808
Views
1
CrossRef citations to date
0
Altmetric
Review

Ultrasound generation and ultrasonic application on fresh food freezing: Effects on freezing parameters, physicochemical properties and final quality of frozen foods

, , , , &

References

  • Mizrach, A. Ultrasonic Technology for Quality Evaluation of Fresh Fruit and Vegetables in Pre- and Postharvest Processes. Postharvest Biol. And Technol. 2008, 48(3), 315–330.
  • Chemat, F.; Zill E, H.; Khan, M. K Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18(4), 813–835.
  • Rastogi, N. K. Opportunities and Challenges in Application of Ultrasound in Food Processing. Crit. Rev. Food Sci. Nutr. 2011, 51(8), 705–722.
  • Zheng, L.; Sun, D. W. Chapter 23 - Ultrasonic Assistance of Food Freezing. Emerging Technologies for Food Processing. D. W. Sun. London, Academic Press. 2005; 603–626.
  • Tao, Y.; Sun, D. W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(4), 570–594.
  • Zheng, L.; Sun, D. W. Innovative Applications of Power Ultrasound during Food Freezing Processes—A Review. Trends Food Sci. Technol. 2006, 17(1), 16–23.
  • Zhang, Z.; Sun, D. W.; Zhu, Z.; Cheng, L. Enhancement of Crystallization Processes by Power Ultrasound: Current State-of-the-Art and Research Advances. Compr. Rev. Food Sci. Food Saf. 2015, 14(4), 303–316.
  • Awad, T. S.; Moharram, H. A.; Shaltout, O. E.; Asker, D.; Youssef, M. M. Applications of Ultrasound in Analysis, Processing and Quality Control of Food: A Review, Food Res. Int. 2012, 48(2), 410–427.
  • Mcclements, D. J. Advances in the Application of Ultrasound in Food Analysis and Processing. Trends Food Sci. Technol. 1995, 6(9), 293–299.
  • Mason, T. J.; Paniwnyk, L.; Lorimer, J. P. The Uses of Ultrasound in Food Technology. Ultrason. Sonochem. 1996, 3(3), S253–S260.
  • Xu, J. C.; Zhang, M.; Mujumdar, A. S.; Adhikari, B. Recent Developments in Smart Freezing Technology Applied to Fresh Foods. Crit. Rev. Food Sci. Nutr. 2017, 57(13), 2835–2843.
  • Bhargava, N.; Mor, R. S.; Kumar, K.; Sharanagat, V. S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70105293.
  • Cheng, X.-F.; Zhang, M.; Adhikari, B. Effects of Ultrasound-Assisted Thawing on the Quality of Edamames [Glycine Max (L.) Merrill] Frozen Using Different Freezing Methods. Food Sci. Biotechnol. 2014, 23(4), 1095–1102.
  • Wu, X. F.; Zhang, M.; Adhikari, B.; Sun, J. Recent Developments in Novel Freezing and Thawing Technologies Applied to Foods. Crit. Rev. Food Sci. Nutr. 2017, 57(17), 3620–3631.
  • Ashokkumar, M. Applications of Ultrasound in Food and Bioprocessing. Ultrason. Sonochem. 2015, 2517–2523.
  • Saclier, M.; Peczalski, R.; Andrieu, J. A Theoretical Model for Ice Primary Nucleation Induced by Acoustic Cavitation. Ultrason. Sonochem. 2010, 17(1), 98–105.
  • Kiani, H.; Sun, D.-W.; Delgado, A.; Zhang, Z. Investigation of the Effect of Power Ultrasound on the Nucleation of Water during Freezing of Agar Gel Samples in Tubing Vials. Ultrason. Sonochem. 2012, 19(3), 576–581.
  • Pu, Y. Y.; Sun, D. W. Prediction of Moisture Content Uniformity of Microwave-Vacuum Dried Mangoes as Affected by Different Shapes Using NIR Hyperspectral Imaging. Innov. Food Sci. Emerg. Technol. 2016, 33348–33356.
  • Ma, J.; Sun, D. W.; Qu, J. H. Pu, H. Prediction of Textural Changes in Grass Carp Fillets as Affected by Vacuum Freeze Drying Using Hyperspectral Imaging Based on Integrated Group Wavelengths. LWT. 2017, 82377–82385.
  • Purnell, G.; James, C.; James, S. J. The Effects of Applying Oscillating Magnetic Fields during the Freezing of Apple and Potato. Food Bioproc. Tech. 2017, 10(12), 2113–2122.
  • Qu, J. H.; Sun, D. W.; Cheng, J. H.; Pu, H. Mapping Moisture Contents in Grass Carp (Ctenopharyngodon Idella) Slices under Different Freeze-Drying Periods by Vis-NIR Hyperspectral Imaging. LWT. 2017, 75529–75536.
