, 51(2), 300–307. DOI: 10.1111/jtxs.12470.
  • Emin, M.; Schuchmann, H. Analysis of the Dispersive Mixing Efficiency in a Twin-screw Extrusion Processing of Starch Based Matrix. J. Food Eng. 2013, 115(1), 132–143. DOI: 10.1016/j.jfoodeng.2012.10.008.
  • Thiébaud, M.; Dumay, E.; Cheftel, J. C. Influence of Process Variables on the Characteristics of a High Moisture Fish Soy Protein Mix Texturized by Extrusion Cooking. LWT-Food Sci. Technol. 1996, 29 (5–6) , 526–535. doi:10.1006/fstl.1996.0080.
  • Cheftel, J.; Kitagawa, M.; Queguiner, C. New Protein Texturization Processes by Extrusion Cooking at High Moisture Levels. Food Rev. Int. 1992, 8(2), 235–275. DOI: 10.1080/87559129209540940.
  • Kostic, M. M.; Reifschneider, L. G. Design of Extrusion Dies. Encycloped. Chem. Process. 2006, 10, 633–649. doi:10.1081/E-ECHP-120039324.
  • Liu, K.; Hsieh, F.-H. Protein–protein Interactions during High-moisture Extrusion for Fibrous Meat Analogues and Comparison of Protein Solubility Methods Using Different Solvent Systems. J. Agr. Food Chem. 2008, 56(8), 2681–2687. DOI: 10.1021/jf073343q.
  • Fang, Y.; Bo, Z.; Wei, Y.; Li, S. Effects of Specific Mechanical Energy on Soy Protein Aggregation during Extrusion Process Studied by Size Exclusion Chromatography Coupled with Multi-angle Laser Light Scattering. J. Food Eng. 2013, 115(2), 220–225. doi:10.1016/j.jfoodeng.2012.10.017.
  • Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High Moisture Extrusion Cooking of Pea Protein Isolates: Raw Material Characteristics, Extruder Responses, and Texture Properties. J. Food Eng. 2014, 127, 67–74. DOI: 10.1016/j.jfoodeng.2013.11.023.
  • Ryu, G.-H.; Kennedy-Metz, L. R.; Avrunin, G. S.; Clarke, L. A.; Osterweil, L. J.; Dias, R. D.; Zenati, M. A. Extrusion Cooking of High-moisture Meat Analogues. Extrusion Cooking: Cereal Grains Processing. IEEE CogSIMA: 2020 IEEE International Conference on Cognitive and Computational Aspects of Situation Management (Cogsima): Proceedings: Virtual Conference, 24-28 August 2020. IEEE Conference on Cognitive and Computational Aspects of, 2020, 2020, 205. DOI: 10.1109/cogsima49017.2020.9215995.
  • Osen, R.; Schweiggert-Weisz, U. High-moisture Extrusion: Meat Analogues. Reference Module in Food Sciences. 2016, 1–7. doi:10.1016/b978-0-08-100596-5.03099-7.
  • Tolstoguzov, V. Texturising by Phase Separation. Biotechnol. Adv. 2006, 24(6), 626–628. DOI: 10.1016/j.biotechadv.2006.07.001.
  • Vaz, L.; Arêas, J. A. G. Recovery and Upgrading Bovine Rumen Protein by Extrusion: Effect of Lipid Content on Protein Disulphide Cross-linking, Solubility and Molecular Weight. Meat Sci. 2010, 84(1), 39–45. DOI: 10.1016/j.meatsci.2009.08.010.
  • Alzagtat, A. A.; Alli, I. Protein-lipid Interactions in Food Systems: A Review. Int. J. Food Sci. Nutr. 2002, 53(3), 249–260. DOI: 10.1080/09637480220132850.
  • Tolstoguzov, V. B. Thermoplastic Extrusion—the Mechanism of the Formation of Extrudate Structure and Properties. J. Am. Oil Chem. Soc. 1993, 70(4), 417–424. DOI: 10.1007/BF02552717.
  • Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocolloid. 2014, 39, 301–318. DOI: 10.1016/j.foodhyd.2014.01.013.
  • Chen, F. L.; Wei, Y. M.; Zhang, B.; Ojokoh, A. O. System Parameters and Product Properties Response of Soybean Protein Extruded at Wide Moisture Range. J. Food Eng. 2010, 96(2), 208–213. DOI: 10.1016/j.jfoodeng.2009.07.014.
  • Wu, M.; Huang, X.; Gao, F.; Sun, Y.; Duan, H.; Li, D. Dynamic Mechanical Properties and Fractal Analysis of Texturized Soybean Protein/wheat Gluten Composite Produced by High Moisture Extrusion. Int. J. Food Sci. Technol. 2019, 54(2), 499–508. DOI: 10.1111/ijfs.13963.
