892
Views
8
CrossRef citations to date
0
Altmetric
Review

Irradiation role on meat quality induced dynamic molecular transformation: From nutrition to texture

ORCID Icon, , , &

References

  • Ehlermann, D. A. E. Wholesomeness of Irradiated Food. Radiat. Phys. Chem. 2016, 129, 24–29. DOI: 10.1016/j.radphyschem.2016.08.014.
  • Benelli, M.; Mainali, B.; Taylor, P. W.; Rempoulakis, P. Reduced Quality of Sterile Queensland Fruit Fly following Post-production Stress from Hypoxia, Irradiation and Vibration. J. Pest Sci. 2021, 94(2), 473–485. DOI: 10.1007/s10340-020-01269-9.
  • Al-abbasy, O. Y.; Ali, W. I.; Al-lehebe, N. I. Inhibition of Enzymatic Browning in Fruit and Vegetable, Review. Samarra J. Pure Appl. Sci. 2021, 3(1). DOI: 10.1021/bk-1989-0405.ch003.
  • Firouzi, S.; Khorshidi, A.; Soltani-Nabipour, J.; Zia Barzi, S. M.; Amani, M.; Ay, M. R. Evaluation of Gamma and Electron Radiations Impact on Vitamins for Onion Preservation. Appl. Radiat. Isot. 2021, 167, 109442. DOI: 10.1016/j.apradiso.2020.109442.
  • Nguyen, T. T.; Uthairatanakij, A.; Srilaong, V.; Laohakunjit, N.; Kato, M.; Jitareerat, P. Impact of Electron Beam Irradiation on the Chlorophyll Degradation and Antioxidant Capacity of Mango Fruit. Appl. Biol. Chem. 2021, 64(1), 13. DOI: 10.1186/s13765-021-00592-8.
  • Indiarto, R.; Pratama, A. W.; Sari, T. I.; Theodora, H. C. Food Irradiation Technology: A Review of the Uses and Their Capabilities. Int. J. Eng. Trends Technol. 2020, 68(12), 91–98. DOI: 10.14445/22315381/ijett-v68i12p216.
  • Melough, M. M.; Wu, S.; Li, W.-Q.; Eaton, C.; Nan, H.; Snetselaar, L.; Wallace, R.; Qureshi, A. A.; Chun, O. K.; Cho, E. Citrus Consumption and Risk of Cutaneous Malignant Melanoma in the Women’s Health Initiative. Nutr. Cancer. 2020, 72(4), 568–575. DOI: 10.1080/01635581.2019.1644353.
  • Ercole, M. E.; Bessi, C.; Pasqualetti, M. I.; Ribicich, M. M.; Aronowicz, T.; Bonboni, A.; Acerbo, M.; Fariña, F. A. Gamma Radiation Effect on Trichinella Pseudospiralis and Trichinella Spiralis Infected Wild Boar Meat. Vet. Parasitol. 2020, 287, 109257. DOI: 10.1016/j.vetpar.2020.109257.
  • Hussain, P. R.; Omeera, A.; Suradkar, P. P.; Dar, M. A. Effect of Combination Treatment of Gamma Irradiation and Ascorbic Acid on Physicochemical and Microbial Quality of Minimally Processed Eggplant (Solanum Melongena L.). Radiat. Phys. Chem. 2014, 103, 131–141. DOI: 10.1016/j.radphyschem.2014.05.063.
  • Suparno, S. D. Characterization of Phenotypic Diversity of Eggplant (Solatium Melongena L.) Result of Gamma Radiation Irradiation on Growth and Production. Int. J. Appl. Environ. Sci. 2018, 13, 275–286.
  • Motaleb, K.; Milašius, R.; Ahad, A. Influence of Gamma Radiation on Mechanical Properties of Jute Fabric-reinforced Polymer Composites. Fibers. 2020, 8(9), 58. DOI: 10.3390/fib8090058.
  • Arapcheska, M.; Spasevska, H.; Ginovska, M. Effect of Irradiation on Food Safety and Quality. Curr. Trends Nat. Sci. 2020, 9(18), 100–106. DOI: 10.47068/ctns.2020.v9i18.014.
  • Begum, T.; Follett, P. A.; Hossain, F.; Christopher, L.; Salmieri, S.; Lacroix, M. Microbicidal Effectiveness of Irradiation from Gamma and X-ray Sources at Different Dose Rates against the Foodborne Illness Pathogens Escherichia Coli, Salmonella Typhimurium and Listeria Monocytogenes in Rice. LWT Food Sci. Technol. 2020, 132, 6. DOI: 10.1016/j.lwt.2020.109841.
