1,355
Views
35
CrossRef citations to date
0
Altmetric
Review

Polyphenols: A first evidence in the synergism and bioactivities

, ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chemie - Int. Ed. 2011, 50(3), 586–621. DOI: 10.1002/anie.201000044.
  • Abbas, M.; Saeed, F.; Anjum, F. M.; Afzaal, M.; Tufail, T.; Bashir, M. S.; Ishtiaq, A.; Hussain, S.; Suleria, H. A. R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20(8), 1689–1699. DOI: 10.1080/10942912.2016.1220393.
  • Williamson, G. The Role of Polyphenols in Modern Nutrition. Nutr. Bull. 2017, 42(3), 226–235. DOI: 10.1111/nbu.12278.
  • Rasouli, H.; Farzaei, M. H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20, 1700–1741. DOI: 10.1080/10942912.2017.1354017.
  • Lecour, S.; Lamont, K. T. Natural Polyphenols and Cardioprotection. Mini-Reviews Med. Chem. 2012, 11(14), 1191–1199. DOI: 10.2174/13895575111091191.
  • Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 Richest Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010, 64(S3), S112–S120. DOI: 10.1038/ejcn.2010.221.
  • Singh, A.; Holvoet, S.; Mercenier, A. Dietary Polyphenols in the Prevention and Treatment of Allergic Diseases. Clin. Exp. Allergy. 2011, 41(10), 1346–1359. DOI: 10.1111/j.1365-2222.2011.03773.x.
  • Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5. DOI: 10.3389/fnut.2018.00087.
  • Xu, Y.; Zhang, Y.; Quan, Z.; Wong, W.; Guo, J.; Zhang, R.; Yang, Q.; Dai, R.; McGeer, P. L.; Qing, H. Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson’s Disease. Neurochem. Res. 2016, 41(10), 2788–2796. DOI: 10.1007/s11064-016-1995-9.
  • Xu, Q.; Langley, M.; Kanthasamy, A. G.; Reddy, M. B. Epigallocatechin Gallate Has a Neurorescue Effect in a Mouse Model of Parkinson Disease. J. Nutr. 2017, 147(10), 1926–1931. DOI: 10.3945/jn.117.255034.
  • Ide, K.; Matsuoka, N.; Yamada, H.; Furushima, D.; Kawakami, K. Effects of Tea Catechins on Alzheimer’s Disease: Recent Updates and Perspectives. Molecules. 2018, 23(9), 2357. DOI: 10.3390/molecules23092357.
  • Tang, M.; Taghibiglou, C.; Liu, J. The Mechanisms of Action of Curcumin in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 58(4), 1003–1016. DOI: 10.3233/JAD-170188.
  • Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I. S.; Shen, C. L. Novel Insights of Dietary Polyphenols and Obesity. J. Nutr. Biochem. 2014, 25(1), 1–18. DOI: 10.1016/j.jnutbio.2013.09.001.
  • Viechtbauer, W.; Tremblay, A.; Tappy, L.; Hursel, R.; Westerterp-Plantenga, M. S.; Dulloo, A. G.; Rumpler, W. The Effects of Catechin Rich Teas and Caffeine on Energy Expenditure and Fat Oxidation: A Meta-Analysis. Obes. Rev. 2011, 12(7), e573–81. DOI: 10.1111/j.1467-789X.2011.00862.x.
  • Morrone, M. D. S.; Schnorr, C. E.; Behr, G. A.; Gasparotto, J.; Bortolin, R. C.; Da Boit Martinello, K.; Saldanha Henkin, B.; Rabello, T. K.; Zanotto-Filho, A.; Gelain, D. P., et al. Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats. Oxid. Med. Cell. Longev. 2016, 2016, 1–12. DOI: 10.1155/2016/5719291.
  • Shao, W.; Yu, Z.; Chiang, Y.; Yang, Y.; Chai, T.; Foltz, W.; Lu, H.; Fantus, I. G.; Jin, T. Curcumin Prevents High Fat Diet Induced Insulin Resistance and Obesity via Attenuating Lipogenesis in Liver and Inflammatory Pathway in Adipocytes. PLoS One. 2012, 7(1). DOI: 10.1371/journal.pone.0028784.
  • Aguirre, L.; Fernández-Quintela, A.; Arias, N.; Portillo, M. P. Resveratrol: Anti-Obesity Mechanisms of Action. Molecules. 2014, 19(11), 18632–18655. DOI: 10.3390/molecules191118632.
  • Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. DOI: 10.1016/j.cofs.2016.02.002.
  • Tallarida, R. J. Quantitative Methods for Assessing Drug Synergism. Genes Cancer. 2011, 2(11), 1003–1008. DOI: 10.1177/1947601912440575.
  • Hewlings, S.; Kalman, D. Curcumin: A Review of Its Effects on Human Health. Foods. 2017, 6(10), 92. DOI: 10.3390/foods6100092.
  • Sreenivasan, S.; Krishnakumar, S. Synergistic Effect of Curcumin in Combination with Anticancer Agents in Human Retinoblastoma Cancer Cell Lines. Curr. Eye Res. 2015, 40(11), 1153–1165. DOI: 10.3109/02713683.2014.987870.