  • Sun, C.; Fu, J.; Chang, Y.; Li, S.; Fang, Y. Structure Design for Improving the Characteristic Attributes of Extruded Plant-Based Meat Analogues. Food Biophys. 2021, 319, 1–13. doi:10.1007/s11483-021-09692-w.
  • Rehrah, D.; Ahmedna, M.; Goktepe, I.; Yu, J. Extrusion Parameters and Consumer Acceptability of a Peanut‐based Meat Analogue. Int. J. Food Sci. Technol. 2009, 44(10), 2075–2084. DOI: 10.1111/j.1365-2621.2009.02035.x.
  • Pietsch, V. L.; Emin, M. A.; Schuchmann, H. P. Process Conditions Influencing Wheat Gluten Polymerization during High Moisture Extrusion of Meat Analog Products. J. Food Eng. 2017, 198, 28–35. DOI: 10.1016/j.jfoodeng.2016.10.027.
  • Malav, O.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat Analog: A Review. Crit. Rev. Food Sci. 2015, 55(9), 1241–1245. doi:10.1080/10408398.2012.689381.
  • Palanisamy, M.; Franke, K.; Berger, R. G.; Heinz, V.; Töpfl, S. High Moisture Extrusion of Lupin Protein: Influence of Extrusion Parameters on Extruder Responses and Product Properties. J. Sci. Food Agr. 2019, 99(5), 2175–2185. DOI: 10.1002/jsfa.9410.
  • Omohimi, C.; Sobukola, O.; Sarafadeen, K.; Sanni, L. Effect of Thermo-extrusion Process Parameters on Selected Quality Attributes of Meat Analogue from Mucuna Bean Seed Flour. Nigerian Food J. 2014, 32(1), 21–30. DOI: 10.1016/S0189-7241(15)30092-8.
  • Do Carmo, C. S.; Knutsen, S. H.; Malizia, G.; Dessev, T.; Geny, A.; Zobel, H.; Myhrer, K. S.; Varela, P.; Sahlstrøm, S. Meat Analogues from a Faba Bean Concentrate Can Be Generated by High Moisture Extrusion. Future Food. 2021, 3, 100014. DOI: 10.1016/j.fufo.2021.100014.
  • Ferawati, F.; Zahari, I.; Barman, M.; Hefni, M.; Ahlström, C.; Witthöft, C.; Östbring, K. High-moisture Meat Analogues Produced from Yellow Pea and Faba Bean Protein Isolates/concentrate: Effect of Raw Material Composition and Extrusion Parameters on Texture Properties. Foods. 2021, 10(4), 843. DOI: 10.3390/foods10040843.
  • Brishti, F. H.; Chay, S. Y.; Muhammad, K.; Ismail-Fitry, M. R.; Zarei, M.; Karthikeyan, S.; Caballero-Briones, F.; Saari, N. Structural and Rheological Changes of Texturized Mung Bean Protein Induced by Feed Moisture during Extrusion. Food Chem. 2021, 344, 128643. DOI: 10.1016/j.foodchem.2020.128643.
  • Caporgno, M. P.; Böcker, L.; Müssner, C.; Stirnemann, E.; Haberkorn, I.; Adelmann, H.; Handschin, S.; Windhab, E. J.; Mathys, A. Extruded Meat Analogues Based on Yellow, Heterotrophically Cultivated Auxenochlorella Protothecoides Microalgae. Innov. Food Sci. Emerg. 2020, 59, 102275. DOI: 10.1016/j.ifset.2019.102275.
  • Caporgno, M. P.; Mathys, A. Trends in Microalgae Incorporation into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. DOI: 10.3389/fnut.2018.00058.
  • Becker, E. Micro-algae as a Source of Protein. Biotechnol. Adv. 2007, 25(2), 207–210. DOI: 10.1016/j.biotechadv.2006.11.002.
  • Chiang, J. H.; Loveday, S. M.; Hardacre, A. K.; Parker, M. E. Effects of Soy Protein to Wheat Gluten Ratio on the Physicochemical Properties of Extruded Meat Analogues. Food Struct. 2019, 19, 100102. doi:10.1016/j.foostr.2018.11.002.
  • Chiang, J. H.; Hardacre, A. K.; Parker, M. E. Effects of Maillard‐reacted Beef Bone Hydrolysate on the Physicochemical Properties of Extruded Meat Alternatives. J. Food Sci. 2020, 85(3), 567–575. DOI: 10.1111/1750-3841.14960.