  • Ren, X.; Huang, D.; Wu, Y.; Jiang, D.; Li, P.; Chen, J.; Wang, Y. Gamma Ray Irradiation Improves Feather Meal as a Fish Meal Alternate in Largemouth Bass Micropterus Salmoides Diet. Anim. Feed Sci. Technol. 2020, 269, 114647. DOI: 10.1016/j.anifeedsci.2020.114647.
  • Tonyali, B.; Sommers, C.; Ceric, O.; Smith, J. S.; Yucel, U. An Analysis of Cellulose and Dextrose Based Radicals in Sweet Potatoes as Irradiation Markers. J. Food Sci. 2020, 85(9), 2745–2753. DOI: 10.1111/1750-3841.15359.
  • Shah, M. A.; Mir, S. A.; Pala, S. A. Enhancing Food Safety and Stability through Irradiation: A Review. J. Microbiol. Biotechnol. Food Sci. 2021, 3(5), 371–378.
  • Gyimah, L. A.; Amoatey, H. M.; Boatin, R.; Appiah, V.; Odai, B. T. The Impact of Gamma Irradiation and Storage on the Physicochemical Properties of Tomato Fruits in Ghana. Food Qual. Saf. 2020, 4(3), 151–157. DOI: 10.1093/fqsafe/fyaa017.
  • Gryczka, U.; Kameya, H.; Kimura, K.; Todoriki, S.; Migdał, W.; Bułka, S. Efficacy of Low Energy Electron Beam on Microbial Decontamination of Spices. Radiat. Phys. Chem. 2020, 170, 108662. DOI: 10.1016/j.radphyschem.2019.108662.
  • Bortolin, E.; Cardamone, C.; Chiaravalle, A. E.; Deiana, G.; Di Schiavi, M. T.; D’Oca, M. C.; Marchesani, G.; Quattrini, M. C.; Sangiorgi, E.; Tomaiuolo, M., et al. Irradiation Detection of Herbal Ingredients Used in Plant Food Supplements by Electron Spin Resonance on Samples Pre-treated with Alcoholic Extraction. Radiat. Phys. Chem. 2020, 176, 108946. DOI: 10.1016/j.radphyschem.2020.108946.
  • Shiroshita, Y.; Yuhazu, M.; Hase, Y.; Yamada, T.; Abe, J.; Kanazawa, A. Characterization of Chlorophyll-deficient Soybean [Glycine Max (L.) Merr.] Mutants Obtained by Ion-beam Irradiation Reveals Concomitant Reduction in Isoflavone Levels. Genet. Resour. Crop Evol. 2021, 68(3), 1213–1223. DOI: 10.1007/s10722-020-01061-9.
  • Gomez-Simuta, Y.; Hernandez, E.; Aceituno-Medina, M.; Liedo, P.; Escobar-Lopez, A.; Montoya, P.; Bravo, B.; Hallman, G. J.; Emilia Bustos, M.; Toledo, J. Tolerance of Mango Cv. ‘Ataulfo’ to Irradiation with Co-60 Vs. Hydrothermal Phytosanitary Treatment. Radiat. Phys. Chem. 2017, 139, 27–32. DOI: 10.1016/j.radphyschem.2017.05.015.
  • Kizhekkedath, J.; Sultana, K.; Pandey, M. Radiation Processing: An Emerging Preservation Technique for Meat and Meat Products. Defence Life Sci. J. 2017, 2(2), 133. DOI: 10.14429/dlsj.2.11368.
  • Souza, J. E. S.; Monteiro, R. R. C.; Rocha, T. G.; Moreira, K. S.; Cavalcante, F. T. T.; Braz, A. K. D. S.; de Souza, M. C. M.; Dos Santos, J. C. S. Sonohydrolysis Using an Enzymatic Cocktail in the Preparation of Free Fatty Acid. 3 Biotech. 2020, 10(6), 10. DOI: 10.1007/s13205-020-02227-z.
  • Mirmoghtadaie, L.; Aliabadi, S. S.; Hosseini, S. M. Recent Approaches in Physical Modification of Protein Functionality. Food Chem. 2016, 199, 619–627. DOI: 10.1016/j.foodchem.2015.12.067.