  • Yang, Q.; Sun, D. W.; Cheng, W. Development of Simplified Models for Nondestructive Hyperspectral Imaging Monitoring of TVB-N Contents in Cured Meat during Drying Process. J. Food Eng. 2017, 19253–19260.
  • Desmond, E. M.; Kenny, T. A.; Ward, P.; Sun, D. W. Effect of Rapid and Conventional Cooling Methods on the Quality of Cooked Ham Joints. Meat Sci. 2000, 56(3), 271–277.
  • Hu, Z.; Sun, D. W. CFD Simulation of Heat and Moisture Transfer for Predicting Cooling Rate and Weight Loss of Cooked Ham during Air-Blast Chilling Process. J. Food Eng. 2000, 46(3), 189–197.
  • Mcdonald, K.; Sun, D. W. The Formation of Pores and Their Effects in a Cooked Beef Product on the Efficiency of Vacuum Cooling. J. Food Eng. 2001, 47(3), 175–183.
  • Mcdonald, K.; Sun, D. W.; Kenny, T. The Effect of Injection Level on the Quality of a Rapid Vacuum Cooled Cooked Beef Product. J. Food Eng. 2001, 47(2), 139–147.
  • Ma, J.; Pu, H.; Sun, D. W.; Gao, W.; Qu, J. H.; Ma, K. Y. Application of Vis–NIR Hyperspectral Imaging in Classification between Fresh and Frozen-Thawed Pork Longissimus Dorsi Muscles. Int. J. Refrig. 2015, 5010–5018.
  • Pu, H.; Sun, D. W.; Ma, J.; Cheng, J. H. Classification of Fresh and Frozen-Thawed Pork Muscles Using Visible and near Infrared Hyperspectral Imaging and Textural Analysis. Meat Sci. 2015, 9981–9988.
  • Xie, A.; Sun, D. W.; Xu, Z.; Zhu, Z. Rapid Detection of Frozen Pork Quality without Thawing by Vis–NIR Hyperspectral Imaging Technique. Talanta. 2015, 139208–139215.
  • Xie, A.; Sun, D.-W.; Zhu, Z.; Pu, H. Nondestructive Measurements of Freezing Parameters of Frozen Porcine Meat by NIR Hyperspectral Imaging. Food Bioproc. Tech. 2016, 9(9), 1444–1454.
  • Cheng, W.; Sun, D. W.; Pu, H.; Wei, Q. Characterization of Myofibrils Cold Structural Deformation Degrees of Frozen Pork Using Hyperspectral Imaging Coupled with Spectral Angle Mapping Algorithm. Food Chem. 2018, 2391001–2391008.
  • Norton, T.; Sun, D. W. Recent Advances in the Use of High Pressure as an Effective Processing Technique in the Food Industry. Food Bioproc. Tech. 2008, 1(1), 2–34.
  • Cheng, L.; Sun, D. W.; Zhu, Z.; Zhang, Z. Emerging Techniques for Assisting and Accelerating Food Freezing Processes: A Review of Recent Research Progresses. Crit. Rev. Food Sci. Nutr. 2017, 57(4), 769–781.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices—Effect on Product Quality. Food Bioproc. Tech. 2013, 6(12), 3530–3543.
  • Xanthakis, E.; Le-Bail, A.; Ramaswamy, H. Development of an Innovative Microwave Assisted Food Freezing Process. Innov. Food Sci. Emerg. Technol. 2014, 26176–26181.
  • Xu, Z.; Sun, D. W.; Zhu, Z. Potential Life Cycle Carbon Savings for Immersion Freezing of Water by Power Ultrasound. Food Bioproc. Tech. 2016, 9(1), 69–80.
  • Chow, R.; Blindt, R.; Chivers, R.; Povey, M. A Study on the Primary and Secondary Nucleation of Ice by Power Ultrasound. Ultrasonics. 2005, 43(4), 227–230.
  • Xu, B. G.; Zhang, M.; Bhandari, B.; Cheng, X. F.; Sun, J. Effect of Ultrasound Immersion Freezing on the Quality Attributes and Water Distributions of Wrapped Red Radish. Food Bioproc. Tech. 2015, 8(6), 1366–1376
  • Denbow, N. Chapter 12 - Ultrasonic Instrumentation in the Food Industry. Instrumentation and Sensors for the Food Industry (Second Edition). E. Kress-Rogers and C. J. B. Brimelow,Eds., Woodhead Publishing. 2001; 326–354.