  • Wittek, P.; Ellwanger, F.; Karbstein, H. P.; Emin, M. A. Morphology Development and Flow Characteristics during High Moisture Extrusion of a Plant-based Meat Analogue. Foods. 2021, 10(8), 1753. DOI: 10.3390/foods10081753.
  • Wittek, P.; Karbstein, H. P.; Emin, M. A. Blending Proteins in High Moisture Extrusion to Design Meat Analogues: Rheological Properties, Morphology Development and Product Properties. Foods. 2021, 10(7), 1509. DOI: 10.3390/foods10071509.
  • Wittek, P.; Zeiler, N.; Karbstein, H. P.; Emin, M. A. High Moisture Extrusion of Soy Protein: Investigations on the Formation of Anisotropic Product Structure. Foods. 2021, 10(1), 102. DOI: 10.3390/foods10010102.
  • Immonen, M.; Chandrakusuma, A.; Sibakov, J.; Poikelispää, M.; Sontag-Strohm, T. Texturization of a Blend of Pea and Destarched Oat Protein Using High-moisture Extrusion. Foods. 2021, 10(7), 1517. DOI: 10.3390/foods10071517.
  • Day, L.; Swanson, B. G. Functionality of Protein‐fortified Extrudates. Compr. Rev. Food Sci. Food S. 2013, 12(5), 546–564. DOI: 10.1111/1541-4337.12023.
  • Ai, Y.; Cichy, K. A.; Harte, J. B.; Kelly, J. D.; Ng, P. K. Effects of Extrusion Cooking on the Chemical Composition and Functional Properties of Dry Common Bean Powders. Food Chem. 2016, 211, 538–545. DOI: 10.1016/j.foodchem.2016.05.095.
  • Emin, M.; Quevedo, M.; Wilhelm, M.; Karbstein, H. Analysis of the Reaction Behavior of Highly Concentrated Plant Proteins in Extrusion-like Conditions. Innov. Food Sci. Emerg. 2017, 44, 15–20. DOI: 10.1016/j.ifset.2017.09.013.
  • Shah, A. A. The Effect of Extrusion Conditions on Aggregation of Peanut Proteins. M. S. Dissertation, Athens, Georgia, United States, 2003. , .
  • Verbeek, C. J.; van Den Berg, L. E. Extrusion Processing and Properties of Protein‐based Thermoplastics. Macromol. Mater. Eng. 2010, 295(1), 10–21. DOI: 10.1002/mame.200900167.
  • Liu, K. S.; Hsieh, F. H. Protein–protein Interactions in High Moisture‐extruded Meat Analogs and Heat‐induced Soy Protein Gels. J. Am. Oil Chem. Soc. 2007, 84(8), 741–748. DOI: 10.1007/s11746-007-1095-8.
  • Afizah, M. N.; Rizvi, S. S. Functional Properties of Whey Protein Concentrate Texturized at Acidic pH: Effect of Extrusion Temperature. LWT-Food Sci. Technol. 2014, 57(1), 290–298. DOI: 10.1016/j.lwt.2014.01.019.
  • Lee, G.; Huff, H.; Hsieh, F. Overall Heat Transfer Coefficient between Cooling Die and Extruded Product. Trans. ASAE 2005, 48(4), 1461–1469. doi:10.13031/2013.19171.
  • Chen, F. L.; Wei, Y. M.; Zhang, B. Chemical Cross-linking and Molecular Aggregation of Soybean Protein during Extrusion Cooking at Low and High Moisture Content. LWT-Food Sci. Technol. 2011, 44(4), 957–962. DOI: 10.1016/j.lwt.2010.12.008.
  • Hong, B.; Xie, T.; Gao, Y.; Li, Z.; Zhang, Y.; Zhang, L.; Li, J.; Lu, S. The Effect of Raw Material System on Fibrous Structure for High Moisture Textured Protein. J. Chin. Cereal. Oil. Ass. 2016, 31(2), 23–27.
  • Qi, P. X.; Onwulata, C. I. Physical Properties, Molecular Structures, and Protein Quality of Texturized Whey Protein Isolate: Effect of Extrusion Moisture Content. J. Dairy Sci. 2011, 94(5), 2231–2244. DOI: 10.3168/jds.2010-3942.
  • Chen, Y.; Liang, Y.; Jia, F.; Chen, D.; Zhang, X.; Wang, Q.; Wang, J. Effect of Extrusion Temperature on the Protein Aggregation of Wheat Gluten with the Addition of Peanut Oil during Extrusion. Int. J. Biol. Macromol. 2021, 166, 1377–1386. DOI: 10.1016/j.ijbiomac.2020.11.017.