  • Choi, R. C. Y.; Zhu, J. T. T.; Yung, A. W. Y.; Lee, P. S. C.; Xu, S. L.; Guo, A. J. Y.; Zhu, K. Y.; Dong, T. T. X.; Tsim, K. W. K. Synergistic Action of Flavonoids, Baicalein, and Daidzein in Estrogenic and Neuroprotective Effects: A Development of Potential Health Products and Therapeutic Drugs against Alzheimer’s Disease. Evidence-based Complement. Altern. Med. 2013, 2013, 1–10. DOI: 10.1155/2013/635694.
  • Amin, M. U.; Khurram, M.; Khattak, B.; Khan, J. Antibiotic Additive and Synergistic Action of Rutin, Morin and Quercetin against Methicillin Resistant Staphylococcus Aureus. BMC Complement. Altern. Med. 2015, 15(1). DOI: 10.1186/s12906-015-0580-0.
  • AlBasher, G.; Abdel-Daim, M. M.; Almeer, R.; Ibrahim, K. A.; Hamza, R. Z.; Bungau, S.; Aleya, L. Synergistic Antioxidant Effects of Resveratrol and Curcumin against Fipronil-Triggered Oxidative Damage in Male Albino Rats. Environ. Sci. Pollut. Res. 2020, 27(6), 6505–6514. DOI: 10.1007/s11356-019-07344-8.
  • Hu, S.; Li, X.; Xu, R.; Ye, L.; Kong, H.; Zeng, X.; Wang, H.; Xie, W. The Synergistic Effect of Resveratrol in Combination with Cisplatin on Apoptosis via Modulating Autophagy in A549 Cells. Acta Biochim. Biophys. Sin. (Shanghai). 2016, 48(6), 528–535. DOI: 10.1093/abbs/gmw026.
  • Rakariyatham, K.; Wu, X.; Tang, Z.; Han, Y.; Wang, Q.; Xiao, H. Synergism between Luteolin and Sulforaphane in Anti-Inflammation. Food Funct. 2018, 9(10), 5115–5123. DOI: 10.1039/c8fo01352g.
  • Sun, L.; Hang, C.; Liao, K. Synergistic Effect of Caffeic Acid Phenethyl Ester with Caspofungin against Candida Albicans Is Mediated by Disrupting Iron Homeostasis. Food Chem. Toxicol. 2018, 116, 51–58. DOI: 10.1016/j.fct.2018.04.014.
  • Lv, L.; Cui, H.; Ma, Z.; Liu, X.; Yang, L. Recent Progresses in the Pharmacological Activities of Caffeic Acid Phenethyl Ester. Naunyn. Schmiedebergs. Arch. Pharmacol. 2021, 394(7), 1327–1339. DOI: 10.1007/s00210-021-02054-w.
  • Li, Q.; Wei, L.; Lin, S.; Chen, Y.; Lin, J.; Peng, J. Synergistic Effect of Kaempferol and 5-Fluorouracil on the Growth of Colorectal Cancer Cells by Regulating the PI3K/Akt Signaling Pathway. Mol. Med. Rep. 2019, 20(1), 728–734. DOI: 10.3892/mmr.2019.10296.
  • Prakash, O.; Singh, R.; Singh, N.; Verma, N.; Mahapatra, D. K.; Kumar, S.; Ved, A. Exploring the Potentials of Quercetin and Kaempferol Combinations along with Regular Antibiotics for the Effective Management of Methicillin-Resistant Staphylococcus Aureus (MRSA). Res. & Rev. A J. Microbiol. Virol. 2018, 8(3), 6–9.
  • Wang, X.; Yang, Y.; An, Y.; Fang, G. The Mechanism of Anticancer Action and Potential Clinical Use of Kaempferol in the Treatment of Breast Cancer. Biomed. Pharmacother. 2019, 117, 109086. DOI: 10.1016/j.biopha.2019.109086.
  • Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T. A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P. V. T.; Arshad, M. U.; Khan, H., et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules. 2019, 24(12), 2277. DOI: 10.3390/molecules24122277.
  • Akkarachiyasit, S.; Charoenlertkul, P.; Yibchok-Anun, S.; Adisakwattana, S. Inhibitory Activities of Cyanidin and Its Glycosides and Synergistic Effect with Acarbose against Intestinal α-Glucosidase and Pancreatic α-Amylase. Int. J. Mol. Sci. 2010, 11(9), 3387–3396. DOI: 10.3390/ijms11093387.
  • Davulcu, A.; Benli, H.; Şen, Y.; Bahtiyari, M. İ. Dyeing of Cotton with Thyme and Pomegranate Peel. Cellulose. 2014, 21(6), 4671–4680. DOI: 10.1007/s10570-014-0427-8.
  • Ajmal, M.; Adeel, S.; Azeem, M.; Zuber, M.; Akhtar, N.; Iqbal, N. Modulation of Pomegranate Peel Colourant Characteristics for Textile Dyeing Using High Energy Radiations. Ind. Crop Prod. 2014, 58, 188–193. DOI: 10.1016/j.indcrop.2014.04.026.
  • Onem, E.; Gulumser, G.; Akay, S.; Yesil-Celiktas, O. Optimization of Tannin Isolation from Acorn and Application in Leather Processing. Ind. Crop Prod. 2014, 53, 16–22. DOI: 10.1016/j.indcrop.2013.12.014.