  • Cárcel, J. A.; García-Pérez, J. V.; Benedito, J.; Mulet, A. Food Process Innovation through New Technologies: Use of Ultrasound. J. Food Eng. 2012, 110(2), 200–207.
  • Pétrier, C.; Gondrexon, N.; Boldo, P. Ultrasons Et Sonochimie. Les Techniques De l’Ingénieur AF. 2008, 6310.
  • Xu, B.; Zhang, M.; Bhandari, B.; Cheng, X. Influence of Power Ultrasound on Ice Nucleation of Radish Cylinders during Ultrasound-Assisted Immersion Freezing. Int. J. Refrig. 2014, 461–468.
  • Saclier, M.; Peczalski, R.; Andrieu, J. Effect of Ultrasonically Induced Nucleation on Ice Crystals’ Size and Shape during Freezing in Vials. Chem. Eng. Sci. 2010, 65(10), 3064–3071.
  • Kiani, H.; Zhang, Z.; Sun, D. W. Effect of Ultrasound Irradiation on Ice Crystal Size Distribution in Frozen Agar Gel Samples. Innov. Food Sci. Emerg. Technol. 2013, 18126–18131.
  • Li, B.; Sun, D. W. Effect of Power Ultrasound on Freezing Rate during Immersion Freezing of Potatoes. J. Food Eng. 2002, 55(3), 277–282.
  • Hu, S. Q.; Liu, G.; Li, L.; Li, Z. X.; Hou, Y. An Improvement in the Immersion Freezing Process for Frozen Dough via Ultrasound Irradiation. J. Food Eng. 2013, 114(1), 22–28.
  • Islam, M. N.; Zhang, M.; Adhikari, B.; Xinfeng, C.; Xu, B. G. The Effect of Ultrasound-Assisted Immersion Freezing on Selected Physicochemical Properties of Mushrooms. Int. J. Refrig. 2014, 42121–42133.
  • Xin, Y.; Zhang, M.; Adhikari, B. The Effects of Ultrasound-Assisted Freezing on the Freezing Time and Quality of Broccoli (Brassica Oleracea L. Var. Botrytis L.) During Immersion Freezing. Int. J. Refrig. 2014, 4182–4191.
  • Jiang, Q.; Zhang, M.; Xu, B. Application of Ultrasonic Technology in Postharvested Fruits and Vegetables Storage: A Review. Ultrason. Sonochem. 2020, 69105261.
  • Kiani, H.; Zheng, L.; Sun, D. W. Chapter 27 - Ultrasonic Assistance for Food Freezing. Emerging Technologies for Food Processing (Second Edition). D.-W. Sun; San Diego, Academic Press. 2014; 495–513.
  • Cheng, X.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. The Principles of Ultrasound and Its Application in Freezing Related Processes of Food Materials: A Review. Ultrason. Sonochem. 2015, 27576–27585.
  • Khadhraoui, B.; Fabiano-Tixier, A. S.; Robinet, P.; Imbert, R.; Chemat, F. Chapter 2 - Ultrasound Technology for Food Processing, Preservation, and Extraction. Green Food Processing Techniques. F. Chemat and E. Vorobiev; Academic Press. 2019; 23–56.
  • Sun, A. D. A. D. W. Chapter 28- Ultrasound-Accelerated Freezing. Handbook of Frozen Food Processing and Packaging. D. W. Sun; Boca Raton, Taylor & Francis Group 2012; 22.
  • Gogate, P. R. Hydrodynamic Cavitation for Food and Water Processing. Food Bioproc. Tech. 2011, 4(6), 996–1011.
  • Mason, T.; Paniwnyk, L.; Chemat, F. Ultrasound as a Preservation Technology. Food Preservation Techniques. L. B. S.Ed., Peter Zeuthen; Woodhead Publishers. 2003; 303–337.
  • Wu, T. Y.; Guo, N.; Teh, C. Y.; Hay, J. X. W. Theory and Fundamentals of Ultrasound. Advances in Ultrasound Technology for Environmental Remediation. Dordrecht, Springer Netherlands. 2013; 5–12.
  • Vyas, S.; Ting, Y. P. A Review of the Application of Ultrasound in Bioleaching and Insights from Sonication in (Bio)chemical Processes. Resources. 2017, 7.
  • Chalmers, B. Principles of Solidification; John Wiley & Sons: 1964; 319.
  • Inada, T.; Zhang, X.; Yabe, A.; Kozawa, Y. Active Control of Phase Change from Supercooled Water to Ice by Ultrasonic Vibration 1. Control of Freezing Temperature. Int J Heat Mass Tran. 2001, 44(23), 4523–4531.
