1,714
Views
11
CrossRef citations to date
0
Altmetric
Review

Vegetable oils oxidation: mechanisms, consequences and protective strategies

ORCID Icon, , & ORCID Icon

References

  • Madhujith, T.; Sivakanthan, S. 2018. Oxidative Stability of Edible Plant Oils. Bioactive Molecules in Food Mérillon, J.-M., Ramawat, K. G. Cham: Springer International , 1–23. DOI:10.1007/978-3-319-54528-8_94-1.
  • Syed, A.; Oxidative Stability and Shelf Life of Vegetable Oils. Elsevier Inc. 2016, DOI: 10.1016/B978-1-63067-056-6.00004-5.
  • Tena, N.; Lobo-Prieto, A.; Aparicio, R.; García-González, D. L. Storage and Preservation of Fats and Oils. Encycl. Food Secur. Sustain. 2019, 2016, 605–618. doi: 10.1016/b978-0-08-100596-5.22268-3.
  • Hwang, H. S.; Winkler-Moser, J. K. Oxidative Stability and Shelf Life of Frying Oils and Fried Foods. Elsevier Inc. 2016, DOI: 10.1016/B978-1-63067-056-6.00007-0.
  • Weisshaar, R.; Quality Control of Used Deep-Frying Oils. Eur. J. Lipid Sci. Technol. 2014, 116(6), 716–722. DOI: 10.1002/ejlt.201300269.
  • Kerrihard, A. L.; Pegg, R. B.; Sarkar, A.; Craft, B. D. Update on the Methods for Monitoring UFA Oxidation in Food Products. Eur. J. Lipid Sci. Technol. 2015, 117(1), 1–14. DOI: 10.1002/ejlt.201400119.
  • Velasco, J.; Andersen, M. L.; Skibsted, L. H. Evaluation of Oxidative Stability of Vegetable Oils by Monitoring the Tendency to Radical Formation. A Comparison of Electron Spin Resonance Spectroscopy with the Rancimat Method and Differential Scanning Calorimetry. Food Chem. 2004, 85(4), 623–632. DOI: 10.1016/j.foodchem.2003.07.020.
  • Tirosh, O.; Shpaizer, A.; Kanner, J. Lipid Peroxidation in a Stomach Medium Is Affected by Dietary Oils (Olive/fish) and Antioxidants: The Mediterranean versus Western Diet. J. Agric. Food Chem. 2015, 63(31), 7016–7023. DOI: 10.1021/acs.jafc.5b02149.
  • Choe, E.; Min, D. B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5(4), 169–186. DOI: 10.1111/j.1541-4337.2006.00009.x.
  • Velasco, J.; Dobarganes, C. Oxidative Stability of Virgin Olive Oil. Eur. J. Lipid Sci. Technol. 2002, 104(9–10), 661–676. DOI: 10.1002/1438-9312(200210)104:9/10<661::AID-EJLT661>3.0.CO;2-D.
  • Min, D. B.; Boff, J. M. Chemistry and Reaction of Singlet Oxygen in Foods. Compr. Rev. Food Sci. Food Saf. 2002, 1(2), 58–72. DOI: 10.1111/j.1541-4337.2002.tb00007.x.
  • He, Y. Y.; An, J. Y.; Jiang, L. J. Õ. EPR and spectrophotometric studies on free radicals (O2-, Cysa-HB-) and singlet oxygen (1O) generated by irradiation of cysteamine substituted hypocrellin B. International Journal of Radiation Biology , 1998,74(5), 647–654. DOI:10.1080/095530098141230.
  • Song, Y. Z.; An, J.; Jiang, L. ESR Evidence of the Photogeneration of Free Radicals (GDHB·-, O2/·-) and Singlet Oxygen (1O2) by 15-Deacetyl-13-Glycine-Substituted Hypocrellin B. Biochim. Biophys. Acta - Gen. Subj. 1999, 1472(1–2), 307–313. DOI: 10.1016/S0304-4165(99)00137-3.
  • Martín-Polvillo, M.; Márquez-Ruiz, G.; Dobarganes, M. C. Oxidative Stability of Sunflower Oils Differing in Unsaturation Degree during Long-Term Storage at Room Temperature. JAOCS, J. Am. Oil Chem. Soc. 2004, 81(6), 577–583. DOI: 10.1007/s11746-006-0944-1.
  • Ahmed, M.; Pickova, J.; Ahmad, T.; Liaquat, M.; Farid, A.; Jahangir, M. Oxidation of Lipids in Foods. Sarhad J. Agric. 2016, 32(3), 230–238. DOI: 10.17582/journal.sja/2016.32.3.230.238.
  • Ayyildiz, H. F.; Topkafa, M.; Kara, H.; Sherazi, S. T. H. Evaluation of Fatty Acid Composition, Tocols Profile, and Oxidative Stability of Some Fully Refined Edible Oils. Int. J. Food Prop. 2015, 18(9), 2064–2076. DOI: 10.1080/10942912.2014.962657.