  • Zhao, Z.; Hayashi, S.; Xu, W.; Wu, Z.; Tanaka, S.; Sun, S.; Zhang, M.; Kanayama, K.; Umemura, K. A Novel Eco-Friendly Wood Adhesive Composed by Sucrose and Ammonium Dihydrogen Phosphate. Polymers (Basel). 2018, 10(11), 1251. DOI: 10.3390/polym10111251.
  • Solt, P.; Konnerth, J.; Gindl-Altmutter, W.; Kantner, W.; Moser, J.; Mitter, R.; van Herwijnen, H. W. G. Technological Performance of Formaldehyde-Free Adhesive Alternatives for Particleboard Industry. Int. J. Adhes. Adhes. 2019, 94, 99–131. DOI: 10.1016/j.ijadhadh.2019.04.007.
  • Neunert, G.; Górnaś, P.; Dwiecki, K.; Siger, A.; Polewski, K. Synergistic and Antagonistic Effects between Alpha-Tocopherol and Phenolic Acids in Liposome System: Spectroscopic Study. Eur. Food Res. Technol. 2015, 241(6), 749–757. DOI: 10.1007/s00217-015-2500-4.
  • Hazewindus, M.; Haenen, G. R. M. M.; Weseler, A. R.; Bast, A. The Anti-Inflammatory Effect of Lycopene Complements the Antioxidant Action of Ascorbic Acid and α-Tocopherol. Food Chem. 2012, 132(2), 954–958. DOI: 10.1016/j.foodchem.2011.11.075.
  • DiMarco-Crook, C.; Rakariyatham, K.; Li, Z.; Du, Z.; Zheng, J.; Wu, X.; Xiao, H. Synergistic Anticancer Effects of Curcumin and 3ʹ,4ʹ-Didemethylnobiletin in Combination on Colon Cancer Cells. J. Food Sci. 2020, 85(4), 1292–1301. DOI: 10.1111/1750-3841.15073.
  • Manap, A. S. A.; Tan, A. C. W.; Leong, W. H.; Chia, A. Y. Y.; Vijayabalan, S.; Arya, A.; Wong, E. H.; Rizwan, F.; Bindal, U.; Koshy, S., et al. Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors with Significant Neuroprotective Activity in Sh-Sy5y Cells via Computational Molecular Modeling and in Vitro Assay. Front. Aging Neurosci. 2019, 10(JUL). DOI: 10.3389/fnagi.2019.00206.
  • Kang, C.; Kim, E. Synergistic Effect of Curcumin and Insulin on Muscle Cell Glucose Metabolism. Food Chem. Toxicol. 2010, 48(8–9), 2366–2373. DOI: 10.1016/j.fct.2010.05.073.
  • Eom, D. W.; Lee, J. H.; Kim, Y. J.; Hwang, G. S.; Kim, S. N.; Kwak, J. H.; Cheon, G. J.; Kim, K. H.; Jang, H. J.; Ham, J., et al. Synergistic Effect of Curcumin on Epigallocatechin Gallate-Induced Anticancer Action in PC3 Prostate Cancer Cells. BMB Rep. 2015, 48(8), 461–466. DOI: 10.5483/BMBRep.2015.48.8.216.
  • Jeon, Y. W.; Suh, Y. J. Synergistic Apoptotic Effect of Celecoxib and Luteolin on Breast Cancer Cells. Oncol. Rep. 2013, 29(2), 819–825. DOI: 10.3892/or.2012.2158.
  • Amin, M. U.; Khurram, M.; Khan, T. A.; Faidah, H. S.; Shah, Z. U.; Ur Rahman, S.; Haseeb, A.; Ilyas, M.; Ullah, N.; Khayam, S. M. U., et al. Effects of Luteolin and Quercetin in Combination with Some Conventional Antibiotics against Methicillin-Resistant Staphylococcus Aureus. Int. J. Mol. Sci. 2016, 17(11). DOI: 10.3390/ijms17111947.
  • Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the Synergistic Antioxidant Effects of Some Flavonoid and Phenolic Compounds. Res. J. Pharmacogn. 2014, 1(3), 35–40.
  • Asokkumar, K.; Sen, S.; Umamaheswari, M.; Sivashanmugam, A. T.; Subhadradevi, V. Synergistic Effect of the Combination of Gallic Acid and Famotidine in Protection of Rat Gastric Mucosa. Pharmacol. Rep. 2014, 66(4), 594–599. DOI: 10.1016/j.pharep.2014.01.006.
  • Moghtaderi, H.; Sepehri, H.; Delphi, L.; Attari, F. Gallic Acid and Curcumin Induce Cytotoxicity and Apoptosis in Human Breast Cancer Cell MDA-MB-231. BioImpacts. 2018, 8(3), 185–194. DOI: 10.15171/bi.2018.21.
  • Min, J.; Shen, H.; Xi, W.; Wang, Q.; Yin, L.; Zhang, Y.; Yu, Y.; Yang, Q.; Wang, Z. N. Synergistic Anticancer Activity of Combined Use of Caffeic Acid with Paclitaxel Enhances Apoptosis of Non-Small-Cell Lung Cancer H1299 Cells in Vivo and in Vitro. Cell. Physiol. Biochem. 2018, 48(4), 1433–1442. DOI: 10.1159/000492253.