  • Chow, R.; Blindt, R.; Chivers, R.; Povey, M. The Sonocrystallisation of Ice in Sucrose Solutions: Primary and Secondary Nucleation. Ultrasonics. 2003, 41(8), 595–604.
  • Chow, R.; Blindt, R.; Kamp, A.; Grocutt, P.; Chivers, R. The Microscopic Visualisation of the Sonocrystallisation of Ice Using a Novel Ultrasonic Cold Stage. Ultrason. Sonochem. 2004, 11(3), 245–250.
  • Kiani, H.; Zhang, Z.; Delgado, A.; Sun, D. W. Ultrasound Assisted Nucleation of Some Liquid and Solid Model Foods during Freezing. Food Res. Int. 2011, 44(9), 2915–2921.
  • Hickling, R. Nucleation of Freezing by Cavity Collapse and Its Relation to Cavitation Damage. Nature.1965, 206(4987), 915–917.
  • Hunt, J.D.; Jackson, K. A. Nucleation of Solid in an Undercooled Liquid by Cavitation. J. Appl. Phys.1966, 37(1), 254–257.
  • Dodds, J.; Espitalier, F.; Louisnard, O.; Grossier, R.; David, R.; Hassoun, M.; Baillon, F.; Gatumel, C.; Lyczko, N. The Effect of Ultrasound on Crystallisation-Precipitation Processes: Some Examples and a New Segregation Model. Part Part Syst Charac. 2007, 24(1), 18–28.
  • Grossier, R.; Louisnard, O.; Vargas, Y. Mixture Segregation by an Inertial Cavitation Bubble. Ultrason. Sonochem. 2007, 14(4), 431–437.
  • Kiani, H.; Sun, D. W. Water Crystallization and Its Importance to Freezing of Foods: A Review. Trends Food Sci. Technol. 2011, 22(8), 407–426.
  • Simal, S.; Benedito, J.; Sánchez, E. S.; Rosselló, C. Use of Ultrasound to Increase Mass Transport Rates during Osmotic Dehydration. J. Food Eng. 1998, 36(3), 323–336.
  • Kiani, H.; Zhang, Z.; Sun, D. W. Experimental Analysis and Modeling of Ultrasound Assisted Freezing of Potato Spheres. Ultrason. Sonochem. 2015, 26321–26331.
  • Qiu, L.; Zhang, M.; Chitrakar, B.; Bhandari, B. Application of Power Ultrasound in Freezing and Thawing Processes: Effect on Process Efficiency and Product Quality. Ultrason. Sonochem. 2020, 68105230.
  • Roohinejad, S.; Koubaa, M.; Sant’Ana, A.S.; Greiner, R. Chapter 4 - Mechanisms of Microbial Inactivation by Emerging Technologies. Innovative Technologies for Food Preservation. F. J. Barba, A. S. Sant’Ana, V. Orlien and M. Koubaa,Eds., Academic Press. 2018; 111–132.
  • Islam, M.N.; Zhang, M.; Adhikari, B. The Inactivation of Enzymes by Ultrasound—A Review of Potential Mechanisms. Food Rev. Int. 2014, 30(1), 1–21.
  • Guimarães, J.T.; Scudino, H.; Ramos, G.L.P.A.; Oliveira, G.A.R.; Margalho, L.P.; Costa, L.E.O.; Freitas, M.Q.; Duarte, M.C.K.H.; Sant’Ana, A.S., Cruz, A.G. Current Applications of High-intensity Ultrasound with Microbial Inactivation or Stimulation Purposes in Dairy Products. Curr. Opin. Food Sci. 2021, 42140–42147
  • Mulet, A.; Cárcel, J. A.; Sanjuán, N.; Bon, J. New Food Drying Technologies - Use of Ultrasound. Food Sci. Technol. Int. 2003, 9(3), 215–221.
  • Fuchs, F. J. (1995). Ultrasonic Cleaning: Fundamental Theory and Application. Applications Engineering, New York.
  • Mason, T. Power Ultrasound in Food Processing - the Way Forward. Ultrasound in Food Processing. Blackie Academic and Professional. 1998; 105–127.
  • Islam, M. N.; Zhang, M.; Adhikari, B. Ultrasound-Assisted Freezing of Fruits and Vegetables: Design, Development, and Applications. Global Food Security and Wellness. G. V. Barbosa-Cánovas, G. María Pastore, K. Candoğan et al.; New York, NY, Springer New York. 2017; 457–487.
  • Yao, Y.; Pan, Y.; Liu, S. Power Ultrasound and Its Applications: A State-of-the-art Review. Ultrason. Sonochem. 2020, 62104722.
  • Majid, I.; Nayik, G. A.; Nanda, V. Ultrasonication and Food Technology: A Review. Cogent Food Agric. 2015, 1(1).