  • Jia, W.; Yang, Y.; Liu, S.; Shi, L. Molecular Mechanisms of the Irradiation-induced Accumulation of Polyphenols in Star Anise (Illicium Verum Hook. F.). J. Food Compos. Anal. 2022, 105, 104233. DOI: 10.1016/j.jfca.2021.104233.
  • Jia, W.; Wu, X.; Zhang, R.; Shi, L. UHPLC-Q-Orbitrap-based Lipidomics Reveals Molecular Mechanism of Lipid Changes during Preservatives Treatment of Hengshan Goat Meat Sausages. Food Chem. 2022, 369, 130948. DOI: 10.1016/j.foodchem.2021.130948.
  • Indiarto, R.; Qonit, M. A. H. A Review of Irradiation Technologies on Food and Agricultural Products. Int. J. Sci. Technol. Res. 2020, 9, 4411–4414.
  • Priyadarshini, A.; Rajauria, G.; O’Donnell, C. P.; Tiwari, B. K. Emerging Food Processing Technologies and Factors Impacting Their Industrial Adoption. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3082–3101. DOI: 10.1080/10408398.2018.1483890.
  • Brewer, M. S. Irradiation Effects on Meat Flavor: A Review. Meat Sci. 2009, 81(1), 1–14. DOI: 10.1016/j.meatsci.2008.07.011.
  • Zin, M. M.; Anucha, C. B.; Banvolgyi, S. Recovery of Phytochemicals via Electromagnetic Irradiation (Microwave-assisted-extraction): Betalain and Phenolic Compounds in Perspective. Foods. 2020, 9(7), 918. DOI: 10.3390/foods9070918.
  • Brewer, M. S. Irradiation Effects on Meat Color-a Review. Meat Sci. 2004, 68, 1–17. DOI: 10.1016/j.meatsci.2004.02.007.
  • Beikzadeh, S.; Ghorbani, M.; Shahbazi, N.; Izadi, F.; Pilevar, Z.; Mortazavian, A. M. The Effects of Novel Thermal and Nonthermal Technologies on the Properties of Edible Food Packaging. Food Eng. Rev. 2020, 12(3), 333–345. DOI: 10.1007/s12393-020-09227-y.
  • Komolprasert, V. Packaging Food for Radiation Processing. Radiat. Phys. Chem. 2016, 129, 35–38. DOI: 10.1016/j.radphyschem.2016.07.023.
  • Sagatova, A.; Fulop, M.; Pavlovic, M.; Sedlackova, K.; Necas, V. Electron-beam Accelerator with Conversion to X-rays: Optimal Radiation Type according to Application. Radiat. Phys. Chem. 2020, 172, 7. DOI: 10.1016/j.radphyschem.2020.108789.
  • Pollyceno, L. S.; Ribeiro, A. D. Wave-particle Duality Using the Compton Effect. Phys. Lett. A. 2020, 384(31), 126808. DOI: 10.1016/j.physleta.2020.126808.
  • Min, S. H.; Kwon, O.; Sattorov, M.; Kim, S.; Hong, D.; Kim, S.; Cho, I.; Park, C.; Jung, W.; Kim, M. Ionizing Radiation in Electronics from the Compton Scattering of Quasi-stationary Particles Generated by Characteristic and Bremsstrahlung X Rays. AIP Adv. 2020, 10(5), 13. DOI: 10.1063/5.0006618.
  • Bouzarjomehri, F.; Dad, V.; Hajimohammadi, B.; Shirmardi, S.; Salimi, A. Y. G. The Effect of Electron-beam Irradiation on Microbiological Properties and Sensory Characteristics of Sausages. Radiat. Phys. Chem. 2020, 168, 108524. DOI: 10.1016/j.radphyschem.2019.108524.
  • Park, J. G.; Yoon, Y.; Park, J. N.; Han, I. J.; Song, B. S.; Kim, J. H.; Kim, W. G.; Hwang, H. J.; Han, S. B.; Lee, J. W. Effects of Gamma Irradiation and Electron Beam Irradiation on Quality, Sensory, and Bacterial Populations in Beef Sausage Patties. Meat Sci. 2010, 85(2), 368–372. DOI: 10.1016/j.meatsci.2010.01.014.
  • Fruet, A. P. B.; Giotto, F. M.; Fonseca, M. A.; Nörnberg, J. L.; De Mello, A. S. Effects of the Incorporation of Tannin Extract from Quebracho Colorado Wood on Color Parameters, Lipid Oxidation, and Sensory Attributes of Beef Patties. Foods. 2020, 9(5), 667. DOI: 10.3390/foods9050667.