  • Chawla, P.; Gaur, H.; Tripathi, M.; Tripathi, M.; Agarwal, B.; Pandey, A. Synergistic Antioxidant Activity of Lipoic, Ferulic and Ellagic Acid Priyanka. Int. J. Pharm. Sci. Res. 2015, 6(6), 2551–2556.
  • Yogeeta, S. K.; Gnanapragasam, A.; Kumar, S. S.; Subhashini, R.; Sathivel, A.; Devaki, T. Synergistic Interactions of Ferulic Acid with Ascorbic Acid: Its Cardioprotective Role during Isoproterenol Induced Myocardial Infarction in Rats. Mol. Cell. Biochem. 2006, 283(1–2), 139–146. DOI: 10.1007/s11010-006-2494-0.
  • Liu, M. H.; Otsuka, N.; Noyori, K.; Shiota, S.; Ogawa, W.; Kuroda, T.; Hatano, T.; Tsuchiya, T. Synergistic Effect of Kaempferol Glycosides Purified from Laurus Nobilis and Fluoroquinolones on Methicillin-Resistant Staphylococcus Aureus. Biol. Pharm. Bull. 2009, 32(3), 489–492. DOI: 10.1248/bpb.32.489.
  • Li, T.; Li, F.; Liu, X.; Liu, J.; Li, D. Synergistic Anti-Inflammatory Effects of Quercetin and Catechin via Inhibiting Activation of TLR4–MyD88-Mediated NF-ΚB and MAPK Signaling Pathways. Phyther. Res. 2019, 33(3), 756–767. DOI: 10.1002/ptr.6268.
  • Sahyon, H. A.; Ramadan, E. N. M.; Mashaly, M. M. A. Synergistic Effect of Quercetin in Combination with Sulfamethoxazole as New Antibacterial Agent: In Vitro and in Vivo Study. Pharm. Chem. J. 2019, 53(9), 803–813. DOI: 10.1007/s11094-019-02083-z.
  • Anjum, V.; Ali, F.; Joshi, S.; Anjum, A.; Ali, A. Synergistic Effect of Myricetin and Phenolic Acid Derivatives on Reversal of Dengue Fever Related Thrombocytopenia and Its Pharmacokinetics Study in Plasma by Using HPLC and UPLC-Q-TOF. Curr. Drug Metab. 2020, 21. DOI: 10.2174/1389200221666201110155119.
  • Marinova, E.; Toneva, A.; Yanishlieva, N. Synergistic Antioxidant Effect of α-Tocopherol and Myricetin on the Autoxidation of Triacylglycerols of Sunflower Oil. Food Chem. 2008, 106(2), 628–633. DOI: 10.1016/j.foodchem.2007.06.022.
  • Yao, A.; Shen, Y.; Zhang, Z.; Zou, Z.; Wang, A.; Chen, S.; Zhang, H.; Chen, F.; Zhao, J.; Chen, Z., et al. Sulforaphane and Myricetin Act Synergistically to Induce Apoptosis in 3T3-L1 Adipocytes. Mol. Med. Rep. 2018, 17(2), 2945–2951. DOI: 10.3892/mmr.2017.8235.
  • Morales, P.; Haza, A. I. Selective Apoptotic Effects of Piceatannol and Myricetin in Human Cancer Cells. J. Appl. Toxicol. 2012, 32(12), 986–993. DOI: 10.1002/jat.1725.
  • Xu, Y.; Xin, Y.; Diao, Y.; Lu, C.; Fu, J.; Luo, L.; Yin, Z.; Sarkar, F. H. Synergistic Effects of Apigenin and Paclitaxel on Apoptosis of Cancer Cells. PLoS One. 2011, 6(12), e29169. DOI: 10.1371/journal.pone.0029169.
  • Sanaei, M.; Kavoosi, F.; Atashpour, S.; Haghighat, S. Effects of Genistein and Synergistic Action in Combination with Tamoxifen on the HepG2 Human Hepatocellular Carcinoma Cell Line. Asian Pacific J. Cancer Prev. 2017, 18(9), 2381–2385. DOI: 10.22034/APJCP.2017.18.9.2381.
  • Andjelkovic, T.; Pesic, M.; Bankovic, J.; Tanic, N.; Markovic, I. D.; Ruzdijic, S. Synergistic Effects of the Purine Analog Sulfinosine and Curcumin on the Multidrug Resistant Human Non-Small Cell Lung Carcinoma Cell Line (NCI-H460/R). Cancer Biol. Ther. 2008, 7(7), 1024–1032. DOI: 10.4161/cbt.7.7.6036.
  • Lee, D. S.; Lee, M. K.; Kim, J. H. Curcumin Induces Cell Cycle Arrest and Apoptosis in Human Osteosarcoma (HOS) Cells. Anticancer Res. 2009, 29(12), 5039–5044.
  • Hosseinzadeh, L.; Behravan, J.; Mosaffa, F.; Bahrami, G.; Bahrami, A. R.; Karimi, G. Effect of Curcumin on Doxorubicin-Induced Cytotoxicity in H9c2 Cardiomyoblast Cells. Iran. J. Basic Med. Sci. 2011, 14(1), 49–56. DOI: 10.22038/ijbms.2011.4964.