  • Khouryieh, H.A. Novel and Emerging Technologies Used by the U.S. Food Processing Industry. Innov. Food Sci. Emerg. Technol. 2021, 67102559
  • Piyasena, P.; Mohareb, E.; Mckellar, R. C. Inactivation of Microbes Using Ultrasound: A Review. Int. J. Food Microbiol. 2003, 87(3), 207–216.
  • James, C.; Purnell, G.; James, S. J. A Review of Novel and Innovative Food Freezing Technologies. Food Bioproc. Tech. 2015, 8(8), 1616–1634.
  • Xanthakis, E.; Le-Bail, A.; Havet, M. Chapter 30 - Freezing Combined with Electrical and Magnetic Disturbances. Emerging Technologies for Food Processing (Second Edition). D. W. Sun; San Diego, Academic Press. 2014; 563–579.
  • Otero, L.; Martino, M.; Zaritzky, N.; Solas, M.; Sanz, P. D. Preservation of Microstructure in Peach and Mango during High-Pressure-Shift Freezing. J. Food Sci. 2000, 65(3), 466–470.
  • Delgado, A. E.; Sun, D. W. Heat and Mass Transfer Models for Predicting Freezing Processes – A Review. J. Food Eng. 2001, 47(3), 157–174.
  • Nakagawa, K.; Hottot, A.; Vessot, S.; Andrieu, J. Influence of Controlled Nucleation by Ultrasounds on Ice Morphology of Frozen Formulations for Pharmaceutical Proteins Freeze-Drying. Chem. Eng. Process. 2006, 45(9), 783–791.
  • Cheng, X.-f.; Zhang, M.; Adhikari, B.; Islam, M.N. Effect of Power Ultrasound and Pulsed Vacuum Treatments on the Dehydration Kinetics, Distribution, and Status of Water in Osmotically Dehydrated Strawberry: A Combined NMR and DSC Study. Food Bioproc. Tech. 2014, 7(10), 2782–2792.
  • Barbosa-Cánovas GV, A. B.; Mejía-Lorío D. J. Freezing of Fruits and Vegetables: An Agribusiness Alternative for Rural and Semi-Rural Areas. Food and Agriculture Organization: Rome, 2005.
  • Xu, B.; Zhang, M.; Ma, H. Chapter 12 - Food Freezing Assisted with Ultrasound. Ultrasound: Advances for Food Processing and Preservation. D. Bermudez-Aguirre, Academic Press. 2017; 293–321.
  • Sun, D. W.; Li, B. Microstructural Change of Potato Tissues Frozen by Ultrasound-Assisted Immersion Freezing. J. Food Eng. 2003, 57(4), 337–345.
  • Cheng, X. F.; Zhang, M.; Adhikari, B.; Islam, M. N.; Xu, B. G. Effect of Ultrasound Irradiation on Some Freezing Parameters of Ultrasound-Assisted Immersion Freezing of Strawberries. Int. J. Refrig. 2014, 4449–4455.
  • Xu, B. G.; Zhang, M.; Bhandari, B.; Cheng, X. F.; Islam, M. N. Effect of Ultrasound-Assisted Freezing on the Physico-Chemical Properties and Volatile Compounds of Red Radish. Ultrason. Sonochem. 2015, 27316–27324.
  • Xu, B. G.; Zhang, M.; Bhandari, B.; Sun, J.; Gao, Z. Infusion of CO2 in A Solid Food: A Novel Method to Enhance the Low-Frequency Ultrasound Effect on Immersion Freezing Process. Innov. Food Sci. Emerg. Technol. 2016, 35194–35203.
  • Jabbari-Hichri, A.; Peczalski, R.; Laurent, P. Ultrasonically Triggered Freezing of Aqueous Solutions: Influence of Initial Oxygen Content on Ice Crystals׳ Size Distribution. J. Cryst. Growth. 2014, 40278–40282.
  • Islam, M. N.; Zhang, M.; Fang, Z.; Sun, J. Direct Contact Ultrasound Assisted Freezing of Mushroom (Agaricus Bisporus): Growth and Size Distribution of Ice Crystals. Int. J. Refrig. 2015, 5746–5753.
  • Zhang, M.; Haili, N.; Chen, Q.; Xia, X.; Kong, B. Influence of Ultrasound-Assisted Immersion Freezing on the Freezing Rate and Quality of Porcine Longissimus Muscles. Meat Sci. 2018, 1361–1368.
  • Hozumi, T.; Saito, A.; Okawa, S.; Matsui, T. Freezing Phenomena of Supercooled Water under Impacts of Ultrasonic Waves. Int. J. Refrig. 2002, 25(7), 948–953.