  • Shahidi, F.; Spurvey, S. A. Oxidative Stability of Fresh and Heat-Processed Dark and Light Muscles of Mackerel: (Scomber Scombrus). J. Food Lipids. 1996, 3(1), 13–25. DOI: 10.1111/j.1745-4522.1996.tb00051.x.
  • Andersson, K.; Lingnert, H. Influence of Oxygen and Copper Concentration on Lipid Oxidation in Rapeseed Oil. Doktorsavhandlingar Vid Chalmers Tek. Hogsk 1998, 75, 1041–1046. 1364. DOI: 10.1007/s11746-998-0284-4.
  • Shiota, M.; Uchida, T.; Oda, T.; Kawakami, H. Utilization of Lactoferrin as an Iron-Stabilizer for Soybean and Fish Oil. J. Food Sci. 2006, 71(3), 120–123. DOI: 10.1111/j.1365-2621.2006.tb15606.x.
  • Chen, B.; Mcclements, D. J.; Decker, E. A. Minor Components in Food Oils: A Critical Review of Their Roles on Lipid Oxidation Chemistry in Bulk Oils and Emulsions. Crit. Rev. Food Sci. Nutr. 2011, 51(10), 901–916. DOI: 10.1080/10408398.2011.606379.
  • Rukmini, A.; Raharjo, S. Pattern of Peroxide Value Changes in Virgin Coconut Oil (VCO) Due to Photo-Oxidation Sensitized by Chlorophyll. JAOCS, J. Am. Oil Chem. Soc. 2010, 87(12), 1407–1412. DOI: 10.1007/s11746-010-1641-7.
  • Choe, E.; Min, D. B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8(4), 345–358. DOI: 10.1111/j.1541-4337.2009.00085.x.
  • Giuliani, A.; Cerretani, L.; Cichelli, A. Chlorophylls in Olive and in Olive Oil: Chemistry and Occurrences. Crit. Rev. Food Sci. Nutr. 2011, 51(7), 678–690. DOI: 10.1080/10408391003768199.
  • Sayago, A.; Marín, M. I.; Aparicio, R.; Morales, M. T. Vitamina E y Aceites Vegetales. Grasas y Aceites. 2007, 58(1), 74–86. DOI: 10.3989/gya.2007.v58.i1.11.
  • Li, H.; Fan, Y. W.; Li, J.; Tang, L.; Hu, J. N.; Deng, Z. Y. Evaluating and Predicting the Oxidative Stability of Vegetable Oils with Different Fatty Acid Compositions. J. Food Sci. 2013, 78, 4. DOI: 10.1111/1750-3841.12089.
  • Wahrburg, U.;. What are the Health Effects of Fat? Eur. J. Nutr. 2004, 43(SUPPL. 1), 6–11. DOI: 10.1007/s00394-004-1103-9.
  • Jung, M. Y.; Yoon, S. H.; Min, D. B. Effects of Processing Steps on the Contents of Minor Compounds and Oxidation of Soybean Oil. J. Am. Oil Chem. Soc. 1989, 66(1), 118–120. DOI: 10.1007/BF02661798.
  • Crowe, T. D.; White, P. J. Oxidative Stability of Walnut Oils Extracted with Supercritical Carbon Dioxide. Journal of the American Oil Chemists' Society . 2003, 80(6), 575–578. DOI: 10.1007/s11746-003-0740-y.
  • Lee, Y. C.; Oh, S. W.; Chang, J.; Kim, I. H. Chemical Composition and Oxidative Stability of Safflower Oil Prepared from Safflower Seed Roasted with Different Temperatures. Food Chem. 2004, 84(1), 1–6. DOI: 10.1016/S0308-8146(03)00158-4.
  • Pascall, M. A.; Harte, B. R.; Gianci, J. R.; Gray, J. I. The Efficiency of TBHQ, β-Carotene, Citric Acid, and Tinuvin 234R on the Sensory Stability of Soybean Oil Packaged in PET Bottles. J. Food Sci. 2003, 68(1), 302–306. DOI: 10.1111/j.1365-2621.2003.tb14156.x.
  • Pascall, M. A.; Harte, B. R.; Giancin, J. R.; Gray, J. I. Decreasing Lipid Oxidation in Soybean Oil by a UV Absorber in the Packaging Material. J. Food Sci. 1995, 60(5), 1116–1119. DOI: 10.1007/BF02661798.
  • Brimberg, U. I.; Kamal-Eldin, A. On the Kinetics of the Autoxidation of Fats: Influence of pro-Oxidants, Antioxidants and Synergists. Eur. J. Lipid Sci. Technol. 2003, 105(2), 83–91. DOI: 10.1002/ejlt.200390021.
  • Tan, C. P.; Che Man, Y. B.; Selamat, J.; Yusoff, M. S. A. Comparative Studies of Oxidative Stability of Edible Oils by Differential Scanning Calorimetry and Oxidative Stability Index Methods. Food Chem. 2002, 76(3), 385–389. DOI: 10.1016/S0308-8146(01)00272-2.