  • Vickers, Z. M.; Wang, J. Liking of Ground Beef Patties Is Not Affected by Irradiation. J. Food Sci. 2010, 67(1), 380–383. DOI: 10.1111/j.1365-2621.2002.tb11414.x.
  • Rodrigues, L. M.; Sales, L. A.; Fontes, P. R.; Torres Filho, R. A.; Andrade, M. P. D.; Ramos, A. L. S.; Ramos, E. M. Combined Effects of Gamma Irradiation and Aging on Tenderness and Quality of Beef from Nellore Cattle. Food Chem. 2020, 313, 126137. DOI: 10.1016/j.foodchem.2019.126137.
  • Annamalai, J.; Sivam, V.; Unnikrishnan, P.; Sivasankara, S. K.; Pansingh, R. K.; Abdul, K. S.; Lakshmi, N. M.; Nagarajarao, R. C. Effect of Electron Beam Irradiation on the Biochemical, Microbiological and Sensory Quality of Litopenaeus Vannamei during Chilled Storage. J. Food Sci. Technol. 2020, 57(6), 2150–2158. DOI: 10.1007/s13197-020-04250-7.
  • Xue, S.; Setyabrata, D.; Bonham, C. C.; Kim, Y. H. B. Evaluation of Functional and Chemical Properties of Crust from Dry-aged Beef Loins as a Novel Food Ingredient. Meat Sci. 2021, 173, 108403. DOI: 10.1016/j.meatsci.2020.108403.
  • Fan, X.; Niemira, B. A.; Rajkowski, K. T.; Phillips, J.; Sommers, C. H. Sensory Evaluation of Irradiated Ground Beef Patties for the National School Lunch Program. J. Food Sci. 2006, 69(9), S384–S387. DOI: 10.1111/j.1365-2621.2004.tb09954.x.
  • Montgomery, J. L.; Parrish, F. C.; Olson, D. G.; Dickson, J. S.; Niebuhr, S. Storage and Packaging Effects on Sensory and Color Characteristics of Ground Beef. Meat Sci. 2003, 64(4), 357–363. DOI: 10.1016/S0309-1740(02)00171-7.
  • Nam, K. C.; Ahn, D. U. Effects of Ascorbic Acid and Antioxidants on the Color of Irradiated Ground Beef. J. Food Sci. 2003, 68(5). DOI: 10.1111/j.1365-2621.2003.tb12314.x.
  • Söbeli, C.; Uyarcan, M.; Kayaardı, S. Pulsed UV-C Radiation of Beef Loin Steaks: Effects on Microbial Inactivation, Quality Attributes and Volatile Compounds. Innovative Food Sci. Emerg. Technol. 2021, 67, 102558. DOI: 10.1016/j.ifset.2020.102558.
  • Ham, Y. K.; Kim, H. W.; Hwang, K. E.; Song, D. H.; Kim, Y. J.; Choi, Y. S.; Song, B. S.; Park, J. H.; Kim, C. J. Effects of Irradiation Source and Dose Level on Quality Characteristics of Processed Meat Products. Radiat. Phys. Chem. 2017, 130, 259–264. DOI: 10.1016/j.radphyschem.2016.09.010.
  • Feng, X.; Jo, C.; Nam, K. C.; Ahn, D. U. Impact of Electron-beam Irradiation on the Quality Characteristics of Raw Ground Beef. Innovative Food Sci. Emerg. Technol. 2019, 54, 87–92. DOI: 10.1016/j.ifset.2019.03.010.
  • Lorenzen, C. L.; Heymann, H. Effect of Irradiation on Consumer Perception and Descriptive Analysis of Ground Beef Patties. J. Muscle Foods. 2003, 14(3), 233–239. DOI: 10.1111/j.1745-4573.2003.tb00703.x.
  • Sales, L. A.; Rodrigues, L. M.; Silva, D.; Fontes, P. R.; Filho, R.; Ramos, A.; Ramos, E. M. Effect of Freezing/irradiation/thawing Processes and Subsequent Aging on Tenderness, Color, and Oxidative Properties of Beef. Meat Sci. 2020, 163, 108078. DOI: 10.1016/j.meatsci.2020.108078.
  • Zhang, M.; He, L.; Li, C.; Yang, F.; Jin, G.; Liang, Y.; Jin, G. Effects of Gamma Ray Irradiation-induced Protein Hydrolysis and Oxidation on Tenderness Change of Fresh Pork during Storage. Meat Sci. 2020, 163, 108058. DOI: 10.1016/j.meatsci.2020.108058.