  • Hu, F.; Sun, D. W.; Gao, W.; Zhang, Z.; Zeng, X.; Han, Z. Effects of Pre-Existing Bubbles on Ice Nucleation and Crystallization during Ultrasound-Assisted Freezing of Water and Sucrose Solution. Innov. Food Sci. Emerg. Technol. 2013, 20161–20166.
  • Zhang, X.; Inada, T.; Yabe, A.; Lu, S.; Kozawa, Y. Active Control of Phase Change from Supercooled Water to Ice by Ultrasonic Vibration 2. Generation of Ice Slurries and Effect of Bubble Nuclei. Int. J. Heat Mass Transf. 2001, 44(23), 4533–4539.
  • Delgado, A.E.; Zheng, L., Sun, D.-W. Influence of Ultrasound on Freezing Rate of Immersion-Frozen Apples. Food Bioproc. Tech. 2009, 2(3), 263–270.
  • Zhu, Z.; Chen, Z.; Zhou, Q.; Sun, D. W.; Chen, H.; Zhao, Y.; Zhou, W.; Li, X.; Pan, H. Freezing Efficiency and Quality Attributes as Affected by Voids in Plant Tissues during Ultrasound-Assisted Immersion Freezing. Food Bioproc. Tech. 2018, 11(9), 1615–1626.
  • Fan, K.; Zhang, M.; Wang, W.; Bhandari, B. A Novel Method of Osmotic-Dehydrofreezing with Ultrasound Enhancement to Improve Water Status and Physicochemical Properties of Kiwifruit. Int. J. Refrig. 2020, 11349–11357.
  • Comandini, P.; Blanda, G.; Soto-Caballero, M. C.; Sala, V.; Tylewicz, U.; Mujica-Paz, H.; Valdez Fragoso, A.; Gallina Toschi, T. Effects of Power Ultrasound on Immersion Freezing Parameters of Potatoes. Innov. Food Sci. Emerg. Technol. 2013, 18120–18125
  • Yu, D.; Liu, B. Effect of Ultrasonic Waves on the Freezing Rates of Potatoes in Degassed Coolant and Untreated Coolant. Cryoletters. 2014, 35(5), 371–376
  • Kiani, H.; Sun, D. W. Numerical Simulation of Heat Transfer and Phase Change during Freezing of Potatoes with Different Shapes at the Presence or Absence of Ultrasound Irradiation. Heat Mass Transf. 2018, 54(3), 885–894.
  • Zhu, Z.; Zhang, P.; Sun, D. W. Effects of Multi-Frequency Ultrasound on Freezing Rates and Quality Attributes of Potatoes. Ultrason. Sonochem. 2020, 60104733.
  • Tian, Y.; Zhang, P.; Zhu, Z.; Sun, D. W. Development of a Single/Dual-Frequency Orthogonal Ultrasound-Assisted Rapid Freezing Technique and Its Effects on Quality Attributes of Frozen Potatoes. J. Food Eng. 2020, 286110112.
  • Xin, Y.; Zhang, M.; Adhikari, B. Ultrasound Assisted Immersion Freezing of Broccoli ( Brassica Oleracea L. Var. Botrytis L.). Ultrason. Sonochem. 2014, 21(5), 1728–1735.
  • Xin, Y.; Zhang, M.; Adhikari, B. Freezing Characteristics and Storage Stability of Broccoli (Brassica Oleracea L. Var. Botrytis L.) Under Osmodehydrofreezing and Ultrasound-Assisted Osmodehydrofreezing Treatments. Food Bioproc. Tech. 2014, 7(6), 1736–1744.
  • Tu, J.; Zhang, M.; Xu, B.; Liu, H. Effect of Physicochemical Properties on Freezing Suitability of Lotus (Nelumbo Nucifera) Root. Int. J. Refrig. 2015, 501–509.
  • Tu, J.; Zhang, M.; Xu, B.; Liu, H. Effects of Different Freezing Methods on the Quality and Microstructure of Lotus (Nelumbo Nucifera) Root. Int. J. Refrig. 2015, 5259–5265.
  • Tian, Y. Chen, Z.; Zhu, Z.; Sun, D. W Effects of Tissue Pre-Degassing Followed by Ultrasound-Assisted Freezing on Freezing Efficiency and Quality Attributes of Radishes. Ultrason. Sonochem. 2020, 67105162.
  • Xu, B.; Zhang, M.; Bhandari, B.; Cheng, X. Influence of Ultrasound-Assisted Osmotic Dehydration and Freezing on the Water State, Cell Structure, and Quality of Radish (Raphanus Sativus L.) Cylinders. Dry. Technol. 2014, 32(15), 1803–1811.