  • Wei, Y.; Kang, L.; Zhang, B.; Zhao, D. Processing and Mechanism of High Moisture Textured Soy Protein. Trans. CSAE. 2006, 22, 193–197. doi:10.1016/S1872-2040(06)60045-5.
  • Walsh, M. K.; Nam, S. H.; Pettee, B. C.; Carpenter, C. E. Characterization of Textured Whey Protein Produced at Varying Protein Concentrations. J. Food Process. Pres. 2008, 32(3), 503–516. DOI: 10.1111/j.1745-4549.2008.00194.x.
  • Krintiras, G. A.; Göbel, J.; Van der Goot, A. J.; Stefanidis, G. D. Production of Structured Soy-based Meat Analogues Using Simple Shear and Heat in a Couette Cell. J. Food Eng. 2015, 160, 34–41. DOI: 10.1016/j.jfoodeng.2015.02.015.
  • Marsman, G.; Gruppen, H.; De Groot, J.; Voragen, A. Effect of Toasting and Extrusion at Different Shear Levels on Soy Protein Interactions. J. Agr. Food Chem. 1998, 46(7), 2770–2777. DOI: 10.1021/jf970879a.
  • Lin, S.; Huff, H.; Hsieh, F. Texture and Chemical Characteristics of Soy Protein Meat Analog Extruded at High Moisture. J. Food Sci. 2000, 65(2), 264–269. DOI: 10.1111/j.1365-2621.2000.tb15991.x.
  • Chaiyakul, S.; Jangchud, K.; Jangchud, A.; Wuttijumnong, P.; Winger, R. Effect of Protein Content and Extrusion Process on Sensory and Physical Properties of Extruded High-Protein, Glutinous Rice-Based Snack. Kasetsart University Conference, Thailand . 2008, 42; pp 182–190.
  • Grabowska, K. J.; Tekidou, S.; Boom, R. M.; van der Goot, A.-J. Shear Structuring as a New Method to Make Anisotropic Structures from Soy–gluten Blends. Food Res. Int. 2014, 64, 743–751. DOI: 10.1016/j.foodres.2014.08.010.
  • Schreuders, F. K.; Dekkers, B. L.; Bodnár, I.; Erni, P.; Boom, R. M.; van der Goot, A. J. Comparing Structuring Potential of Pea and Soy Protein with Gluten for Meat Analogue Preparation. J. Food Eng. 2019, 261, 32–39. DOI: 10.1016/j.jfoodeng.2019.04.022.
  • Guo, Z.; Teng, F.; Huang, Z.; Lv, B.; Lv, X.; Babich, O.; Yu, W.; Li, Y.; Wang, Z.; Jiang, L. Effects of Material Characteristics on the Structural Characteristics and Flavor Substances Retention of Meat Analogs. Food Hydrocolloid. 2020, 105, 105752. DOI: 10.1016/j.foodhyd.2020.105752.
  • Beniwal, A. S.; Singh, J.; Kaur, L.; Hardacre, A.; Singh, H. Meat Analogs: Protein Restructuring during Thermomechanical Processing. Compr. Rev. Food Sci. Food S. 2021, 20(2), 1221–1249. DOI: 10.1111/1541-4337.12721.
  • Singh, R.; Koksel, F. Effects of Particle Size Distribution and Processing Conditions on the Techno-functional Properties of Extruded Soybean Meal. LWT-Food Sci. Technol. 2021, 152, 112321. DOI: 10.1016/j.lwt.2021.112321.
  • Geerts, M. E.; Dekkers, B. L.; van der Padt, A.; van der Goot, A. J. Aqueous Fractionation Processes of Soy Protein for Fibrous Structure Formation. Innov. Food Sci. Emer. 2018, 45, 313–319. DOI: 10.1016/j.ifset.2017.12.002.
  • Moreno, H. M.; Domínguez-Timón, F.; Díaz, M. T.; Pedrosa, M. M.; Borderías, A. J.; Tovar, C. A. Evaluation of Gels Made with Different Commercial Pea Protein Isolate: Rheological, Structural and Functional Properties. Food Hydrocolloid. 2020, 99, 105375. DOI: 10.1016/j.foodhyd.2019.105375.
  • Habeych, E.; Dekkers, B.; van der Goot, A. J.; Boom, R. Starch–zein Blends Formed by Shear Flow. Chem. Eng. Sci. 2008, 63(21), 5229–5238. DOI: 10.1016/j.ces.2008.07.008.