  • Kanavouras, A.; Cert, A.; Hernandez, R. J. Oxidation of Olive Oil under Still Air. Food Sci. Technol. Int. 2005, 11(3), 183–189. DOI: 10.1177/1082013205055001.
  • Cao, H.; Xue, B.; Jiang, Y.; Han, X.; Shi, H.; Cao, W. Application of Triacylglycerol Polymer Determination in the Quality Evaluation of Vegetable Oil. LWT - Food Sci. Technol. 2017, 82, 243–247. DOI: 10.1016/j.lwt.2017.04.037.
  • Gomes, T.; Caponio, F.; Durante, V.; Summo, C.; Paradiso, V. M. The Amounts of Oxidized and Oligopolymeric Triacylglycerols in Refined Olive Oil as a Function of Crude Oil Oxidative Level. LWT - Food Sci. Technol. 2012, 45(2), 186–190. DOI: 10.1016/j.lwt.2011.07.008.
  • Choe, E.; Min, D. B. Chemistry of Deep-Fat Frying Oils. J. Food Sci. 2007, 72, 5. DOI: 10.1111/j.1750-3841.2007.00352.x.
  • Beutner, S.; Bloedorn, B.; Frixel, S.; Blanco, I. H.; Hoffmann, T.; Martin, H. D.; Mayer, B.; Noack, P.; Ruck, C.; Schmidt, M., et al. Quantitative Assessment of Antioxidant Properties of Natural Colorants and Phytochemicals: Carotenoids, Flavonoids, Phenols and Indigoids. The Role of β-Carotene in Antioxidant Functions. J. Sci. Food Agric.2001, 81(6), 559–568. DOI: 10.1002/jsfa.849.
  • INTERNATIONAL OLIVE COUNCIL, International Trade Standard Applying to Olive Oils and Olive-Pomace Oils , 2018, 1–17
  • Böttcher, S.; Steinhäuser, U.; Drusch, S. Off-Flavour Masking of Secondary Lipid Oxidation Products by Pea Dextrin. Food Chem. 2015, 169(May), 492–498. DOI: 10.1016/j.foodchem.2014.05.006.
  • Keller, J.; Camaré, C.; Bernis, C.; Astello-García, M.; de La Rosa, A. P. B.; Rossignol, M.; Del Socorro Santos Díaz, M.; Salvayre, R.; Negre-Salvayre, A.; Guéraud, F. Antiatherogenic and Antitumoral Properties of Opuntia Cladodes: Inhibition of Low Density Lipoprotein Oxidation by Vascular Cells, and Protection against the Cytotoxicity of Lipid Oxidation Product 4-Hydroxynonenal in a Colorectal Cancer Cellular Model. J. Physiol. Biochem. 2015, 71(3), 577–587. DOI: 10.1007/s13105-015-0408-x.
  • Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative Stability of Selected Edible Oils. Molecules. 2018, 23(7), 15–17. DOI: 10.3390/molecules23071746.
  • Durmaz, G.; Gökmen, V. Effect of Refining on Bioactive Composition and Oxidative Stability of Hazelnut Oil. Food Res. Int. 2019, 116, 586–591. 10.1016/j.foodres.2018.08.077. 2018 July.
  • Shahidi, F.; Wang, J.; Wanasundara, U. N. Methods for Measuring Oxidative Rancidity in Fats and Oils. Food Lipids Chem. Nutr. Biotechnol. Fourth Ed. 2017, 1, 519–542. doi: 10.1201/9781315151854.
  • Rohman, A.;. The Use of Infrared Spectroscopy in Combination with Chemometrics for Quality Control and Authentication of Edible Fats and Oils: A Review. Appl. Spectrosc. Rev. 2017, 52(7), 589–604. DOI: 10.1080/05704928.2016.1266493.
  • Yu, X.; Du, S.; van de Voort, F. R.; Yue, T.; Li, Z. Automated and Simultaneous Determination of Free Fatty Acids and Peroxide Values in Edible Oils by FTIR Spectroscopy Using Spectral Reconstitution. Anal. Sci. 2009, 25(5), 627–632. DOI: 10.2116/analsci.25.627.
  • Marina, A. M.;. Quantitative Analysis of Peroxide Value in Virgin Coconut Oil by ATRFTIR Spectroscopy. Open Conf. Proc. J. 2014, 4(1), 53–56. DOI: 10.2174/2210289201304020053.
  • Gonçalves, R. P.; Março, P. H.; Valderrama, P. Thermal Edible Oil Evaluation by UV-Vis Spectroscopy and Chemometrics. Food Chem. 2014, 163, 83–86. DOI: 10.1016/j.foodchem.2014.04.109.