  • Bava, S. V.; Sreekanth, C. N.; Thulasidasan, A. K. T.; Anto, N. P.; Cheriyan, V. T.; Puliyappadamba, V. T.; Menon, S. G.; Ravichandran, S. D.; Anto, R. J. Akt Is Upstream and MAPKs are Downstream of NF-ΚB in Paclitaxel-Induced Survival Signaling Events, Which are down-Regulated by Curcumin Contributing to Their Synergism. Int. J. Biochem. Cell Biol. 2011, 43(3), 331–341. DOI: 10.1016/j.biocel.2010.09.011.
  • Song, H. C.; Chen, Y.; Chen, Y.; Park, J.; Zheng, M.; Surh, Y. J.; Kim, U. H.; Park, J. W.; Yu, R.; Chung, H. T., et al. GSK-3β Inhibition by Curcumin Mitigates Amyloidogenesis via TFEB Activation and Anti-Oxidative Activity in Human Neuroblastoma Cells. Free Radic. Res. 2020, 54(11–12), 918–930. DOI: 10.1080/10715762.2020.1791843.
  • Lin, Y.; Shi, R.; Wang, X.; Shen, H.-M. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets. 2008, 8(7), 634–646. DOI: 10.2174/156800908786241050.
  • Kang, K. A.; Piao, M. J.; Ryu, Y. S.; Hyun, Y. J.; Park, J. E.; Shilnikova, K.; Zhen, A. X.; Kang, H. K.; Koh, Y. S.; Jeong, Y. J., et al. Luteolin Induces Apoptotic Cell Death via Antioxidant Activity in Human Colon Cancer Cells. Int. J. Oncol. 2017, 51(4), 1169–1178. DOI: 10.3892/ijo.2017.4091.
  • Jung, W. J.; Sung, M. K. Effects of Major Dietary Antioxidants on Inflammatory Markers of RAW 264.7 Macrophages. BioFactors. 2004, 21(1–4), 113–117. DOI: 10.1002/biof.552210122.
  • Gao, J.; Hu, J.; Hu, D.; Yang, X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat. Prod. Commun. 2019, 14(8). DOI: 10.1177/1934578X19874174.
  • Hugo, P. C.; Gil-Chávez, J.; Sotelo-Mundo, R. R.; Namiesnik, J.; Gorinstein, S.; González-Aguilar, G. A. Antioxidant Interactions between Major Phenolic Compounds Found in “Ataulfo” Mango Pulp: Chlorogenic, Gallic, Protocatechuic and Vanillic Acids. Molecules. 2012, 17(11), 12657–12664. DOI: 10.3390/molecules171112657.
  • Sen, S.; Asokkumar, K.; Umamaheswari, M.; Sivashanmugam, A. T.; Subhadradevi, V. Antiulcerogenic Effect of Gallic Acid in Rats and Its Effect on Oxidant and Antioxidant Parameters in Stomach Tissue. Indian J. Pharm. Sci. 2013, 75(2), 149–155.
  • Chen, Q. Y.; Lu, G. H.; Wu, Y. Q.; Zheng, Y.; Xu, K.; Wu, L. J.; Jiang, Z. Y.; Feng, R.; Zhou, J. Y. Curcumin Induces Mitochondria Pathway Mediated Cell Apoptosis in A549 Lung Adenocarcinoma Cells. Oncol. Rep. 2010, 23(5), 1285–1292. DOI: 10.3892/or_00000762.
  • You, B. R.; Park, W. H. Gallic Acid-Induced Lung Cancer Cell Death Is Related to Glutathione Depletion as Well as Reactive Oxygen Species Increase. Toxicol. Vitr. 2010, 24(5), 1356–1362. DOI: 10.1016/j.tiv.2010.04.009.
  • Monteiro Espíndola, K. M.; Ferreira, R. G.; Mosquera Narvaez, L. E.; Rocha Silva Rosario, A. C.; Machado Da Silva, A. H.; Bispo Silva, A. G.; Oliveira Vieira, A. P.; Chagas Monteiro, M. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9(JUN). DOI: 10.3389/fonc.2019.00541.
  • Medina, I.; Undeland, I.; Larsson, K.; Storrø, I.; Rustad, T.; Jacobsen, C.; Kristinová, V.; Gallardo, J. M. Activity of Caffeic Acid in Different Fish Lipid Matrices: A Review. Food Chem. 2012, 131(3), 730–740. DOI: 10.1016/j.foodchem.2011.09.032.
  • Armutcu, F.; Akyol, S.; Ustunsoy, S.; Turan, F. F. Therapeutic Potential of Caffeic Acid Phenethyl Ester and Its Anti-Inflammatory and Immunomodulatory Effects (Review). Exp. Ther. Med. 2015, 9(5), 1582–1588. DOI: 10.3892/etm.2015.2346.
  • Li, W.; Li, N.; Tang, Y.; Li, B.; Liu, L.; Zhang, X.; Fu, H.; Duan, J. A. Biological Activity Evaluation and Structure-Activity Relationships Analysis of Ferulic Acid and Caffeic Acid Derivatives for Anticancer. Bioorganic Med. Chem. Lett. 2012, 22(19), 6085–6088. DOI: 10.1016/j.bmcl.2012.08.038.