  • Caillard, R.; Remondetto, G.; Subirade, M. Rheological Investigation of Soy Protein Hydrogels Induced by Maillard-type Reaction. Food Hydrocolloid. 2010, 24(1), 81–87. DOI: 10.1016/j.foodhyd.2009.08.009.
  • Ozbolat, I. T.; Hospodiuk, M. Current Advances and Future Perspectives in Extrusion-based Bioprinting. Biomaterials. 2016, 76, 321–343. DOI: 10.1016/j.biomaterials.2015.10.076.
  • Zhang, W.; Li, S.; Zhang, B.; Drago, S. R.; Zhang, J. Relationships between the Gelatinization of Starches and the Textural Properties of Extruded Texturized Soybean Protein-starch Systems. J. Food Eng. 2016, 174, 29–36. DOI: 10.1016/j.jfoodeng.2015.11.011.
  • Hellemans, T.; Nekhudzhiga, H.; Van Bockstaele, F.; Wang, Y.; Emmambux, M.; Eeckhout, M. Variation in Amylose Concentration to Enhance Wheat Flour Extrudability. J. Cereal Sci. 2020, 102992. doi:10.1016/j.jcs.2020.102992.
  • Yasir, S. B. M.; Sutton, K.; Newberry, M.; Andrews, N.; Gerrard, J. The Impact of Maillard Cross-linking on Soy Proteins and Tofu Texture. Food Chem. 2007, 104(4), 1502–1508. DOI: 10.1016/j.foodchem.2007.02.042.
  • Palanisamy, M.; Töpfl, S.; Aganovic, K.; Berger, R. G. Influence of Iota Carrageenan Addition on the Properties of Soya Protein Meat Analogues. LWT-Food Sci. Technol. 2018, 87, 546–552. DOI: 10.1016/j.lwt.2017.09.029.
  • Yao, J.; Zhou, Y.; Chen, X.; Ma, F.; Li, P.; Chen, C. Effect of Sodium Alginate with Three Molecular Weight Forms on the Water Holding Capacity of Chicken Breast Myosin Gel. Food Chem. 2018, 239, 1134–1142. DOI: 10.1016/j.foodchem.2017.07.027.
  • Kyriakopoulou, K.; Dekkers, B.; van der Goot, A. J. Plant-based Meat Analogues. In Sustainable Meat Production and Processing; : Elsevier, Amsterdam, 2019; pp 103–126. DOI:10.1016/B978-0-12-814874-7.00006-7.
  • Ilo, S.; Schoenlechner, R.; Berghofe, E. Role of Lipids in the Extrusion Cooking Processes. Grasas Aceites. 2000, 51(1-2), 97–110. DOI: 10.3989/gya.2000.v51.i1-2.410.
  • Kendler, C.; Duchardt, A.; Karbstein, H. P.; Emin, M. A. Effect of Oil Content and Oil Addition Point on the Extrusion Processing of Wheat Gluten-Based Meat Analogues. Foods. 2021, 10(4), 697. DOI: 10.3390/foods10040697.
  • Crowe, T. W.; Johnson, L. A. Twin-screw Extrusion Texturization of Extruded-expelled Soybean Flour. J. Am. Oil Chem. Soc. 2001, 78(8), 781–786. DOI: 10.1007/s11746-001-0342-8.
  • Zhang, T.; Dou, W.; Zhang, X.; Zhao, Y.; Zhang, Y.; Jiang, L.; Sui, X. The Development History and Recent Updates on Soy Protein-based Meat Alternatives. Trends Food Sci. Tech. 2021, 109, 702–710. DOI:10.1016/j.tifs.2021.01.060 .
  • Bhattacharya, M.; Hanna, M. A. Effect of Lipids on the Properties of Extruded Products. J. Food Sci. 1988, 53(4), 1230–1231. DOI: 10.1111/j.1365-2621.1988.tb13572.x.
  • Singh, N.; Sharma, S.; Singh, B. The Effect of Sodium Bicarbonate and Glycerol Monostearate Addition on the Extrusion Behaviour of Maize Grits. J. Food Eng. 2000, 46(1), 61–66. DOI: 10.1016/S0308-8146(00)00140-0.
  • Yang, W.; Qin, X.-S.; Luo, S.-Z.; Zhao, -Y.-Y.; Zhong, X.-Y.; Mu, -D.-D.; Jiang, S.-T.; Zheng, Z. Effect of Calcium Stearyl Lactylate on Physicochemical Properties of Texturized Wheat Gluten. Food Sci. Technol. Res. 2017, 23(2), 203–211. DOI: 10.3136/fstr.23.203.