  • Li, C.; He, L.; Jin, G.; Ma, S.; Wu, W.; Lan, G. Effect of Different Irradiation Dose Treatment on the Lipid Oxidation, Instrumental Color and Volatiles of Fresh Pork and Their Changes during Storage. Meat Sci. 2017, 128, 68–76. DOI: 10.1016/j.meatsci.2017.02.009.
  • Hu, Z.; Xiao, Y.; Wang, B.; Jin, T. Z.; Lyu, W.; Ren, D. Combined Treatments of Low Dose Irradiation with Antimicrobials for Inactivation of Foodborne Pathogens on Fresh Pork. Food Control. 2021, 125, 107977. DOI: 10.1016/j.foodcont.2021.107977.
  • Kim, Y. H.; Nam, K. C.; Ahn, D. U. Volatile Profiles, Lipid Oxidation and Sensory Characteristics of Irradiated Meat from Different Animal Species. Meat Sci. 2002, 61(3), 257–265. DOI: 10.1016/S0309-1740(01)00191-7.
  • Ahn, D. U.; Jo, C.; Du, M.; Olson, D. G.; Nam, K. C. Quality Characteristics of Pork Patties Irradiated and Stored in Different Packaging and Storage Conditions. Meat Sci. 2000, 56(2), 203–209. DOI: 10.1016/S0309-1740(00)00044-9.
  • Jia, W.; Shi, Q.; Zhang, R.; Shi, L.; Chu, X. Unraveling Proteome Changes of Irradiated Goat Meat and Its Relationship to Off-flavor Analyzed by High-throughput Proteomics Analysis. Food Chem. 2021, 337, 127806. DOI: 10.1016/j.foodchem.2020.127806.
  • Jia, W.; Zhang, R.; Zhu, Z.; Shi, L. LC-Q-Orbitrap HRMS-based Proteomics Reveals Potential Nutritional Function of Goat Whey Fraction. J. Funct. Foods. 2021, 82, 104502. DOI: 10.1016/j.jff.2021.104502.
  • Jia, W.; Shi, Q.; Shi, L. Effect of Irradiation Treatment on the Lipid Composition and Nutritional Quality of Goat Meat. Food Chem. 2021, 351, 129295. DOI: 10.1016/j.foodchem.2021.129295.
  • Jia, W.; Zhang, R.; Zhu, Z. B.; Shi, L. A High-Throughput Comparative Proteomics of Milk Fat Globule Membrane Reveals Breed and Lactation Stages Specific Variation in Protein Abundance and Functional Differences between Milk of Saanen Dairy Goat and Holstein Bovine. Front. Nutr. 2021, 8, 680683. DOI: 10.3389/fnut.2021.680683.
  • Alya, T. A.-G. A.; Abd-Elrahimc, E. A.-M.; Zhoua, C.; Sarponga, F.; Radwanf, L. M. Effect of Gamma Irradiation on the Attributes of Turkey, Duck, Goose and Chicken Egg Whites and Yolks. Plant Archives. 2020, 20(2), 465–473. DOI: 10.1111/j.1745-4565.2006.00054.x.
  • Gomes, C.; Silva, P.; Castellccerez, M. E.; Moreira, R. G. Quality and Microbial Population of Cornish Game Hen Carcasses as Affected by Electron Beam Irradiation. J. Food Sci. 2006, 71(7), E327–E336. DOI: 10.1111/j.1750-3841.2006.00135.x.
  • Badr, H. M. Use of Irradiation to Control Foodborne Pathogens and Extend the Refrigerated Market Life of Rabbit Meat. Meat Sci. 2004, 67(4), 541–548. DOI: 10.1016/j.meatsci.2003.11.018.
  • Feng, X.; Moon, S.; Lee, H.; Ahn, D. U. Effect of Irradiation on the Parameters that Influence Quality Characteristics of Uncured and Cured Cooked Turkey Meat Products. Poult. Sci. 2016, 95(12), 2986–2992. DOI: 10.3382/ps/pew272.
  • Mihaleva, V. V.; Ünlü, F. Y.; Vervoort, J.; Ridder, L. Annotation of Microbial and Human Flavonoid-Derived Metabolites, Kochhar, S., and Martin, F. P., Eds.; London; 2015, 109–124.