  • Silva, V. D.; Conceição, J. N.; Oliveira, I. P.; Lescano, C. H.; Muzzi, R. M.; Filho, O. P. S.; Conceição, E. C.; Casagrande, G. A.; Caires, A. R. L. Oxidative Stability of Baru (Dipteryx Alata Vogel) Oil Monitored by Fluorescence and Absorption Spectroscopy. J. Spectrosc. 2015, 2015. DOI: 10.1155/2015/803705.
  • Alvarenga, B. R.; Xavier, F. A. N.; Soares, F. L. F.; Carneiro, R. L. Thermal Stability Assessment of Vegetable Oils by Raman Spectroscopy and Chemometrics. Food Anal. Methods 2018, 11(7), 1969–1976. DOI: 10.1007/s12161-018-1160-y.
  • Jacobsen, C.; Sensory Impact of Lipid Oxidation in Complex Food Systems. Lipid - Fett. 1999, 101(12), 484–492. DOI: 10.1002/(sici)1521-4133(199912)101:12<484::aid-lipi484>3.0.co;2-h.
  • Aladedunye, F. A.; Przybylski, R. Degradation and Nutritional Quality Changes of Oil during Frying. JAOCS, J. Am. Oil Chem. Soc. 2009, 86(2), 149–156. DOI: 10.1007/s11746-008-1328-5.
  • Aladedunye, F.; Toxic Contaminants of Thermo-Oxidatively Processed Edible Oils/Fats. Lipid Technol. 2016, 28(7), 117–121. DOI: 10.1002/lite.201600032.
  • De Souza, R. J.; Mente, A.; Maroleanu, A.; Cozma, A. I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J., et al. Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-Analysis of Observational Studies. BMJ 2015, 351, 1–16. DOI: 10.1136/bmj.h3978.
  • Bakhiya, N.; Abraham, K.; Gürtler, R.; Appel, K. E.; Lampen, A. Toxicological Assessment of 3-Chloropropane-1,2-Diol and Glycidol Fatty Acid Esters in Food. Mol. Nutr. Food Res. 2011, 55(4), 509–521. DOI: 10.1002/mnfr.201000550.
  • Craft, B. D.; Chiodini, A.; Garst, J.; Granvogl, M. Fatty Acid Esters of Monochloropropanediol (MCPD) and Glycidol in Refined Edible Oils. Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 2013, 30(1), 46–51. DOI: 10.1080/19440049.2012.709196.
  • Vieira, S. A.; Zhang, G.; Decker, E. A. Biological Implications of Lipid Oxidation Products. JAOCS, J. Am. Oil Chem. Soc. 2017, 94(3), 339–351. DOI: 10.1007/s11746-017-2958-2.
  • Ewert, A.; Granvogl, M.; Schieberle, P. Isotope-Labeling Studies on the Formation Pathway of Acrolein during Heat Processing of Oils. J. Agric. Food Chem. 2014, 62(33), 8524–8529. DOI: 10.1021/jf501527u.
  • Ismahil, M. A.; Hamid, T.; Haberzettl, P.; Gu, Y.; Chandrasekar, B.; Srivastava, S.; Bhatnagar, A.; Prabhu, S. D. Chronic Oral Exposure to the Aldehyde Pollutant Acrolein Induces Dilated Cardiomyopathy. Am. J. Physiol. - Hear. Circ. Physiol. 2011, 301(5), 2050–2060. DOI: 10.1152/ajpheart.00120.2011.
  • Burcham, P. C.; Raso, A.; Kaminskas, L. M. Chaperone Heat Shock Protein 90 Mobilization and Hydralazine Cytoprotection against Acrolein-Induced Carbonyl Stress. Mol. Pharmacol. 2012, 82(5), 876–886. DOI: 10.1124/mol.112.078956.
  • Uchida, K.; Kanematsu, M.; Sakai, K.; Matsuda, T.; Hattori, N.; Mizuno, Y.; Suzuki, D.; Miyata, T.; Noguchi, N.; Niki, E., et al. Protein-Bound Acrolein: Potential Markers for Oxidative Stress. Proc. Natl. Acad. Sci. U. S. A.1998, 95(9), 4882–4887. DOI: 10.1073/pnas.95.9.4882.
  • Granvogl, M.;. Development of Three Stable Isotope Dilution Assays for the Quantitation of (E)‑2-butenal (Crotonaldehyde) in Heat-Processed Edible Fats and Oils as Well as in Food. J. Agric. Food Chem. 2014. DOI: 10.1021/jf404902m.
  • Earley, J. H.; Bourne, R. A.; Watson, M. J.; Poliakoff, M. Continuous Catalytic Upgrading of Ethanol to N-Butanol and >c4 Products over Cu/CeO2 Catalysts in Supercritical CO2. Green Chem. 2015, 17(5), 3018–3025. DOI: 10.1039/c4gc00219a.
  • Eder, E.; Budiawan. Cancer Risk Assessment for the Environmental Mutagen and Carcinogen Crotonaldehyde on the Basis of TD50 and Comparison with 1,N2-Propanodeoxyguanosine Adduct Levels. Cancer Epidemiol. Biomarkers Prev. 2001, 10(8), 883–888.