  • Hwang, C.-F.; Riha, W. E., III; Jin, B.; Karwe, M. V.; Hartman, T. G.; Daun, H.; Ho, C.-T. Effect of Cysteine Addition on the Volatile Compounds Released at the Die during Twin-screw Extrusion of Wheat Flour. LWT-Food Sci. Technol. 1997, 30(4), 411–416. DOI: 10.1006/fstl.1996.0203.
  • Ma, X.; Gu, B.-Y.; Ryu, G.-H. Optimization of Extrusion Variables for Improving the Qualities of Textured Vegetable Protein with Green Tea Using Response Surface Methodology. Food Eng. Progress. 2018, 22(1), 1–8. DOI: 10.13050/foodengprog.2018.22.1.1.
  • Zhang, J.; Chen, Q.; Liu, L.; Zhang, Y.; He, N.; Wang, Q. High-moisture Extrusion Process of Transglutaminase-modified Peanut Protein: Effect of Transglutaminase on the Mechanics of the Process Forming a Fibrous Structure. Food Hydrocolloid. 2021, 112, 106346. DOI: 10.1016/j.foodhyd.2020.106346.
  • Pöri, P. Enzymatic Modification of Oat Protein Concentrate for Increased Fibrillation during High-moisture Extrusion Cooking. M. S. Dissertation, School of Chemical Engineering, Aalto University, Finland, 2020.
  • Meuser, F.; Van Lengerich, B. System Analytical Model for the Extrusion of Starches. Thermal Process. Qual. Food. 1984, 10(4), 175–179.
  • Gu, B.-Y.; Ryu, G.-H. Influence of Extrusion Process Parameters on Specific Mechanical Energy and Physical Properties of High-moisture Meat Analog. Int. J. Food Eng. 2021, 17(2), 149–157. DOI: 10.1515/ijfe-2020-0042.
  • Wei, Y.; Zhao, D.; Kang, L.; Zhang, B. Effect of Process Parameters on Product Characteristics of Textured Soy Protein. J. Chin. Cereal. Oil. Ass. 2009, 24(6), 20–25. doi:10.1016/S1874-8651(10)60073-7.
  • Zhang, J.; Ying, D.; Wei, Y.; Zhang, B.; Su, X.; Li, S. Thermal Transition and Decomposition Properties of pH-and Phosphate-induced Defatted Soybean Meals. J. Therm. Anal. Calorim. 2017, 128, 699–706. DOI: 10.1007/s10973-016-5991-8.
  • Zhang, C.; Wei, Y.-M.; Zhang, B.; Kang, L.-N. Effect of Protein Contents on the Quality Properties of Texturized Peanut Protein Products. Sci. Agr. Sinica. 2007, 8(002), 1753–1759.
  • Lang, S.; Yan, S.; Shi, D. Effect of Operation Parameters on Texture Property of Texturized Peanut Protein. China Oil. Fat. 2014, 39(12), 23–26.
  • Lin, S.; Huff, H.; Hsieh, F. Extrusion Process Parameters, Sensory Characteristics, and Structural Properties of a High Moisture Soy Protein Meat Analog. J. Food Sci. 2002, 67(3), 1066–1072. DOI: 10.1111/j.1365-2621.2002.tb09454.x.
  • Smetana, S.; Pernutz, C.; Toepfl, S.; Heinz, V.; Van Campenhout, L. High-moisture Extrusion with Insect and Soy Protein Concentrates: Cutting Properties of Meat Analogues under Insect Content and Barrel Temperature Variations. J. Insects Food Feed. 2019, 5(1), 29–34. DOI: 10.3920/JIFF2017.0066.
  • Unlu, E.; Faller, J. F. RTD in Twin-screw Food Extrusion. J. Food Eng. 2002, 53(2), 115–131. DOI: 10.1016/S0260-8774(01)00148-0.
  • Choudhury, G.; Gautam, A. Comparative Study of Mixing Elements during Twin-screw Extrusion of Rice Flour. Food Res. Int. 1998, 31(1), 7–17. DOI: 10.1016/S0963-9969(98)00053-2.
  • Barres, C.; Vergnes, B.; Tayeb, J.; Della Valle, G. Transformation of Wheat Flour by Extrusion Cooking: Influence of Screw Configuration and Operating Conditions. Cereal Chem. 1990, 67 (7) , 427–433. doi:10.1016/0169-4332(90)90067-A.
  • Gautam, A.; Choudhury, G. S. Screw Configuration Effects on Starch Breakdown during Twin‐screw Extrusion of Rice Flour. J. Food Process. Pres. 1999, 23(5), 355–375. DOI: 10.1111/j.1745-4549.1999.tb00391.x.