  • Silva, T.; Oliveira, C.; Borges, F. Caffeic Acid Derivatives, Analogs and Applications: A Patent Review (2009-2013). Expert Opin. Ther. Pat. 2014, 24(11), 1257–1270. DOI: 10.1517/13543776.2014.959492.
  • Kumar, N.; Pruthi, V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Rep. 2014, 4(1), 86–93. DOI: 10.1016/j.btre.2014.09.002.
  • Kim, J. K.; Park, S. U. A Recent Overview on the Biological and Pharmacological Activities of Ferulic Acid. EXCLI J. 2019, 18, 132–138. DOI: 10.17179/excli2019-1138.
  • Ghosh, S.; Basak, P.; Dutta, S.; Chowdhury, S.; Sil, P. C. New Insights into the Ameliorative Effects of Ferulic Acid in Pathophysiological Conditions. Food Chem. Toxicol. 2017, 103, 41–55. DOI: 10.1016/j.fct.2017.02.028.
  • Metias, E. F.; Aboelmaaty, N. M.; Hussein, A. M. Modulation of ECG, Myocardial Oxidative Stress Markers and Connexion 43 Expression by Ascorbic Acid and Ferulic Acid in Isoproterenol-Induced Myocardial Infarction in Rats. Biochem. Physiol. Open Access. 2016, 05(4). DOI: 10.4172/2168-9652.1000210.
  • Chen, A. Y.; Chen, Y. C. A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention. Food Chem. 2013, 138(4), 2099–2107. DOI: 10.1016/j.foodchem.2012.11.139.
  • Patel, R. V.; Mistry, B. M.; Shinde, S. K.; Syed, R.; Singh, V.; Shin, H. S. Therapeutic Potential of Quercetin as a Cardiovascular Agent. Eur. J. Med. Chem. 2018, 155, 889–904. DOI: 10.1016/j.ejmech.2018.06.053.
  • Salvamani, S.; Gunasekaran, B.; Shaharuddin, N. A.; Ahmad, S. A.; Shukor, M. Y. Antiartherosclerotic Effects of Plant Flavonoids. BioMed. Res. Int. 2014, 2014, 1–11. DOI: 10.1155/2014/480258.
  • Anand David, A. V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10(20), 84–89. DOI: 10.4103/0973-7847.194044.
  • Larson, A. J.; David Symons, J.; Jalili, T. Therapeutic Potential of Quercetin to Decrease Blood Pressure: Review of Efficacy and Mechanisms. Adv. Nutr. 2012, 3(1), 39–46. DOI: 10.3945/an.111.001271.
  • Johari, J.; Kianmehr, A.; Mustafa, M. R.; Abubakar, S.; Zandi, K. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus. Int. J. Mol. Sci. 2012, 13(12), 16020–16045. DOI: 10.3390/ijms131216785.
  • Jaramillo-Carmona, S.; Lopez, S.; Abia, R.; Rodriguez-Arcos, R.; Jimenez, A.; Guillen, R.; Muriana, F. J. G. Combination of Quercetin and Kaempferol Enhances in Vitro Cytotoxicity on Human Colon Cancer (HCT-116) Cells. Rec. Nat. Prod. 2014, 8(3), 262–271.
  • Imran, M.; Rauf, A.; Shah, Z. A.; Saeed, F.; Imran, A.; Arshad, M. U.; Ahmad, B.; Bawazeer, S.; Atif, M.; Peters, D. G., et al. Kaempferol, a Potential Cytostatic and Cure for Inflammatory Disorders. Anticancer. Agents Med. Chem. 2011, 138(4), 85–93.
  • Semwal, D. K.; Semwal, R. B.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients. 2016, 8(2), 90. DOI: 10.3390/nu8020090.
  • Guitard, R.; Paul, J. F.; Nardello-Rataj, V.; Aubry, J. M. Myricetin, Rosmarinic and Carnosic Acids as Superior Natural Antioxidant Alternatives to α-Tocopherol for the Preservation of Omega-3 Oils. Food Chem. 2016, 213, 284–295. DOI: 10.1016/j.foodchem.2016.06.038.
  • Seydi, E.; Rasekh, H. R.; Salimi, A.; Mohsenifar, Z.; Pourahmad, J. Myricetin Selectively Induces Apoptosis on Cancerous Hepatocytes by Directly Targeting Their Mitochondria. Basic Clin. Pharmacol. Toxicol. 2016, 119(3), 249–258. DOI: 10.1111/bcpt.12572.
  • Min, S. W.; Ryu, S. N.; Kim, D. H. Anti-Inflammatory Effects of Black Rice, Cyanidin-3-O-β-d-Glycoside, and Its Metabolites, Cyanidin and Protocatechuic Acid. Int. Immunopharmacol. 2010, 10(8), 959–966. DOI: 10.1016/j.intimp.2010.05.009.
  • Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S. J.; Kim, S. Baicalein as A Potent Neuroprotective Agent: A Review. Biomed. Pharmacother. 2017, 95, 1021–1032. DOI: 10.1016/j.biopha.2017.08.135.
  • Yuan, Y.; Men, W.; Shan, X.; Zhai, H.; Qiao, X.; Geng, L.; Li, C. Baicalein Exerts Neuroprotective Effect against Ischaemic/Reperfusion Injury via Alteration of NF-KB and LOX and AMPK/Nrf2 Pathway. Inflammopharmacology. 2020, 28(5), 1327–1341. DOI: 10.1007/s10787-020-00714-6.