  • Tanaka, T.; Hecht, S. S. Induction of Liver Tumors in F344 Rats by Crotonaldehyde. Cancer Res. 1986, 46(3), 1285–1289.
  • Esterbauer, H.; Schaur, R. J.; Zollner, H. Chemistry and Biochemistry of 4-Hydroxynonenal, Malonaldehyde and Related Aldehydes. Free Radic. Biol. Med. 1991, 11(1), 81–128. DOI: 10.1016/0891-5849(91)90192-6.
  • Long, E. K.; Picklo, M. J. Trans-4-Hydroxy-2-Hexenal, a Product of N-3 Fatty Acid Peroxidation: Make Some Room HNE … Free Radic. Biol. Med. 2010, 49(1), 1–8. DOI: 10.1016/j.freeradbiomed.2010.03.015.
  • Spickett, C. M.;. The Lipid Peroxidation Product 4-Hydroxy-2-Nonenal: Advances in Chemistry and Analysis. Redox Biol. 2013, 1(1), 145–152. DOI: 10.1016/j.redox.2013.01.007.
  • Grosshagauer, S.; Steinschaden, R.; Pignitter, M. Strategies to Increase the Oxidative Stability of Cold Pressed Oils. Lwt. 2019, 106, 72–77. DOI: 10.1016/j.lwt.2019.02.046.
  • Farhoosh, R.; Einafshar, S.; Sharayei, P. The Effect of Commercial Refining Steps on the Rancidity Measures of Soybean and Canola Oils. Food Chem. 2009, 115(3), 933–938. DOI: 10.1016/j.foodchem.2009.01.035.
  • Hidalgo, F. J.; Nogales, F.; Zamora, R. Effect of the Pyrrole Polymerization Mechanism on the Antioxidative Activity of Nonenzymatic Browning Reactions. J. Agric. Food Chem. 2003, 51(19), 5703–5708. DOI: 10.1021/jf034369u.
  • Brewer, M. S.;. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10(4), 221–247. DOI: 10.1111/j.1541-4337.2011.00156.x.
  • Taghvaei, M.; Jafari, S. M. Application and Stability of Natural Antioxidants in Edible Oils in order to Substitute Synthetic Additives. J. Food Sci. Technol. 2015, 52(3), 1272–1282. DOI: 10.1007/s13197-013-1080-1.
  • Şahin, S.; Sayım, E.; Bilgin, M. Effect of Olive Leaf Extract Rich in Oleuropein on the Quality of Virgin Olive Oil. J. Food Sci. Technol. 2017, 54(6), 1721–1728. DOI: 10.1007/s13197-017-2607-7.
  • Şahin, S.; Bilgin, M.; Sayım, E.; Güvenilir, B. Effects of Natural Antioxidants in the Improvement of Corn Oil Quality: Olive Leaf Vs. Lemon Balm. Int. J. Food Sci. Technol. 2017, 52(2), 374–380. DOI: 10.1111/ijfs.13291.
  • Andrikopoulos, N. K.; Salta, F. N.; Mylona, A.; Chiou, A.; Boskou, G. Oxidative Stability of Edible Vegetable Oils Enriched in Polyphenols with Olive Leaf Extract. Food Sci. Technol. Int. 2007, 13(6), 413–421. DOI: 10.1177/1082013208089563.
  • Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of Storage on Refined and Husk Olive Oils Composition: Stabilization by Addition of Natural Antioxidants from Chemlali Olive Leaves. Food Chem. 2008, 108(1), 253–262. DOI: 10.1016/j.foodchem.2007.10.074.
  • Chiou, A.; Kalogeropoulos, N.; Salta, F. N.; Efstathiou, P.; Andrikopoulos, N. K. Pan-Frying of French Fries in Three Different Edible Oils Enriched with Olive Leaf Extract: Oxidative Stability and Fate of Microconstituents. LWT - Food Sci. Technol. 2009, 42(6), 1090–1097. DOI: 10.1016/j.lwt.2009.01.004.
  • Jennings, B. H.; Akoh, C. C. Effectiveness of Natural versus Synthetic Antioxidants in a Rice Bran Oil-Based Structured Lipid. Food Chem. 2009, 114(4), 1456–1461. DOI: 10.1016/j.foodchem.2008.11.031.
  • Jaswir, I.; Che Man, Y. B.; Kitts, D. D. Use of Natural Antioxidants in Refined Palm Olein during Repeated Deep-Fat Frying. Food Res. Int. 2000, 33(6), 501–508. DOI: 10.1016/S0963-9969(00)00075-2.
  • Patil, D.Role of Antioxidants in Stability of Edible Oil. Trends in Post Harvest Technology . 2014, 1(1), 68–73.
  • Samotyja, U.; Małecka, M. Antioxidant Activity of Blackcurrant Seeds Extract and Rosemary Extracts in Soybean Oil. Eur. J. Lipid Sci. Technol. 2010, 112(12), 1331–1336. DOI: 10.1002/ejlt.201000042.