  • Zhang, R.; Zhu, Z.; Jia, W. Molecular Mechanism Associated with the Use of Magnetic Fermentation in Modulating the Dietary Lipid Composition and Nutritional Quality of Goat Milk. Food Chem. 2022, 366, 130554. DOI: 10.1016/j.foodchem.2021.130554.
  • Shi, C.; Guo, H.; Wu, T.; Tao, N.; Wang, X.; Zhong, J. Effect of Three Types of Thermal Processing Methods on the Lipidomics Profile of Tilapia Fillets by UPLC-Q-Extractive Orbitrap Mass Spectrometry. Food Chem. 2019, 298, 125029. DOI: 10.1016/j.foodchem.2019.125029.
  • Wen, M.; Ding, L.; Zhang, L.; Zhou, M.; Xu, J.; Wang, J.; Wang, Y.; Xue, C. DHA-PC and DHA-PS Improved Aβ1–40 Induced Cognitive Deficiency Uncoupled with an Increase in Brain DHA in Rats. J. Funct. Foods. 2016, 22, 417–430. DOI: 10.1016/j.jff.2016.02.004.
  • Liisberg, U.; Fauske, K. R.; Kuda, O.; Fjaere, E.; Myrmel, L. S.; Norberg, N.; Froyland, L.; Graff, I. E.; Liaset, B.; Kristiansen, K., et al. Intake of a Western Diet Containing Cod Instead of Pork Alters Fatty Acid Composition in Tissue Phospholipids and Attenuates Obesity and Hepatic Lipid Accumulation in Mice. J. Nutr. Biochem. 2016, 33, 119–127. DOI: 10.1016/j.jnutbio.2016.03.014.
  • Abuelfatah, K.; Zuki, A. B. Z.; Goh, Y. M.; Sazili, A. Q. Effects of Enriching Goat Meat with N-3 Polyunsaturated Fatty Acids on Meat Quality and Stability. Small Ruminant Res. 2016, 136, 36–42. DOI: 10.1016/j.smallrumres.2016.01.001.
  • Zhang, T. T.; Xu, J.; Wang, Y. M.; Xue, C. H. Health Benefits of Dietary Marine DHA/EPA-enriched Glycerophospholipids. Prog. Lipid Res. 2019, 75, 100997. DOI: 10.1016/j.plipres.2019.100997.
  • Jia, W.; Li, Y.; Du, A.; Fan, Z.; Zhang, R.; Shi, L.; Luo, C.; Feng, K.; Chang, J.; Chu, X. Foodomics Analysis of Natural Aging and Gamma Irradiation Maturation in Chinese Distilled Baijiu by UPLC-Orbitrap-MS/MS. Food Chem. 2020, 315, 126308. DOI: 10.1016/j.foodchem.2020.126308.
  • Luchsinger, S. E.; Kropf, D. H.; Garcfa Zepeda, C. M.; Hunt, M. C.; Stroda, S. L.; Marsden, J. L.; Kastner, C. L. Color and Oxidative Properties of Irradiated Ground Beef Patties. J. Muscle Foods. 1997, 8(4), 445–464. DOI: 10.1111/j.1745-4573.1997.tb00731.x.
  • Kanatt, S. R.; Chawla, S. P.; Sharma, A. Effect of Radiation Processing on Meat Tenderisation. Radiat. Phys. Chem. 2015, 111, 1–8. DOI: 10.1016/j.radphyschem.2015.02.004.
  • Xavier Mde, L.; Dauber, C.; Mussio, P.; Delgado, E.; Maquieira, A.; Soria, A.; Curuchet, A.; Márquez, R.; Méndez, C.; López, T. Use of Mild Irradiation Doses to Control Pathogenic Bacteria on Meat Trimmings for Production of Patties Aiming at Provoking Minimal Changes in Quality Attributes. Meat Sci. 2014, 98, 383–391. DOI: 10.1016/j.meatsci.2014.06.037.
  • Modi, V. K.; Sakhare, P. Z.; Sachindra, N. M.; Mahendrakar, N. S. Changes in Quality of Minced Meat from Goat Due to Gamma Irradiation. J. Muscle Foods. 2008, 19(4), 430–442. DOI: 10.1111/j.1745-4573.2008.00128.x.
  • Dvořák, P.; Kunová, J.; Vodňanský, M. Change of Colour and pH-value in Pheasant Meat after Exposure to Ionizing Radiation. Acta vet. Brno. 2007, 76(8), S67–S71. DOI: 10.2754/avb200776S8S067.