  • Aras, A. B.; Guven, M.; Akman, T.; Ozkan, A.; Sen, H. M.; Duz, U.; Kalkan, Y.; Silan, C.; Cosar, M. Neuroprotective Effects of Daidzein on Focal Cerebral Ischemia Injury in Rats. Neural Regen. Res. 2015, 10(1), 146–152. DOI: 10.4103/1673-5374.150724.
  • Hurtado, O.; Ballesteros, I.; Cuartero, M. I.; Moraga, A.; Pradillo, J. M.; Ramírez-Franco, J.; Bartolomé-Martín, D.; Pascual, D.; Torres, M.; Sánchez-Prieto, J., et al. Daidzein Has Neuroprotective Effects through Ligand-Binding-Independent PPARγ Activation. Neurochem. Int. 2012, 61(1), 119–127. DOI: 10.1016/j.neuint.2012.04.007.
  • Mu, X.; He, G.; Cheng, Y.; Li, X.; Xu, B.; Du, G. Baicalein Exerts Neuroprotective Effects in 6-Hydroxydopamine-Induced Experimental Parkinsonism in Vivo and in Vitro. Pharmacol. Biochem. Behav. 2009, 92(4), 642–648. DOI: 10.1016/j.pbb.2009.03.008.
  • Heeba, G. H.; Mahmoud, M. E. Therapeutic Potential of Morin against Liver Fibrosis in Rats: Modulation of Oxidative Stress, Cytokine Production and Nuclear Factor Kappa B. Environ. Toxicol. Pharmacol. 2014, 37(2), 662–671. DOI: 10.1016/j.etap.2014.01.026.
  • Rattanachaikunsopon, P.; Phumkhachorn, P. Contents and Antibacterial Activity of Flavonoids Extracted from Leaves of Psidium Guajava. J. Med. Plants Res. 2010, 4(5), 393–396. DOI: 10.5897/JMPR09.485.
  • Zhou, H. B.; Chen, J. J.; Wang, W. X.; Cai, J. T.; Du, Q. Anticancer Activity of Resveratrol on Implanted Human Primary Gastric Carcinoma Cells in Nude Mice. World J. Gastroenterol. 2005, 11(2), 280–284. DOI: 10.3748/wjg.v11.i2.280.
  • Murcia, M. A.; Martínez-Tomé, M. Antioxidant Activity of Resveratrol Compared with Common Food Additives. J. Food Prot. 2001, 64(3), 379–384. DOI: 10.4315/0362-028X-64.3.379.
  • Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E. B.; Novellino, E., et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20(6), 1305. DOI: 10.3390/ijms20061305.
  • Hamza Sherif, S.; Gebreyohannes, B. T. Synthesis, Characterization, and Antioxidant Activities of Genistein, Biochanin A, and Their Analogues. J. Chem. 2018, 2018, 1–6. DOI: 10.1155/2018/4032105.
  • Qi, S. Synergistic Effects of Genistein and Zinc on Bone Metabolism and the Femoral Metaphyseal Histomorphology in the Ovariectomized Rats. Biol. Trace Elem. Res. 2018, 183(2), 288–295. DOI: 10.1007/s12011-017-1134-8.
  • Chen, C.; Zheng, H.; Qi, S. Genistein and Silicon Synergistically Protects against Ovariectomy-Induced Bone Loss through Upregulating OPG/RANKL Ratio. Biol. Trace Elem. Res. 2019, 188(2), 441–450. DOI: 10.1007/s12011-018-1433-8.
  • Uckun, F. M.; Narla, R. K.; Zeren, T.; Yanishevski, Y.; Myers, D. E.; Waurzyniak, B.; Ek, O.; Schneider, E.; Messinger, Y.; Chelstrom, L. M., et al. In Vivo Toxicity, Pharmacokinetics, and Anticancer Activity of Genistein Linked to Recombinant Human Epidermal Growth Factor. Clin. Cancer Res. 1998, 4(5), 1125–1134.
  • Semaming, Y.; Pannengpetch, P.; Chattipakorn, S. C.; Chattipakorn, N. Pharmacological Properties of Protocatechuic Acid and Its Potential Roles as Complementary Medicine. Evidence-based Complement. Altern. Med. 2015, 2015, 1–11. DOI: 10.1155/2015/593902.
  • Muir, R. M.; Ibáñez, A. M.; Uratsu, S. L.; Ingham, E. S.; Leslie, C. A.; McGranahan, G. H.; Batra, N.; Goyal, S.; Joseph, J.; Jemmis, E. D., et al. Mechanism of Gallic Acid Biosynthesis in Bacteria (Escherichia Coli) and Walnut (Juglans Regia). Plant Mol. Biol. 2011, 75(6), 555–565. DOI: 10.1007/s11103-011-9739-3.
  • Wang, J.; Xu, J.; Gong, X.; Yang, M.; Zhang, C.; Li, M. Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review. Molecules. 2019, 24(1). DOI: 10.3390/molecules24010155.
  • Vázquez, G.; Santos, J.; Freire, M. S.; Antorrena, G.; González-Álvarez, J. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Wood Sci. Technol. 2012, 46(1–3), 191–203. DOI: 10.1007/BF00416787.