  • Mohdaly, A. A. A.; Smetanska, I.; Ramadan, M. F.; Sarhan, M. A.; Mahmoud, A. Antioxidant Potential of Sesame (Sesamum Indicum) Cake Extract in Stabilization of Sunflower and Soybean Oils. Ind. Crop Prod. 2011, 34(1), 952–959. DOI: 10.1016/j.indcrop.2011.02.018.
  • Suja, K. P.; Abraham, J. T.; Thamizh, S. N.; Jayalekshmy, A.; Arumughan, C. Antioxidant Efficacy of Sesame Cake Extract in Vegetable Oil Protection. Food Chem. 2004, 84(3), 393–400. DOI: 10.1016/S0308-8146(03)00248-6.
  • Womeni, H. M.; Tonfack Djikeng, F.; Iruku, N. S. S. P.; Karuna, M. S. L.; Prasad, R. B. N.; Linder, M. Valorization of Soursop Flowers (Annona Muricata L.) As Potent Source of Natural Antioxidants for Stabilization of Palm Olein during Accelerated Storage. Food Science and Nutrition. 2016, 4(6), 802–810. DOI:10.1002/fsn3.349.
  • Iqbal, S.; Bhanger, M. I. Stabilization of Sunflower Oil by Garlic Extract during Accelerated Storage. Food Chem. 2007, 100(1), 246–254. DOI: 10.1016/j.foodchem.2005.09.049.
  • Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant Potential of Corncob Extracts for Stabilization of Corn Oil Subjected to Microwave Heating. Food Chem. 2007, 104(3), 997–1005. DOI: 10.1016/j.foodchem.2006.12.061.
  • Inanç, T.; Maskan, M. Testing the Antioxidant Effect of Essential Oils and BHT on Corn Oil at Frying Temperatures: A Response Surface Methodology. JAOCS, J. Am. Oil Chem. Soc. 2013, 90(12), 1845–1850. DOI: 10.1007/s11746-013-2351-8.
  • Yin, J.; Becker, E. M.; Andersen, M. L.; Skibsted, L. H. Green Tea Extract as Food Antioxidant. Synergism and Antagonism with α-Tocopherol in Vegetable Oils and Their Colloidal Systems. Food Chem. 2012, 135(4), 2195–2202. DOI: 10.1016/j.foodchem.2012.07.025.
  • Ali, S.; Chatha, S. A. S.; Ali, Q.; Hussain, A. I.; Hussain, S. M.; Perveen, R. Oxidative Stability of Cooking Oil Blend Stabilized with Leaf Extract of Eucalyptus Citriodora. Int. J. Food Prop. 2016, 19(7), 1556–1565. DOI: 10.1080/10942912.2015.1047514.
  • Tsai, S.-M.; Mesina, M. Perovskite Nanoparticles Toxicity Study on Airway Epithelial Cells Nanoscale Research Letters. 2019, 14. DOI: 10.1186/s11671-018-2845-2.
  • Rodríguez, J.; Martín, M. J.; Ruiz, M. A.; Clares, B. Current Encapsulation Strategies for Bioactive Oils : From Alimentary to Pharmaceutical Perspectives. Food Res. Int. 2016, 83, 41–59. DOI: 10.1016/j.foodres.2016.01.032.
  • Sagiri, S. S.; Anis, A.; Pal, K. Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polym. - Plast. Technol. Eng. 2016, 55(3), 291–311. DOI: 10.1080/03602559.2015.1050521.
  • Jurić, S.; Jurić, M.; Siddique, M. A. B.; Fathi, M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. Food Rev. Int. 2020, 1–38. DOI: 10.1080/87559129.2020.1717524.
  • Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety. 2016, 15(1), 143–182. DOI: 10.1111/1541-4337.12179.
  • Ganesh, V.; Hettiarachchy, N. S. A Review: Supplementation of Foods with Essential Fatty Acids—Can It Turn A Breeze without Further Ado? Crit. Rev. Food Sci. Nutr. 2016, 56(9), 1417–1427. DOI: 10.1080/10408398.2013.765383.
  • Sagalowicz, L.; Leser, M. E. Delivery Systems for Liquid Food Products. Curr. Opin. Colloid Interface Sci. 2010, 15(1–2), 61–72. DOI: 10.1016/j.cocis.2009.12.003.
  • Gallardo, G.; Guida, L.; Martinez, V.; López, M. C.; Bernhardt, D.; Blasco, R.; Pedroza-Islas, R.; Hermida, L. G. Microencapsulation of Linseed Oil by Spray Drying for Functional Food Application. Food Res. Int. 2013, 52(2), 473–482. DOI: 10.1016/j.foodres.2013.01.020.