  • Zhang, M.; Xia, X.; Liu, Q.; Chen, Q.; Kong, B. Changes in Microstructure, Quality and Water Distribution of Porcine Longissimus Muscles Subjected to Ultrasound-Assisted Immersion Freezing during Frozen Storage. Meat Sci. 2019, 15124–15132.
  • Zhang, C.; Sun, Q.; Chen, Q.; Kong, B.; Diao, X. Effects of Ultrasound-Assisted Immersion Freezing on the Muscle Quality and Physicochemical Properties of Chicken Breast. Int. J. Refrig. 2020, 117247–117255.
  • Zhang, C.; Li, X. A.; Wang, H.; Xia, X.; Kong, B. Ultrasound-Assisted Immersion Freezing Reduces the Structure and Gel Property Deterioration of Myofibrillar Protein from Chicken Breast. Ultrason. Sonochem. 2020, 67105137.
  • Sun, Q.; Zhao, X.; Zhang, C.; Xia, X.; Sun, F.; Kong, B. Ultrasound-Assisted Immersion Freezing Accelerates the Freezing Process and Improves the Quality of Common Carp (Cyprinus Carpio) at Different Power Levels. LWT. 2019, 108106–108112.
  • Sun, Q.; Chen, Q.; Xia, X.; Kong, B.; Diao, X. Effects of Ultrasound-Assisted Freezing at Different Power Levels on the Structure and Thermal Stability of Common Carp (Cyprinus Carpio) Proteins. Ultrason. Sonochem. 2019, 54311–54320.
  • Sun, Q.; Sun, F.; Xia, X.; Xu, H.; Kong, B. The Comparison of Ultrasound-Assisted Immersion Freezing, Air Freezing and Immersion Freezing on the Muscle Quality and Physicochemical Properties of Common Carp (Cyprinus Carpio) during Freezing Storage. Ultrason. Sonochem. 2019, 51281–51291.
  • Sun, Q.; Zhang, C.; Li, Q.; Xia, X.; Kong, B. Changes in Functional Properties of Common Carp (Cyprinus Carpio) Myofibrillar Protein as Affected by Ultrasound-Assisted Freezing. J. Food Sci. 2020, 85(9), 2879–2888.
  • Gao, W.; Hou, R.; Zeng, X. A. Synergistic Effects of Ultrasound and Soluble Soybean Polysaccharide on Frozen Surimi from Grass Carp. J. Food Eng. 2019, 2401–2408.
  • Shi, Z.; Zhong, S.; Yan, W.; Liu, M.; Yang, Z.; Qiao, X. The Effects of Ultrasonic Treatment on the Freezing Rate, Physicochemical Quality, and Microstructure of the Back Muscle of Grass Carp (Ctenopharyngodon Idella). LWT. 2019, 111301–111308.
  • Gallego-Juarez; Juan A. R. C. G., San Emetero Prieto; Jose L., Montoya Vitini; Fausto Electroacoustic Unit for Generating High Sonic and Ultra-Sonic Intensities in Gases and Interphases. U.S. Patent 5, 299, 175, 1994.
  • Zhang, X.; Wang, L.; Cheng, M.; Wang, R.; Luo, X.; Li, Y.; Chen, Z. Influence of Ultrasonic Enzyme Treatment on the Cooking and Eating Quality of Brown Rice. J. Cereal Sci. 2015, 63140–63146.
  • Zou, Y.; Kang, D.; Liu, R.; Qi, J.; Zhou, G.; Zhang, W. Effects of Ultrasonic Assisted Cooking on the Chemical Profiles of Taste and Flavor of Spiced Beef. Ultrason. Sonochem. 2018, 4636–4645.
  • Arnold, G.; Leiteritz, L.; Zahn, S.; Rohm, H. Ultrasonic Cutting of Cheese: Composition Affects Cutting Work Reduction and Energy Demand. Int. Dairy J. 2009, 19(5), 314–320.
  • Kentish, S.; Feng, H. Applications of Power Ultrasound in Food Processing. Annu. Rev. Food Sci. Technol. 2014, 5(1), 263–284.
  • Szadzińska, J.; Łechtańska, J.; Kowalski, S.J.; Stasiak, M. The Effect of High Power Airborne Ultrasound and Microwaves on Convective Drying Effectiveness and Quality of Green Pepper. Ultrason. Sonochem. 2017, 34531–34539
  • Tao, Y., Han M.; Gao, X.; Han, Y.; Show, P.-L.; Liu, C.; Ye, X.; Xie, G. Applications of Water Blanching, Surface Contacting Ultrasound-assisted Air Drying, and Their Combination for Dehydration of White Cabbage: Drying Mechanism, Bioactive Profile, Color and Rehydration Property. Ultrason. Sonochem. 2019, 53192–53201
  • Martini, S.; Suzuki, A. H.; Hartel, R. W. Effect of High Intensity Ultrasound on Crystallization Behavior of Anhydrous Milk Fat. J Am Oil Chem Soc Society. 2008, 85(7), 621–628.