  • Felderhoff, C.; Lyford, C.; Malaga, J.; Polkinghorne, R.; Brooks, C.; Garmyn, A.; Miller, M. Beef Quality Preferences: Factors Driving Consumer Satisfaction. Foods. 2020, 9(3), 22. DOI: 10.3390/foods9030289.
  • Jia, W.; Zhang, R.; Liu, L.; Zhu, Z.; Mo, H.; Xu, M.; Shi, L.; Zhang, H. Proteomics Analysis to Investigate the Impact of Diversified Thermal Processing on Meat Tenderness in Hengshan Goat Meat. Meat Sci. 2022, 183, 108655. DOI: 10.1016/j.meatsci.2021.108655.
  • Aroeira, C. N.; Torres Filho, R. A.; Fontes, P. R.; Gomide, L. A. M.; Ramos, A. L. S.; Ladeira, M. M.; Ramos, E. M. Freezing, Thawing and Aging Effects on Beef Tenderness from Bos Indicus and Bos Taurus Cattle. Meat Sci. 2016, 116, 118–125. DOI: 10.1016/j.meatsci.2016.02.006.
  • Yoon, K. S. Effect of Gamma Irradiation on the Texture and Microstructure of Chicken Breast Meat. Meat Sci. 2003, 63(2), 273–277. DOI: 10.1016/s0309-1740(02)00078-5.
  • Zabielski, J.; Kijowski, J.; Fiszer, W.; Niewiarowicz, A. The Effect of Irradiation on Technological Properties and Protein Solubility of Broiler Chicken Meat. J. Sci. Food Agric. 1984, 35(6), 662–670. DOI: 10.1002/jsfa.2740350612.
  • Huff-Lonergan, E.; Lonergan, S. M. Mechanisms of Water-holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71(1), 194–204. DOI: 10.1016/j.meatsci.2005.04.022.
  • Miller, R. Drivers of Consumer Liking for Beef, Pork, and Lamb: A Review. Foods. 2020, 9(4), 25. DOI: 10.3390/foods9040428.
  • Feng, X.; Jo, C.; Nam, K. C.; Ahn, D. U. Effect of Irradiation on the Parameters that Influence Quality Characteristics of Raw Beef Round Eye. Innovative Food Sci. Emerg. Technol. 2018, 45, 115–121. DOI: 10.1016/j.ifset.2017.09.006.
  • Nam, K. C.; Ahn, D. U. Carbon Monoxide-heme Pigment Is Responsible for the Pink Color in Irradiated Raw Turkey Breast Meat. Meat Sci. 2002, 60(1), 25–33. DOI: 10.1016/S0309-1740(01)00101-2.
  • Nam, K. C.; Ahn, D. U. Mechanisms of Pink Color Formation in Irradiated Precooked Turkey Breast Meat. J. Food Sci. 2002, 67, 600–607. DOI: 10.1111/j.1365-2621.2002.tb10645.x.
  • Nam, K. C.; Min, B. R.; Yan, H.; Lee, E. J.; Mendonca, A.; Wesley, I.; Ahn, D. U. Effect of Dietary Vitamin E and Irradiation on Lipid Oxidation, Color, and Volatiles of Fresh and Previously Frozen Turkey Breast Patties. Meat Sci. 2003, 65(1), 513–521. DOI: 10.1016/S0309-1740(02)00243-7.
  • Millar, S. J.; Moss, B. W.; Stevenson, M. H. The Effect of Ionising Radiation on the Colour of Beef, Pork and Lamb. Meat Sci. 2000, 55(55), 349–360. DOI: 10.1016/S0309-1740(99)00165-5.
  • Millar, S. J.; Moss, B. W.; Stevenson, M. H. The Effect of Ionising Radiation on the Colour of Leg and Breast of Poultry Meat. Meat Sci. 2000, 55, 361–370. DOI: 10.1016/s0309-1740(99)00165-5.
  • Rodrigues, L. M.; Sales, L. A.; Fontes, P. R.; Filho, R. R.; M, E. Combined Effects of Gamma Irradiation and Aging on Tenderness and Quality of Beef from Nellore Cattle. Food Chem. 2019, 313, 126137. DOI: 10.1016/j.foodchem.2019.126137.
  • Nisar, M. F.; Arshad, M. S.; Yasin, M.; Khan, M. K.; Afzaal, M.; Sattar, S.; Suleria, H. A. R. Evaluation of Gamma Irradiation and Moringa Leaf Powder on Quality Characteristics of Meat Balls under Different Packaging Materials. J. Food Process. Preserv. 2020, 44(10), e14748. DOI: 10.1111/jfpp.14748.