  • Ifeduba, E. A.; Akoh, C. C. Microencapsulation of Stearidonic Acid Soybean Oil in Complex Coacervates Modified for Enhanced Stability. Food Hydrocoll. 2015, 51, 136–145. DOI: 10.1016/j.foodhyd.2015.05.008.
  • Abang, S.; Chan, E. S.; Poncelet, D. Effects of Process Variables on the Encapsulation of Oil in Ca-Alginate Capsules Using an Inverse Gelation Technique. J. Microencapsul. 2012, 29(5), 417–428. DOI: 10.3109/02652048.2012.655331.
  • Martins, E.; Renard, D.; Davy, J.; Marquis, M.; Poncelet, D. Oil Core Microcapsules by Inverse Gelation Technique. J. Microencapsul. 2015, 32(1), 86–95. DOI: 10.3109/02652048.2014.985342.
  • Calvo, P.; Lozano, M.; Espinosa-Mansilla, A.; González-Gómez, D. In-Vitro Evaluation of the Availability of Π{variant}-3 and Π{variant}-6 Fatty Acids and Tocopherols from Microencapsulated Walnut Oil. Food Res. Int. 2012, 48(1), 316–321. DOI: 10.1016/j.foodres.2012.05.007.
  • Rutz, J. K.; Borges, C. D.; Zambiazi, R. C.; Crizel-Cardozo, M. M.; Kuck, L. S.; Noreña, C. P. Z. Microencapsulation of Palm Oil by Complex Coacervation for Application in Food Systems. Food Chem. 2017, 220, 59–66. DOI: 10.1016/j.foodchem.2016.09.194.
  • Bae, E. K.; Lee, S. J. Microencapsulation of Avocado Oil by Spray Drying Using Whey Protein and Maltodextrin. J. Microencapsul. 2008, 25(8), 549–560. DOI: 10.1080/02652040802075682.
  • Calvo, P.; Hernández, T.; Lozano, M.; González-Gómez, D. Microencapsulation of Extra-Virgin Olive Oil by Spray-Drying: Influence of Wall Material and Olive Quality. Eur. J. Lipid Sci. Technol. 2010, 112(8), 852–858. DOI: 10.1002/ejlt.201000059.
  • Calvo, P.; Castaño, Á. L.; Lozano, M.; González-Gómez, D. Influence of the Microencapsulation on the Quality Parameters and Shelf-Life of Extra-Virgin Olive Oil Encapsulated in the Presence of BHT and Different Capsule Wall Components. Food Res. Int. 2012, 45(1), 256–261. DOI: 10.1016/j.foodres.2011.10.036.
  • Yekdane, N.; Goli, S. A. H. Effect of Pomegranate Juice on Characteristics and Oxidative Stability of Microencapsulated Pomegranate Seed Oil Using Spray Drying. Food Bioprocess Technol. 2019, 12(9), 1614–1625. DOI: 10.1007/s11947-019-02325-8.
  • Goula, A. M.; Adamopoulos, K. G. A Method for Pomegranate Seed Application in Food Industries: Seed Oil Encapsulation. Food Bioprod. Process. 2012, 90(4), 639–652. DOI: 10.1016/j.fbp.2012.06.001.
  • Carneiro, H. C. F.; Tonon, R. V.; Grosso, C. R. F.; Hubinger, M. D. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Different Combinations of Wall Materials. J. Food Eng. 2013, 115(4), 443–451. DOI: 10.1016/j.jfoodeng.2012.03.033.
  • Hee, Y. Y.; Tan, C. P.; Abdul Rahman, R.; Mohd Adzahan, N.; Lai, W. T.; Chong, G. H. Influence of Different Wall Materials on the Microencapsulation of Virgin Coconut Oil by Spray Drying. Int. J. Food Eng. 2015, 11(1), 61–69. DOI: 10.1515/ijfe-2014-0215.
  • Mcclements, D. J.;. Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability. J. Food Sci. 2015, 80(7), N1602–N1611. DOI: 10.1111/1750-3841.12919.
  • Shin, G. H.; Kim, J. T.; Park, H. J. Recent Developments in Nanoformulations of Lipophilic Functional Foods.Trends in Food Science & Technology.2015,46(1), 144–157.DOI: 10.1016/j.tifs.2015.07.005.
  • Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S. M. Lipid Nano Scale Cargos for the Protection and Delivery of Food Bioactive Ingredients and Nutraceuticals. Trends Food Sci. Technol. 2018, 74, 132–146. 10.1016/j.tifs.2018.02.001. 2017 December.
  • Assadpour, E.; Mahdi Jafari, S. A Systematic Review on Nanoencapsulation of Food Bioactive Ingredients and Nutraceuticals by Various Nanocarriers. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3129–3151. DOI: 10.1080/10408398.2018.1484687.
  • Pateiro, M.; Gómez, B.; Munekata, P. E. S.; Barba, F. J.; Putnik, P.; Kovačević, D. B.; Lorenzo, J. M.; Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules. 2021, 26, (6). DOI:10.3390/molecules26061547.