  • Fang, Y.; Zhang, B.; Wei, Y. Effects of the Specific Mechanical Energy on the Physicochemical Properties of Texturized Soy Protein during High-moisture Extrusion Cooking. J. Food Eng. 2014, 121, 32–38. DOI: 10.1016/j.jfoodeng.2013.08.002.
  • Akdogan, H. Pressure, Torque, and Energy Responses of a Twin Screw Extruder at High Moisture Contents. Food Res. Int. 1996, 29(5-6), 423–429. DOI: 10.1016/S0963-9969(96)00036-1.
  • Chuang, G.-C.-C.; Yeh, A.-I. Effect of Screw Profile on Residence Time Distribution and Starch Gelatinization of Rice Flour during Single Screw Extrusion Cooking. J. Food Eng. 2004, 63(1), 21–31. DOI: 10.1016/S0260-8774(03)00278-4.
  • Seker, M. Residence Time Distributions of Starch with High Moisture Content in a Single-screw Extruder. J. Food Eng. 2005, 67(3), 317–324. DOI: 10.1016/j.jfoodeng.2004.04.034.
  • Sisay, M. T.; Emire, S. A.; Ramaswamy, H. S.; Workneh, T. S. Residence Time Distribution and Flow Pattern of Reduced-gluten Wheat-based Formulations in a Twin–screw Extruder. LWT-Food Sci. Technol. 2017, 79, 213–222. DOI: 10.1016/j.lwt.2017.01.015.
  • Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of Extrusion Technology in Plant Food Processing Byproducts: An Overview. Compr. Rev. Food Sci. Food S. 2020, 19(1), 218–246. DOI: 10.1111/1541-4337.12514.
  • Mohamad Mazlan, M.; Talib, R. A.; Mail, N. F.; Taip, F. S.; Chin, N. L.; Sulaiman, R.; Shukri, R.; Mohd Nor, M. Z. Effects of Extrusion Variables on Corn-mango Peel Extrudates Properties, Torque and Moisture Loss. Int. J. Food Prop. 2019, 22(1), 54–70. DOI: 10.1080/10942912.2019.1568458.
  • Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, Ş. The Effect of Extrusion Cooking Using Different Water Feed Rates on the Quality of Ready-to-eat Snacks Made from Food By-products. Food Chem. 2009, 114(1), 226–232. doi:10.1016/j.foodchem.2008.09.043.
  • Meng, X.; Threinen, D.; Hansen, M.; Driedger, D. Effects of Extrusion Conditions on System Parameters and Physical Properties of a Chickpea Flour-based Snack. Food Res. Int. 2010, 43(2), 650–658. DOI: 10.1016/j.foodres.2009.07.016.
  • Grahl, S.; Palanisamy, M.; Strack, M.; Meier-Dinkel, L.; Toepfl, S.; Mörlein, D. Towards More Sustainable Meat Alternatives: How Technical Parameters Affect the Sensory Properties of Extrusion Products Derived from Soy and Algae. J. Clean. Prod. 2018, 198, 962–971. DOI: 10.1016/j.jclepro.2018.07.041.
  • Kiiru, S. M.; Kinyuru, J. N.; Kiage, B. N.; Martin, A.; Marel, A. K.; Osen, R. Extrusion Texturization of Cricket Flour and Soy Protein Isolate: Influence of Insect Content, Extrusion Temperature, and Moisture‐level Variation on Textural Properties. Food Sci. Nutr. 2020, 8(8), 4112–4120. DOI: 10.1002/fsn3.1700.
  • Smetana, S.; Larki, N. A.; Pernutz, C.; Franke, K.; Bindrich, U.; Toepfl, S.; Heinz, V. Structure Design of Insect-based Meat Analogs with High-moisture Extrusion. J. Food Eng. 2018, 229, 83–85. DOI: 10.1016/j.jfoodeng.2017.06.035.
  • Yao, G.; Liu, K.; Hsieh, F. A New Method for Characterizing Fiber Formation in Meat Analogs during High‐moisture Extrusion. J. Food Sci. 2004, 69(7), 303–307. DOI: 10.1111/j.1365-2621.2004.tb13634.x.
  • Ranasinghesagara, J.; Hsieh, F.; Yao, G. A Photon Migration Method for Characterizing Fiber Formation in Meat Analogs. J. Food Sci. 2006, 71(5), E227–E231. DOI: 10.1111/j.1750-3841.2006.00038.x.
  • Ranasinghesagara, J.; Hsieh, F. H.; Yao, G. An Image Processing Method for Quantifying Fiber Formation in Meat Analogs under High Moisture Extrusion. J. Food Sci. 2005, 70(8), e450–e454. DOI: 10.1111/j.1365-2621.2005.tb11513.x.