  • Ma, L.; Nan, Q.; Dai, R. Changes in Physicochemical and Sensory Characteristics of Vacuum-packaged Chilled Pork Irradiated at Low-dose Gamma Ray. Trans. Chin. Soc. Agric. Eng. 2003, 19, 184–187. DOI: 10.1155/2017/1054523.
  • Nanke, K. E.; Sebranek, J. G.; Olson, D. G. Color Characteristics of Irradiated Vacuum-packaged Pork, Beef, and Turkey. J. Food Sci. 1998, 63(6). DOI: 10.1111/j.1365-2621.1998.tb15842.x.
  • Hashem, M. A.; Hossain, M. M.; Hossain, M. A.; Sadakuzzaman, M.; Islam, A. Effect of Gamma Irradiation on Shelf Life and Quality of Indigenous Chicken Meat. J. Bangladesh Agric. Univ. 2019, 17(4), 560–566. DOI: 10.3329/jbau.v17i4.44626.
  • Jia, W.; Wang, X.; Wu, X.; Shi, L. Monitoring Contamination of Perchlorate Migrating along the Food Chain to Dairy Products Poses Risks to Human Health. Food Chem. 2022, 374, 131633. DOI: 10.1016/j.foodchem.2021.131633.
  • Gardner, K.; Legako, J. F. Volatile Flavor Compounds Vary by Beef Product Type and Degree of Doneness. J. Anim. Sci. 2018, 96(10), 4238–4250. DOI: 10.1093/jas/sky287.
  • Arshad, M. S.; Kwon, J. H.; Ahmad, R. S.; Ameer, K.; Ahmad, S.; Jo, Y. Influence of E-beam Irradiation on Microbiological and Physicochemical Properties and Fatty Acid Profile of Frozen Duck Meat. Food Sci. Nutr. 2020, 8, 1020–1029. DOI: 10.1002/fsn3.1386.
  • Albert, T.; Braun, P. G.; Saffaf, J.; Wiacek, C. Physical Methods for the Decontamination of Meat Surfaces. Current Clin. Microbiol. Rep. 2021, 1–12. DOI: 10.1007/s40588-021-00156-w.
  • Stefanova, R.; Toshkov, S.; Vasilev, N. V.; Vassilev, N. G.; Marekov, I. N. Effect of Gamma-ray Irradiation on the Fatty Acid Profile of Irradiated Beef Meat. Food Chem. 2011, 127(2), 461–466. DOI: 10.1016/j.foodchem.2010.12.155.
  • Aaslyng, M. D.; Meinert, L. Meat Flavour in Pork and Beef-from Animal to Meal. Meat Sci. 2017, 132, 112–117. DOI: 10.1016/j.meatsci.2017.04.012.
  • Fregonesi, R. P.; Portes, R. G.; Aguiar, A. M.; Figueira, L. C.; Goncalves, C. B.; Arthur, V.; Lima, C. G.; Fernandes, A. M.; Trindade, M. A. Irradiated Vacuum-packed Lamb Meat Stored under Refrigeration: Microbiology, Physicochemical Stability and Sensory Acceptance. Meat Sci. 2014, 97(2), 151–155. DOI: 10.1016/j.meatsci.2014.01.026.
  • Rodrigues, I.; Baldini, A.; Pires, M.; Barros, J. C.; Fregonesi, R.; de Lima, C. G.; Trindade, M. A. Gamma Ray Irradiation: A New Strategy to Increase the Shelf Life of Salt-reduced Hot Dog Wieners. LWT Food Sci. Technol. 2021, 135, 110265. DOI: 10.1016/j.lwt.2020.110265.
  • Dini, H.; Fallah, A. A.; Bonyadian, M.; Abbasvali, M.; Soleimani, M. Effect of Edible Composite Film Based on Chitosan and Cumin Essential Oil-loaded Nanoemulsion Combined with Low-dose Gamma Irradiation on Microbiological Safety and Quality of Beef Loins during Refrigerated Storage. Int. J. Biol. Macromol. 2020, 164, 1501–1509. DOI: 10.1016/j.ijbiomac.2020.07.215.
  • Diehl, J. F. Nutritional Effects of Combining Irradiation with Other Treatments. Food Control. 1991, 2(1), 20–25. DOI: 10.1016/0956-7135(91)90114-C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.