  • Dhiman, N.; Awasthi, R.; Sharma, B.; Kharkwal, H.; Kulkarni, G. T. Lipid Nanoparticles as Carriers for Bioactive Delivery. Front. Chem. 2021, April, 9. DOI: 10.3389/fchem.2021.580118.
  • Gonçalves, R. F. S.; Martins, J. T.; Duarte, C. M. M.; Vicente, A. A.; Pinheiro, A. C. Advances in Nutraceutical Delivery Systems: From Formulation Design for Bioavailability Enhancement to Efficacy and Safety Evaluation. Trends Food Sci. Technol. 2018, 78(January), 270–291. DOI: 10.1016/j.tifs.2018.06.011.
  • Das, S.; Chaudhury, A. Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery. AAPS PharmSciTech. 2011, 12(1), 62–76. DOI: 10.1208/s12249-010-9563-0.
  • Da Silva Santos, V.; Badan Ribeiro, A. P.; Andrade Santana, M. H. Solid Lipid Nanoparticles as Carriers for Lipophilic Compounds for Applications in Foods. Food Res. Int. 2019, 122, 610–626. 10.1016/j.foodres.2019.01.032. 2017 September.
  • Rojas, V. M.; Inácio, A. G.; Martins Fernandes, I. P.; Leimann, F. V.; Gozzo, A. M.; Barros Fuchs, R. H.; Filipe Barreiro, M. F.; Barros, L.; Ferreira, I. C. F. R.; Coelho Tanamati, A. A., et al. Whey Protein Supplement as a Source of Microencapsulated PUFA-Rich Vegetable Oils. Food Biosci. 2020, 37, 100690. DOI: 10.1016/j.fbio.2020.100690.
  • Rojas, V. M.; Marconi, L. F. D. C. B.; Guimarães-Inácio, A.; Leimann, F. V.; Tanamati, A.; Gozzo, Â. M.; Fuchs, R. H. B.; Barreiro, M. F.; Barros, L.; Ferreira, I. C. F. R., et al. Formulation of Mayonnaises Containing PUFAs by the Addition of Microencapsulated Chia Seeds, Pumpkin Seeds and Baru Oils. Food Chem. 2019, 274September, 2018. 220–227. 10.1016/j.foodchem.2018.09.015.
  • Soleimanian, Y.; Goli, S. A. H.; Varshosaz, J.; Sahafi, S. M. Formulation and Characterization of Novel Nanostructured Lipid Carriers Made from Beeswax, Propolis Wax and Pomegranate Seed Oil. Food Chem. 2018, 244, 83–92. 10.1016/j.foodchem.2017.10.010. 2017 October.
  • Soleimanian, Y.; Goli, S. A. H.; Varshosaz, J.; Maestrelli, F. Propolis Wax Nanostructured Lipid Carrier for Delivery of β Sitosterol: Effect of Formulation Variables on Physicochemical Properties. Food Chem. 2018, 260(March), 97–105. DOI: 10.1016/j.foodchem.2018.03.145.
  • Bashiri, S.; Ghanbarzadeh, B.; Ayaseh, A.; Dehghannya, J.; Ehsani, A. Preparation and Characterization of Chitosan-Coated Nanostructured Lipid Carriers (CH-NLC) Containing Cinnamon Essential Oil for Enriching Milk and Anti-Oxidant Activity. Lwt. 2020, 119, 108836. DOI: 10.1016/j.lwt.2019.108836.
  • Shahparast, Y.; Eskandanin, M.; Rajaei, A.; Khosroushahi, A. P. Physicochemical Characterization and Oxidative Stability of Omega-3 Fish Oil/α-Tocopherol-Co-Loaded Nanostructured Lipidic Carriers. Adv. Pharm. Bull. 2019, 9(3), 393–400. DOI: 10.15171/jcvtr.2015.24.
  • Salarbashi, D.; Tajik, S.; Ghasemlou, M.; Shojaee-Aliabadi, S.; Noghabi, M. S.; Khaksar, R. Characterization of Soluble Soybean Polysaccharide Film Incorporated Essential Oil Intended for Food Packaging. Carbohydr. Polym. 2013, 98(1), 1127–1136. DOI: 10.1016/j.carbpol.2013.07.031.
  • Avila-Sosa, R.; Hernández-Zamoran, E.; López-Mendoza, I.; Palou, E.; Munguía, M. T. J.; Nevárez-Moorillón, G. V.; López-Malo, A. Fungal Inactivation by Mexican Oregano (Lippia Berlandieri Schauer) Essential Oil Added to Amaranth, Chitosan, or Starch Edible Films. J. Food Sci. 2010, 75, 3. DOI: 10.1111/j.1750-3841.2010.01524.x.
  • Belitz, H.-D.; Grosch, W.; Schieberle, P. FOOD CHEMISTRY. 4th. Berlin Heidelberg: Springer-Verlag ; 2009.DOI:10.1007/978-3-540-69934-7. ISBN:978-3-540-69933-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.