  • Hardman, W. E. Diet Components Can Suppress Inflammation and Reduce Cancer Risk. Nutr. Res. Pract. 2014, 8(3), 233–240. DOI: 10.4162/nrp.2014.8.3.233.
  • Calder, M.; Morón, B.; Guerrero, P.; Lázaro, L. A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews Med. Chem. 2011, 11 (4) , 298–344. DOI:10.2174/138955711795305335.
  • Hai Liu, R. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4(3), 384–392. DOI: 10.3945/an.112.003517.
  • Kim, S. H.; Choi, K. C. Anti-Cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models. Toxicol. Res. 2013, 29(4), 229–234. DOI: 10.5487/TR.2013.29.4.229.
  • Basli, A.; Soulet, S.; Chaher, N.; Mérillon, J. M.; Chibane, M.; Monti, J. P.; Richard, T. Wine Polyphenols: Potential Agents in Neuroprotection. Oxid. Med. Cell. Longev. 2012, 2012, 1–14. DOI: 10.1155/2012/805762.
  • Fang, F.; Huang, W.-D. Content of Potentially Anticarcinogenic Flavonoids of Tea Infusions, Wines, and Fruit Juices. Eur. Food Res. Technol. 2013, 237(3), 1242–1246. DOI: 10.1002/bies.950160209.
  • Nabavi, S. M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J., et al. Flavonoid Biosynthetic Pathways in Plants: Versatile Targets for Metabolic Engineering. Biotechnol. Adv. 2020, 38, 107316. DOI: 10.1016/j.biotechadv.2018.11.005.
  • Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant Flavone Apigenin: An Emerging Anticancer Agent. Curr. Pharmacol. Rep. 2017, 3(6), 423–446. DOI: 10.1007/s40495-017-0113-2.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5. DOI: 10.1017/jns.2016.41.
  • Khoo, H. E.; Azlan, A.; Tang, S. T.; Lim, S. M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61(1), 1361779. DOI: 10.1080/16546628.2017.1361779.
  • Sinopoli, A.; Calogero, G.; Bartolotta, A. Computational Aspects of Anthocyanidins and Anthocyanins: A Review. Food Chem. 2019, 297, 124898. DOI: 10.1016/j.foodchem.2019.05.172.
  • Danciu, C.; Avram, S.; Pavel, I. Z.; Ghiulai, R.; Dehelean, C. A.; Ersilia, A.; Minda, D.; Petrescu, C.; Moaca, E.-A.; Soica, C. Main Isoflavones Found in Dietary Sources as Natural Anti-Inflammatory Agents. Curr. Drug Targets. 2018, 19(7), 841–853. DOI: 10.2174/1389450118666171109150731.
  • Hassanpour, S.; Maheri-Sis, N.; Eshratkhah, B.; Baghbani Mehmandar Shahin Hassanpour, F.; Baghbani Mehmandar, F. Plants and Secondary Metabolites (Tannins): A Review. Int. J. For. Soil Eros. Int. J. For. Soil Eros. 2011, 1(11), 47–53.
  • Dixon, R. A.; Liu, C.; Jun, J. H. Metabolic Engineering of Anthocyanins and Condensed Tannins in Plants. Curr. Opin. Biotechnol. 2013, 24(2), 329–335. DOI: 10.1016/j.copbio.2012.07.004.
  • Sydor, T.; Schaffer, S.; Boles, E. Considerable Increase in Resveratrol Production by Recombinant Industrial Yeast Strains with Use of Rich Medium▽. Appl. Environ. Microbiol. 2010, 76(10), 3361–3363. DOI: 10.1128/AEM.02796-09.
  • Ruan, B.-F.; Lu, X.-Q.; Song, J.; Zhu, H.-L. Derivatives of Resveratrol: Potential Agents in Prevention and Treatment of Cardiovascular Disease. Curr. Med. Chem. 2012, 19(24), 4175–4183. DOI: 10.2174/092986712802430054.
  • Ruan, B.-F.; Lu, X.-Q.; Jie Song, H.-L. Z. Isoflavone, Lignans and Stilbenes-Origins, Metabolism and Potential Importance to Human Health. Curr. Med. Chem. 2012, 19(24), 4175–4183. DOI: 10.2174/092986712802430054.
  • Pilkington, L. I. Lignans: A Chemometric Analysis. Molecules. 2018, 23(7), 1–24. DOI: 10.3390/molecules23071666.
  • Zhang, J.; Chen, J.; Liang, Z.; Zhao, C. New Lignans and Their Biological Activities. Chem. Biodivers. 2014, 11(1), 1–54. DOI: 10.1002/cbdv.201100433.
  • Watson, R. R. Nutrition and Functional Foods for Healthy Aging. Nutr. Funct. Foods Heal. Aging. 2017, 1–367. DOI: 10.1016/j.jneb.2017.06.012.
  • Landete, J. M. Plant and Mammalian Lignans: A Review of Source, Intake, Metabolism, Intestinal Bacteria and Health. Food Res. Int. 2012, 46(1), 410–424. DOI: 10.1016/j.foodres.2011.12.023.
  • Teponno, R. B.; Kusari, S.; Spiteller, M. Recent Advances in Research on Lignans and Neolignans. Nat. Prod. Rep. 2016, 33(9), 1044–1092. DOI: 10.1039/c6np00021e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.