  • Ranasinghesagara, J.; Hsieh, F. H.; Huff, H.; Yao, G. Laser Scanning System for Real‐Time Mapping of Fiber Formations in Meat Analogues. J. Food Sci. 2009, 74(2), E39–E45. DOI: 10.1111/j.1750-3841.2008.01032.x.
  • Krintiras, G. A.; Göbel, J.; Bouwman, W. G.; Van Der Goot, A. J.; Stefanidis, G. D. On Characterization of Anisotropic Plant Protein Structures. Food Funct. 2014, 5(12), 3233–3240. DOI: 10.1039/C4FO00537F.
  • Ranasinghesagara, J.; Hsieh, F.; Huff, H.; Yao, G. Nondestructive Real-time Monitoring of Fiber Formation in Meat Analogs. In Sensing for Agriculture and Food Quality and Safety; International Society for Optics and Photonics, Orlando, Florida, United States, 2009; pp 73150D. doi:10.1117/12.817349.
  • Ranasinghesagara, J.; Hsieh, F.; Yao, G. Characterizing Fiber Formation in Meat Analogs Using an Anisotropic Photon Migration Model. In Optics for Natural Resources, Agriculture, and Foods; International Society for Optics and Photonics, 2006; pp 63810D. doi:10.1117/12.684747.
  • Valadez-Blanco, R.; Virdi, A.; Balke, S.; Diosady, L. In-line Colour Monitoring during Food Extrusion: Sensitivity and Correlation with Product Colour. Food Res. Int. 2007, 40(9), 1129–1139. DOI: 10.1016/j.foodres.2007.06.008.
  • Shiau, S.-Y.; Yeh, A.-I. On-line Measurement of Rheological Properties of Wheat Flour Extrudates with Added Oxido-reductants, Acid, and Alkali. J. Food Eng. 2004, 62(2), 193–202. DOI: 10.1016/S0260-8774(03)00233-4.
  • Horvat, M.; Emin, M. A.; Hochstein, B.; Willenbacher, N.; Schuchmann, H. P. A Multiple-step Slit Die Rheometer for Rheological Characterization of Extruded Starch Melts. J. Food Eng. 2013, 116(2), 398–403. DOI: 10.1016/j.jfoodeng.2012.11.028.
  • Alig, I.; Steinhoff, B.; Lellinger, D. Monitoring of Polymer Melt Processing. Meas. Sci. Technol. 2010, 21(6), 062001. DOI: 10.1088/0957-0233/21/6/062001.
  • Barnes, S.; Sibley, M.; Edwards, H.; Coates, P. Process Monitoring of Polymer Melts Using In-line Spectroscopy. T. I. Meas. ConT. 2007, 29(5), 453–465. DOI: 10.1177/0142331207084336.
  • Emin, M.; Teumer, T.; Schmitt, W.; Rädle, M.; Schuchmann, H. Measurement of the True Melt Temperature in a Twin-screw Extrusion Processing of Starch Based Matrices via Infrared Sensor. J. Food Eng. 2016, 170, 119–124. DOI: 10.1016/j.jfoodeng.2015.09.018.
  • Gilbert, E. Food Structure Characterisation Using Small-angle Scattering Methods. In Handbook of Food Structure Development;RSC Press:London, U.K., 2019; Vol. 18. pp 309. DOI:10.1039/9781788016155-00309.
  • Fan, F.; Ma, Q.; Ge, J.; Peng, Q.; Riley, W. W.; Tang, S. Prediction of Texture Characteristics from Extrusion Food Surface Images Using a Computer Vision System and Artificial Neural Networks. J. Food Eng. 2013, 118 (4) , 426–433. DOI: 10.1016/j.jfoodeng.2013.04.015.
  • Apruzzese, F.; Balke, S.; Diosady, L. In-line Colour and Composition Monitoring in the Extrusion Cooking Process. Food Res. Int. 2000, 33 (7) , 621–628. DOI: 10.1016/S0963-9969(00)00099-5.
  • De Temmerman, J.; Saeys, W.; Nicolaï, B.; Ramon, H. Near Infrared Reflectance Spectroscopy as a Tool for the In-line Determination of the Moisture Concentration in Extruded Semolina Pasta. Biosyst. Eng. 2007, 97 (3) , 313–321. DOI: 10.1016/j.biosystemseng.2007.03.020.
  • Lee, S. Y.; Hanna, M. A.; Jones, D. D. Residence Time Distribution Determination Using On‐Line Digital Image Processing. Starch‐Stärke. 2009, 61 (3–4) , 146–153. DOI: 10.1002/star.200800044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.