  • Li, D.; Zhao, H.; Muhammad, A.I.; Song, L.; Guo, M.Liu, D. The Comparison of Ultrasound-assisted Thawing, Air Thawing and Water Immersion Thawing on the Quality of Slow/fast Freezing Bighead Carp (Aristichthys Nobilis) Fillets. Food Chem.2020, 320126614.eng.
  • Xu, B.; Chen, J.; Yuan, J.; Azam, S.R.; Zhang, M. Effect of Different Thawing Methods on the Efficiency and Quality Attributes of Frozen Red Radish. J. Sci. Food Agric. 2021, 101(8), 3237–3245.eng.
  • De Jong, P.; Villamiel, M.; Verdurmen, R. Degassing of Milk by High-Intensity Ultrasound. Milchwissenschaft. 2000, 55123–55125.
  • Kyllönen, H.; Pirkonen, P.; Nyström, M.; Nuortila-Jokinen, J.; Grönroos, A. Experimental Aspects of Ultrasonically Enhanced Cross-Flow Membrane Filtration of Industrial Wastewater. Ultrason. Sonochem. 2006, 13(4), 295–302.
  • Xia, T.; Shi, S.; Wan, X. Impact of Ultrasonic-Assisted Extraction on the Chemical and Sensory Quality of Tea Infusion. J. Food Eng. 2006, 74(4), 557–560.
  • Da Porto, C.; Decorti, D. Ultrasound-Assisted Extraction Coupled with under Vacuum Distillation of Flavour Compounds from Spearmint (Carvone-rich) Plants: Comparison with Conventional Hydrodistillation. Ultrason. Sonochem. 2009, 16(6), 795–799.
  • Mawson, R.; Tongaonkar, J.; Bhagwat, S. S.; Pandit, A. B. Chapter 13 - Airborne Ultrasound for Enhanced Defoaming Applications. Innovative Food Processing Technologies. K. Knoerzer, P. Juliano and G. Smithers; Woodhead Publishing. 2016, 347–359.
  • Mongenot, N.; Charrier, S.; Chalier, P. Effect of Ultrasound Emulsification on Cheese Aroma Encapsulation by Carbohydrates. J. Agric. Food Chem. 2000, 48(3), 861–867.
  • Wu, H.; Hulbert, G. J.; Mount, J. R. Effects of Ultrasound on Milk Homogenization and Fermentation with Yogurt Starter. Innov. Food Sci. Emerg. Technol. 2000, 1(3), 211–218.
  • Gallego-Juarez, J.A.; Rodriguez-Corral, G.; Gálvez Moraleda, J. C.; Yang, T. S. A New High-Intensity Ultrasonic Technology for Food Dehydration. Dry. Technol. 1999, 17(3), 597–608.
  • Liu, S.; Zhu, W.; Bai, X.; You, T.; Yan, J. Effect of Ultrasonic Energy Density on Moisture Transfer during Ultrasound Enhanced Vacuum Drying of Honey. J. Food Meas. Charact. 2019, 13(1), 559–570.
  • Noci, F.; Walkling-Ribeiro, M.; Cronin, D. A.; Morgan, D. J.; Lyng, J. G. Effect of Thermosonication, Pulsed Electric Field and Their Combination on Inactivation of Listeria Innocua in Milk. Int. Dairy J. 2009, 19(1), 30–35.
  • Costa, M. G. M.; Fonteles, T. V.; De Jesus, A. L. T.; Almeida, F. D. L.; De Miranda, M. R. A.; Fernandes, F. A. N.; Rodrigues, S. High-Intensity Ultrasound Processing of Pineapple Juice. Food Bioproc. Tech. 2013, 6(4), 997–1006.
  • Benedito, J.; Carcel, J. A.; Sanjuan, N.; Mulet, A. Use of Ultrasound to Assess Cheddar Cheese Characteristics. Ultrasonics. 2000, 38(1–8), 727–730.
  • Novoa-Díaz, D.; Rodríguez-Nogales, J. M.; Fernández-Fernández, E.; Vila-Crespo, J.; García-Álvarez, J.; Amer, M. A.; Chávez, J. A.; Turó, A.; García-Hernández, M. J.; Salazar, J. Ultrasonic Monitoring of Malolactic Fermentation in Red Wines. Ultrasonics. 2014, 54(6), 1575–1580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.